Atom feed of this document

 Preparing the Ring


"Partition" in this section refers to the logical partitions of the swift ring - not physical partitions on Storage node drives. You should setup your Storage Node disk partitions with one physical partition per disk, as per the installation instructions .

The first step is to determine the number of partitions that will be in the ring. We recommend that there be a minimum of 100 partitions per drive to insure even distribution across the drives. A good starting point might be to figure out the maximum number of drives the cluster will contain, and then multiply by 100, and then round up to the nearest power of two.

For example, imagine we are building a cluster that will have no more than 5,000 drives. That would mean that we would have a total number of 500,000 partitions, which is pretty close to 2^19, rounded up.

It is also a good idea to keep the number of partitions small (relatively). The more partitions there are, the more work that has to be done by the replicators and other backend jobs and the more memory the rings consume in process. The goal is to find a good balance between small rings and maximum cluster size.

The next step is to determine the number of replicas to store of the data. Currently it is recommended to use 3 (as this is the only value that has been tested). The higher the number, the more storage that is used but the less likely you are to lose data.

It is also important to determine how many zones the cluster should have. It is recommended to start with a minimum of 5 zones. You can start with fewer, but our testing has shown that having at least five zones is optimal when failures occur. We also recommend trying to configure the zones at as high a level as possible to create as much isolation as possible. Some example things to take into consideration can include physical location, power availability, and network connectivity. For example, in a small cluster you might decide to split the zones up by cabinet, with each cabinet having its own power and network connectivity. The zone concept is very abstract, so feel free to use it in whatever way best isolates your data from failure. Zones are referenced by number, beginning with 1.

You can now start building the ring with:

swift-ring-builder <builder_file> create <part_power> <replicas> <min_part_hours>

This will start the ring build process creating the <builder_file> with 2^<part_power> partitions. <min_part_hours> is the time in hours before a specific partition can be moved in succession (24 is a good value for this).

Devices can be added to the ring with:

swift-ring-builder <builder_file> add z<zone>-<ip>:<port>/<device_name>_<meta> <weight>

This will add a device to the ring where <builder_file> is the name of the builder file that was created previously, <zone> is the number of the zone this device is in, <ip> is the ip address of the server the device is in, <port> is the port number that the server is running on, <device_name> is the name of the device on the server (for example: sdb1), <meta> is a string of metadata for the device (optional), and <weight> is a float weight that determines how many partitions are put on the device relative to the rest of the devices in the cluster (a good starting point is 100.0 x TB on the drive). Add each device that will be initially in the cluster.

Once all of the devices are added to the ring, run:

swift-ring-builder <builder_file> rebalance

This will distribute the partitions across the drives in the ring. It is important whenever making changes to the ring to make all the changes required before running rebalance. This will ensure that the ring stays as balanced as possible, and as few partitions are moved as possible.

The above process should be done to make a ring for each storage service (Account, Container and Object). The builder files will be needed in future changes to the ring, so it is very important that these be kept and backed up. The resulting .tar.gz ring file should be pushed to all of the servers in the cluster. For more information about building rings, running swift-ring-builder with no options will display help text with available commands and options.

Log a bug against this page

loading table of contents...