
Horizon Documentation
Release 18.6.5.dev13

OpenStack Foundation

Jul 19, 2023

CONTENTS

1 Introduction 1

2 Using Horizon 3
2.1 Installation Guide . 3

2.1.1 System Requirements . 3
System Requirements . 3

2.1.2 Installing from Packages . 4
Install and configure for Debian . 4
Install and configure for openSUSE and SUSE Linux Enterprise 6
Install and configure for Red Hat Enterprise Linux and CentOS 8
Install and configure for Ubuntu . 11
Verify operation for Debian . 13
Verify operation for openSUSE and SUSE Linux Enterprise 13
Verify operation for Red Hat Enterprise Linux and CentOS 13
Verify operation for Ubuntu . 13
Next steps . 13

2.1.3 Installing from Source . 14
Manual installation . 14

2.1.4 Horizon plugins . 18
Plugin Registry . 18

2.2 Configuration Guide . 19
2.2.1 Settings Reference . 19

Introduction . 19
General Settings . 19
Service-specific Settings . 35
Django Settings . 58
Other Settings . 61

2.2.2 Pluggable Panels and Groups . 62
Introduction . 62
General Pluggbale Settings . 62
Pluggable Settings for Dashboards . 66
Pluggable Settings for Panels . 67
Pluggable Settings for Panel Groups . 68

2.2.3 Customizing Horizon . 69
Changing the Site Title . 69
Changing the Brand Link . 69
Customizing the Footer . 69
Modifying Existing Dashboards and Panels . 70
Horizon customization module (overrides) . 70

i

Customize the project and user table columns 72
Customize Angular dashboards . 73
Icons . 74
Custom Stylesheets . 75
Custom Javascript . 75
Customizing Meta Attributes . 77

2.2.4 Themes . 77
Inherit from an Existing Theme . 78
Organizing Your Theme Directory . 79
Customizing the Logo . 79

2.2.5 Branding Horizon . 80
Supported Components . 80
Step 1 . 81
Top Navbar . 81
Side Nav . 81
Charts . 81
Tables . 82
Login . 82
Tabs . 82
Alerts . 82
Checkboxes . 83
Bootswatch and Material Design . 83
Development Tips . 83

2.3 OpenStack Dashboard User Documentation . 83
2.3.1 Log in to the dashboard . 83

OpenStack dashboard Project tab . 84
OpenStack dashboard Admin tab . 86
OpenStack dashboard Identity tab . 87
OpenStack dashboard Settings tab . 88

2.3.2 Upload and manage images . 88
Upload an image . 89
Update an image . 90
Delete an image . 91

2.3.3 Configure access and security for instances 91
Add a rule to the default security group . 92
Add a key pair . 93
Import a key pair . 93
Allocate a floating IP address to an instance . 94

2.3.4 Launch and manage instances . 94
Launch an instance . 95
Connect to your instance by using SSH . 97
Track usage for instances . 98
Create an instance snapshot . 98
Manage an instance . 98

2.3.5 Create and manage networks . 99
Create a network . 99
Create a router . 100
Create a port . 100

2.3.6 Create and manage object containers . 101
Create a container . 101
Upload an object . 101

ii

Manage an object . 102
2.3.7 Create and manage volumes . 103

Create a volume . 103
Attach a volume to an instance . 104
Detach a volume from an instance . 104
Create a snapshot from a volume . 105
Edit a volume . 105
Delete a volume . 105

2.3.8 Supported Browsers . 106
2.4 Administration Guide . 106

2.4.1 Customize and configure the Dashboard . 106
Customize the Dashboard . 107
Configure the Dashboard . 109

2.4.2 Set up session storage for the Dashboard . 114
Local memory cache . 114
Cached database . 117
Cookies . 117

2.4.3 Create and manage images . 117
Create images . 117
Update images . 119
Delete images . 119

2.4.4 Create and manage roles . 120
Create a role . 120
Edit a role . 120
Delete a role . 120

2.4.5 Manage projects and users . 121
Add a new project . 121
Delete a project . 121
Update a project . 121
Add a new user . 122
Delete a new user . 122
Update a user . 122

2.4.6 Manage instances . 123
Create instance snapshots . 123
Control the state of an instance . 123
Track usage . 124

2.4.7 Manage flavors . 124
Create flavors . 124
Update flavors . 126
Update Metadata . 127
Delete flavors . 127

2.4.8 Manage volumes and volume types . 128
Create a volume type . 128
Create an encrypted volume type . 128
Delete volume types . 130
Delete volumes . 131

2.4.9 View and manage quotas . 131
View default project quotas . 132
Update project quotas . 132

2.4.10 View services information . 132
2.4.11 Create and manage host aggregates . 133

iii

To create a host aggregate . 133
To manage host aggregates . 133

3 Contributor Docs 135
3.1 Contributor Documentation . 135

3.1.1 So You Want to Contribute . 135
Project Resources . 135
Communication . 135
Contacting the Core Team . 136
New Feature Planning . 136
Task Tracking . 136
Reporting a Bug . 136
Getting Your Patch Merged . 137
Project Team Lead Duties . 137
Etiquette . 137

3.1.2 Horizon Basics . 137
Values . 137
History . 138
The Current Architecture & How It Meets Our Values 138

3.1.3 Project Policies . 139
Supported Software . 139
Core Reviewer Team . 140

3.1.4 Quickstart . 141
Linux Systems . 142
Setup . 142
Managing Settings . 143
Editing Horizons Source . 144
Horizons Structure . 144
Project Structure . 144
Application Design . 145

3.1.5 Horizons tests and you . 147
How to run the tests . 147
tox Test Environments . 148
Writing tests . 149

3.1.6 Tutorials . 150
Tutorial: Creating an Horizon Plugin . 150
Tutorial: Building a Dashboard using Horizon 159
Tutorial: Adding a complex action to a table . 168
Extending an AngularJS Workflow . 174

3.1.7 Topic Guides . 177
Code Style . 177
Workflows Topic Guide . 184
DataTables Topic Guide . 187
Horizon Policy Enforcement (RBAC: Role Based Access Control) 193
Horizon Microversion Support . 196
AngularJS Topic Guide . 197
Testing Overview . 203
Styling in Horizon (SCSS) . 213
Release Notes . 216
Translation in Horizon . 217
Profiling Pages . 223

iv

Defining default settings in code . 223
Packaging Software . 227
DevStack for Horizon . 231

3.1.8 Module Reference . 232
Horizon Framework . 232
openstack_auth Module . 276

3.1.9 Frequently Asked Questions . 285

4 Release Notes 287

5 Information 289
5.1 Glossary . 289

v

vi

CHAPTER

ONE

INTRODUCTION

Horizon is the canonical implementation of OpenStacks Dashboard, which provides a web based user
interface to OpenStack services including Nova, Swift, Keystone, etc.

For a more in-depth look at Horizon and its architecture, see the Horizon Basics.

To learn what you need to know to get going, see the Quickstart.

1

https://github.com/openstack/horizon

Horizon Documentation, Release 18.6.5.dev13

2 Chapter 1. Introduction

CHAPTER

TWO

USING HORIZON

How to use Horizon in your own projects.

2.1 Installation Guide

This section describes how to install and configure the dashboard on the controller node.

The only core service required by the dashboard is the Identity service. You can use the dashboard in
combination with other services, such as Image service, Compute, and Networking. You can also use
the dashboard in environments with stand-alone services such as Object Storage.

Note: This section assumes proper installation, configuration, and operation of the Identity service
using the Apache HTTP server and Memcached service.

2.1.1 System Requirements

System Requirements

The Ussuri release of horizon has the following dependencies.

• Python 3.6 or 3.7

• Django 2.2

– Django support policy is documented at Django support.

– Ussuri release uses Django 2.2 (the latest LTS) as the primary Django version. The prevouos
LTS of Django 1.11 will be dropped during Ussuri cycle. Django 2.0 support will be dropped
as well.

• An accessible keystone endpoint

• All other services are optional. Horizon supports the following services as of the Stein release.
If the keystone endpoint for a service is configured, horizon detects it and enables its support
automatically.

– cinder: Block Storage

– glance: Image Management

– neutron: Networking

3

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/cinder/latest/
https://docs.openstack.org/glance/latest/
https://docs.openstack.org/neutron/latest/

Horizon Documentation, Release 18.6.5.dev13

– nova: Compute

– swift: Object Storage

– Horizon also supports many other OpenStack services via plugins. For more information,
see the Plugin Registry.

2.1.2 Installing from Packages

Install and configure for Debian

This section describes how to install and configure the dashboard on the controller node.

The only core service required by the dashboard is the Identity service. You can use the dashboard in
combination with other services, such as Image service, Compute, and Networking. You can also use
the dashboard in environments with stand-alone services such as Object Storage.

Note: This section assumes proper installation, configuration, and operation of the Identity service
using the Apache HTTP server and Memcached service.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt install openstack-dashboard-apache

2. Respond to prompts for web server configuration.

Note: The automatic configuration process generates a self-signed SSL certificate. Consider
obtaining an official certificate for production environments.

Note: There are two modes of installation. One using /horizon as the URL, keeping your
default vhost and only adding an Alias directive: this is the default. The other mode will remove
the default Apache vhost and install the dashboard on the webroot. It was the only available
option before the Liberty release. If you prefer to set the Apache configuration manually, install
the openstack-dashboard package instead of openstack-dashboard-apache.

3. Edit the /etc/openstack-dashboard/local_settings.py file and complete the fol-
lowing actions:

• Configure the dashboard to use OpenStack services on the controller node:

4 Chapter 2. Using Horizon

https://docs.openstack.org/nova/latest/
https://docs.openstack.org/swift/latest/

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_HOST = "controller"

• In the Dashboard configuration section, allow your hosts to access Dashboard:

ALLOWED_HOSTS = ['one.example.com', 'two.example.com']

Note:

– Do not edit the ALLOWED_HOSTS parameter under the Ubuntu configuration section.

– ALLOWED_HOSTS can also be ['*'] to accept all hosts. This may be useful for
development work, but is potentially insecure and should not be used in production.
See the Django documentation for further information.

• Configure the memcached session storage service:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.
↪→MemcachedCache',

'LOCATION': 'controller:11211',
}

}

Note: Comment out any other session storage configuration.

• Enable the Identity API version 3:

OPENSTACK_KEYSTONE_URL = "http://%s/identity/v3" % OPENSTACK_HOST

• Enable support for domains:

OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True

• Configure API versions:

OPENSTACK_API_VERSIONS = {
"identity": 3,
"image": 2,
"volume": 3,

}

• Configure Default as the default domain for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"

• Configure user as the default role for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"

• If you chose networking option 1, disable support for layer-3 networking services:

2.1. Installation Guide 5

https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_NEUTRON_NETWORK = {
...
'enable_router': False,
'enable_quotas': False,
'enable_ipv6': False,
'enable_distributed_router': False,
'enable_ha_router': False,
'enable_lb': False,
'enable_firewall': False,
'enable_vpn': False,
'enable_fip_topology_check': False,

}

• Optionally, configure the time zone:

TIME_ZONE = "TIME_ZONE"

Replace TIME_ZONE with an appropriate time zone identifier. For more information, see
the list of time zones.

Finalize installation

• Reload the web server configuration:

service apache2 reload

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the dashboard on the controller node.

The only core service required by the dashboard is the Identity service. You can use the dashboard in
combination with other services, such as Image service, Compute, and Networking. You can also use
the dashboard in environments with stand-alone services such as Object Storage.

Note: This section assumes proper installation, configuration, and operation of the Identity service
using the Apache HTTP server and Memcached service.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-dashboard

2. Configure the web server:

6 Chapter 2. Using Horizon

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Horizon Documentation, Release 18.6.5.dev13

cp /etc/apache2/conf.d/openstack-dashboard.conf.sample \
/etc/apache2/conf.d/openstack-dashboard.conf

a2enmod rewrite

3. Edit the /srv/www/openstack-dashboard/openstack_dashboard/local/
local_settings.py file and complete the following actions:

• Configure the dashboard to use OpenStack services on the controller node:

OPENSTACK_HOST = "controller"

• Allow your hosts to access the dashboard:

ALLOWED_HOSTS = ['one.example.com', 'two.example.com']

Note: ALLOWED_HOSTS can also be ['*'] to accept all hosts. This may be useful for
development work, but is potentially insecure and should not be used in production. See
Django documentation for further information.

• Configure the memcached session storage service:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.
↪→MemcachedCache',

'LOCATION': 'controller:11211',
}

}

Note: Comment out any other session storage configuration.

• Enable the Identity API version 3:

OPENSTACK_KEYSTONE_URL = "http://%s/identity/v3" % OPENSTACK_HOST

• Enable support for domains:

OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True

• Configure API versions:

OPENSTACK_API_VERSIONS = {
"identity": 3,
"image": 2,
"volume": 3,

}

• Configure Default as the default domain for users that you create via the dashboard:

2.1. Installation Guide 7

https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"

• Configure user as the default role for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"

• If you chose networking option 1, disable support for layer-3 networking services:

OPENSTACK_NEUTRON_NETWORK = {
...
'enable_router': False,
'enable_quotas': False,
'enable_distributed_router': False,
'enable_ha_router': False,
'enable_lb': False,
'enable_firewall': False,
'enable_vpn': False,
'enable_fip_topology_check': False,

}

• Optionally, configure the time zone:

TIME_ZONE = "TIME_ZONE"

Replace TIME_ZONE with an appropriate time zone identifier. For more information, see
the list of time zones.

Finalize installation

• Restart the web server and session storage service:

systemctl restart apache2.service memcached.service

Note: The systemctl restart command starts each service if not currently running.

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the dashboard on the controller node.

The only core service required by the dashboard is the Identity service. You can use the dashboard in
combination with other services, such as Image service, Compute, and Networking. You can also use
the dashboard in environments with stand-alone services such as Object Storage.

Note: This section assumes proper installation, configuration, and operation of the Identity service
using the Apache HTTP server and Memcached service.

8 Chapter 2. Using Horizon

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Horizon Documentation, Release 18.6.5.dev13

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-dashboard

2. Edit the /etc/openstack-dashboard/local_settings file and complete the follow-
ing actions:

• Configure the dashboard to use OpenStack services on the controller node:

OPENSTACK_HOST = "controller"

• Allow your hosts to access the dashboard:

ALLOWED_HOSTS = ['one.example.com', 'two.example.com']

Note: ALLOWED_HOSTS can also be [*] to accept all hosts. This may be useful for
development work, but is potentially insecure and should not be used in production. See
https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts for further information.

• Configure the memcached session storage service:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.
↪→MemcachedCache',

'LOCATION': 'controller:11211',
}

}

Note: Comment out any other session storage configuration.

• Enable the Identity API version 3:

OPENSTACK_KEYSTONE_URL = "http://%s/identity/v3" % OPENSTACK_HOST

• Enable support for domains:

OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True

• Configure API versions:

2.1. Installation Guide 9

https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_API_VERSIONS = {
"identity": 3,
"image": 2,
"volume": 3,

}

• Configure Default as the default domain for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"

• Configure user as the default role for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"

• If you chose networking option 1, disable support for layer-3 networking services:

OPENSTACK_NEUTRON_NETWORK = {
...
'enable_router': False,
'enable_quotas': False,
'enable_distributed_router': False,
'enable_ha_router': False,
'enable_lb': False,
'enable_firewall': False,
'enable_vpn': False,
'enable_fip_topology_check': False,

}

• Optionally, configure the time zone:

TIME_ZONE = "TIME_ZONE"

Replace TIME_ZONE with an appropriate time zone identifier. For more information, see
the list of time zones.

3. Add the following line to /etc/httpd/conf.d/openstack-dashboard.conf if not
included.

WSGIApplicationGroup %{GLOBAL}

Finalize installation

• Restart the web server and session storage service:

systemctl restart httpd.service memcached.service

Note: The systemctl restart command starts each service if not currently running.

10 Chapter 2. Using Horizon

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Horizon Documentation, Release 18.6.5.dev13

Install and configure for Ubuntu

This section describes how to install and configure the dashboard on the controller node.

The only core service required by the dashboard is the Identity service. You can use the dashboard in
combination with other services, such as Image service, Compute, and Networking. You can also use
the dashboard in environments with stand-alone services such as Object Storage.

Note: This section assumes proper installation, configuration, and operation of the Identity service
using the Apache HTTP server and Memcached service.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt install openstack-dashboard

2. Edit the /etc/openstack-dashboard/local_settings.py file and complete the fol-
lowing actions:

• Configure the dashboard to use OpenStack services on the controller node:

OPENSTACK_HOST = "controller"

• In the Dashboard configuration section, allow your hosts to access Dashboard:

ALLOWED_HOSTS = ['one.example.com', 'two.example.com']

Note:

– Do not edit the ALLOWED_HOSTS parameter under the Ubuntu configuration section.

– ALLOWED_HOSTS can also be ['*'] to accept all hosts. This may be useful for
development work, but is potentially insecure and should not be used in production.
See the Django documentation for further information.

• Configure the memcached session storage service:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.
↪→MemcachedCache',

'LOCATION': 'controller:11211',

(continues on next page)

2.1. Installation Guide 11

https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

}
}

Note: Comment out any other session storage configuration.

• Enable the Identity API version 3:

OPENSTACK_KEYSTONE_URL = "http://%s/identity/v3" % OPENSTACK_HOST

• Enable support for domains:

OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True

• Configure API versions:

OPENSTACK_API_VERSIONS = {
"identity": 3,
"image": 2,
"volume": 3,

}

• Configure Default as the default domain for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"

• Configure user as the default role for users that you create via the dashboard:

OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"

• If you chose networking option 1, disable support for layer-3 networking services:

OPENSTACK_NEUTRON_NETWORK = {
...
'enable_router': False,
'enable_quotas': False,
'enable_ipv6': False,
'enable_distributed_router': False,
'enable_ha_router': False,
'enable_lb': False,
'enable_firewall': False,
'enable_vpn': False,
'enable_fip_topology_check': False,

}

• Optionally, configure the time zone:

TIME_ZONE = "TIME_ZONE"

Replace TIME_ZONE with an appropriate time zone identifier. For more information, see
the list of time zones.

3. Add the following line to /etc/apache2/conf-available/openstack-dashboard.
conf if not included.

12 Chapter 2. Using Horizon

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Horizon Documentation, Release 18.6.5.dev13

WSGIApplicationGroup %{GLOBAL}

Finalize installation

• Reload the web server configuration:

systemctl reload apache2.service

Verify operation for Debian

Verify operation of the dashboard.

Access the dashboard using a web browser at http://controller/horizon/.

Authenticate using admin or demo user and default domain credentials.

Verify operation for openSUSE and SUSE Linux Enterprise

Verify operation of the dashboard.

Access the dashboard using a web browser at http://controller/.

Authenticate using admin or demo user and default domain credentials.

Verify operation for Red Hat Enterprise Linux and CentOS

Verify operation of the dashboard.

Access the dashboard using a web browser at http://controller/dashboard.

Authenticate using admin or demo user and default domain credentials.

Verify operation for Ubuntu

Verify operation of the dashboard.

Access the dashboard using a web browser at http://controller/horizon.

Authenticate using admin or demo user and default domain credentials.

Next steps

Your OpenStack environment now includes the dashboard.

After you install and configure the dashboard, you can complete the following tasks:

• Provide users with a public IP address, a username, and a password so they can access the dash-
board through a web browser. In case of any SSL certificate connection problems, point the server
IP address to a domain name, and give users access.

• Customize your dashboard. For details, see Customize and configure the Dashboard.

2.1. Installation Guide 13

Horizon Documentation, Release 18.6.5.dev13

• Set up session storage. For details, see Set up session storage for the Dashboard.

• To use the VNC client with the dashboard, the browser must support HTML5 Canvas and HTML5
WebSockets.

For details about browsers that support noVNC, see README.

2.1.3 Installing from Source

Manual installation

This page covers the basic installation of horizon in a production environment. If you are looking for a
developer environment, see Quickstart.

For the system dependencies, see System Requirements.

Installation

Note: In the commands below, substitute <release> for your version of choice, such as queens or rocky.

If you use the development version, replace stable/<release> with master.

1. Clone Horizon

$ git clone https://opendev.org/openstack/horizon -b stable/<release>
↪→--depth=1
$ cd horizon

2. Install the horizon python module into your system

$ sudo pip install -c https://opendev.org/openstack/requirements/raw/
↪→branch/stable/<release>/upper-constraints.txt .

Configuration

This section contains a small summary of the critical settings required to run horizon. For more details,
please refer to Settings Reference.

Settings

Create openstack_dashboard/local/local_settings.py. It is usually a good idea to
copy openstack_dashboard/local/local_settings.py.example and edit it. As a min-
imum, the follow settings will need to be modified:

DEBUG Set to False

ALLOWED_HOSTS Set to your domain name(s)

OPENSTACK_HOST Set to the IP of your Keystone endpoint. You may also need to alter
OPENSTACK_KEYSTONE_URL

14 Chapter 2. Using Horizon

https://github.com/novnc/noVNC/blob/master/README.md

Horizon Documentation, Release 18.6.5.dev13

Note: The following steps in the Configuration section are optional, but highly recommended in pro-
duction.

Translations

Compile translation message catalogs for internationalization. This step is not required if you do not
need to support languages other than US English. GNU gettext tool is required to compile message
catalogs.

$ sudo apt-get install gettext
$./manage.py compilemessages

Static Assets

Compress your static files by adding COMPRESS_OFFLINE = True to your local_settings.
py, then run the following commands

$./manage.py collectstatic
$./manage.py compress

Logging

Horizons uses Djangos logging configuration mechanism, which can be customized by altering the
LOGGING dictionary in local_settings.py. By default, Horizons logging example sets the log
level to INFO.

Horizon also uses a number of 3rd-party clients which log separately. The log level for these can still be
controlled through Horizons LOGGING config, however behaviors may vary beyond Horizons control.

For more information regarding configuring logging in Horizon, please read the Django logging directive
and the Python logging directive documentation. Horizon is built on Python and Django.

Session Storage

Horizon uses Djangos sessions framework for handling session data. There are numerous ses-
sion backends available, which are selected through the SESSION_ENGINE setting in your
local_settings.py file.

2.1. Installation Guide 15

https://docs.djangoproject.com/en/dev/topics/logging
https://docs.python.org/2/library/logging.html
https://docs.djangoproject.com/en/dev/topics/http/sessions/

Horizon Documentation, Release 18.6.5.dev13

Memcached

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {

'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': 'controller:11211',

}
}

External caching using an application such as memcached offers persistence and shared storage, and
can be very useful for small-scale deployment and/or development. However, for distributed and high-
availability scenarios memcached has inherent problems which are beyond the scope of this documen-
tation.

Requirements:

• Memcached service running and accessible

• Python memcached module installed

Database

SESSION_ENGINE = 'django.core.cache.backends.db.DatabaseCache'
DATABASES = {

'default': {
Database configuration here

}
}

Database-backed sessions are scalable (using an appropriate database strategy), persistent, and can be
made high-concurrency and highly-available.

The downside to this approach is that database-backed sessions are one of the slower session storages,
and incur a high overhead under heavy usage. Proper configuration of your database deployment can
also be a substantial undertaking and is far beyond the scope of this documentation.

Cached Database

To mitigate the performance issues of database queries, you can also consider using Djangos
cached_db session backend which utilizes both your database and caching infrastructure to perform
write-through caching and efficient retrieval. You can enable this hybrid setting by configuring both
your database and cache as discussed above and then using

SESSION_ENGINE = "django.contrib.sessions.backends.cached_db"

16 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Deployment

1. Set up a web server with WSGI support. For example, install Apache web server on Ubuntu

$ sudo apt-get install apache2 libapache2-mod-wsgi

You can either use the provided openstack_dashboard/wsgi.py or generate a
openstack_dashboard/horizon_wsgi.py file with the following command (which de-
tects if you use a virtual environment or not to automatically build an adapted WSGI file)

$./manage.py make_web_conf --wsgi

Then configure the web server to host OpenStack dashboard via WSGI. For apache2 web server,
you may need to create /etc/apache2/sites-available/horizon.conf. The tem-
plate in DevStack is a good example of the file. https://opendev.org/openstack/devstack/src/
branch/master/files/apache-horizon.template Or you can automatically generate an apache config-
uration file. If you previously generated an openstack_dashboard/horizon_wsgi.py
file it will use that, otherwise will default to using openstack_dashboard/wsgi.py

$./manage.py make_web_conf --apache > /etc/apache2/sites-available/
↪→horizon.conf

Same as above but if you want SSL support

$./manage.py make_web_conf --apache --ssl --sslkey=/path/to/ssl/key -
↪→-sslcert=/path/to/ssl/cert > /etc/apache2/sites-available/horizon.
↪→conf

By default the apache configuration will launch a number of apache processes equal to the number
of CPUs + 1 of the machine on which you launch the make_web_conf command. If the target
machine is not the same or if you want to specify the number of processes, add the --processes
option

$./manage.py make_web_conf --apache --processes 10 > /etc/apache2/
↪→sites-available/horizon.conf

2. Enable the above configuration and restart the web server

$ sudo a2ensite horizon
$ sudo service apache2 restart

Next Steps

• Settings Reference lists the available settings for horizon.

• Customizing Horizon describes how to customize horizon.

2.1. Installation Guide 17

https://opendev.org/openstack/devstack/src/branch/master/files/apache-horizon.template
https://opendev.org/openstack/devstack/src/branch/master/files/apache-horizon.template

Horizon Documentation, Release 18.6.5.dev13

2.1.4 Horizon plugins

There are a number of horizon plugins for various useful features. You can get dashboard supports for
them by installing corresponding horizon plugins.

Plugin Registry

This is a list of horizon plugins which are part of the official OpenStack releases.

Note: Currently, Horizon plugins are responsible for their own compatibility. Check the individual
repos for information on support.

Plugin Repository Bug Tracker
adjutant-ui openstack/adjutant-ui storyboard openstack/adjutant-ui
blazar-dashboard openstack/blazar-dashboard launchpad blazar
cloudkitty-dashboard openstack/cloudkitty-dashboard storyboard openstack/cloudkitty-

dashboard
designate-dashboard openstack/designate-dashboard launchpad designate-dashboard
freezer-web-ui openstack/freezer-web-ui storyboard openstack/freezer-web-ui
heat-dashboard openstack/heat-dashboard storyboard openstack/heat-dashboard
ironic-ui openstack/ironic-ui storyboard openstack/ironic-ui
karbor-dashboard openstack/karbor-dashboard launchpad karbor-dashboard
magnum-ui openstack/magnum-ui launchpad magnum-ui
manila-ui openstack/manila-ui launchpad manila-ui
masakari-dashboard openstack/masakari-dashboard launchpad masakari
mistral-dashboard openstack/mistral-dashboard launchpad mistral
monasca-ui openstack/monasca-ui launchpad monasca
murano-dashboard openstack/murano-dashboard launchpad murano
networking-bgpvpn openstack/networking-bgpvpn launchpad bgpvpn
neutron-vpnaas-
dashboard

openstack/neutron-vpnaas-
dashboard

launchpad neutron-vpnaas-dashboard

octavia-dashboard openstack/octavia-dashboard storyboard openstack/octavia-
dashboard

qinling-dashboard openstack/qinling-dashboard storyboard openstack/qinling-
dashboard

sahara-dashboard openstack/sahara-dashboard storyboard openstack/sahara-
dashboard

searchlight-ui openstack/searchlight-ui storyboard openstack/searchlight-ui
senlin-dashboard openstack/senlin-dashboard launchpad senlin-dashboard
solum-dashboard openstack/solum-dashboard launchpad solum
tacker-horizon openstack/tacker-horizon launchpad tacker
trove-dashboard openstack/trove-dashboard launchpad trove-dashboard
vitrage-dashboard openstack/vitrage-dashboard storyboard openstack/vitrage-

dashboard
watcher-dashboard openstack/watcher-dashboard launchpad watcher-dashboard
zaqar-ui openstack/zaqar-ui launchpad zaqar-ui
zun-ui openstack/zun-ui launchpad zun-ui

18 Chapter 2. Using Horizon

https://opendev.org/openstack/adjutant-ui
https://storyboard.openstack.org/#!/project/openstack/adjutant-ui
https://opendev.org/openstack/blazar-dashboard
https://bugs.launchpad.net/blazar
https://opendev.org/openstack/cloudkitty-dashboard
https://storyboard.openstack.org/#!/project/openstack/cloudkitty-dashboard
https://storyboard.openstack.org/#!/project/openstack/cloudkitty-dashboard
https://opendev.org/openstack/designate-dashboard
https://bugs.launchpad.net/designate-dashboard
https://opendev.org/openstack/freezer-web-ui
https://storyboard.openstack.org/#!/project/openstack/freezer-web-ui
https://opendev.org/openstack/heat-dashboard
https://storyboard.openstack.org/#!/project/openstack/heat-dashboard
https://opendev.org/openstack/ironic-ui
https://storyboard.openstack.org/#!/project/openstack/ironic-ui
https://opendev.org/openstack/karbor-dashboard
https://bugs.launchpad.net/karbor-dashboard
https://opendev.org/openstack/magnum-ui
https://bugs.launchpad.net/magnum-ui
https://opendev.org/openstack/manila-ui
https://bugs.launchpad.net/manila-ui
https://opendev.org/openstack/masakari-dashboard
https://bugs.launchpad.net/masakari
https://opendev.org/openstack/mistral-dashboard
https://bugs.launchpad.net/mistral
https://opendev.org/openstack/monasca-ui
https://bugs.launchpad.net/monasca
https://opendev.org/openstack/murano-dashboard
https://bugs.launchpad.net/murano
https://opendev.org/openstack/networking-bgpvpn
https://bugs.launchpad.net/bgpvpn
https://opendev.org/openstack/neutron-vpnaas-dashboard
https://opendev.org/openstack/neutron-vpnaas-dashboard
https://bugs.launchpad.net/neutron-vpnaas-dashboard
https://opendev.org/openstack/octavia-dashboard
https://storyboard.openstack.org/#!/project/openstack/octavia-dashboard
https://storyboard.openstack.org/#!/project/openstack/octavia-dashboard
https://opendev.org/openstack/qinling-dashboard
https://storyboard.openstack.org/#!/project/openstack/qinling-dashboard
https://storyboard.openstack.org/#!/project/openstack/qinling-dashboard
https://opendev.org/openstack/sahara-dashboard
https://storyboard.openstack.org/#!/project/openstack/sahara-dashboard
https://storyboard.openstack.org/#!/project/openstack/sahara-dashboard
https://opendev.org/openstack/searchlight-ui
https://storyboard.openstack.org/#!/project/openstack/searchlight-ui
https://opendev.org/openstack/senlin-dashboard
https://bugs.launchpad.net/senlin-dashboard
https://opendev.org/openstack/solum-dashboard
https://bugs.launchpad.net/solum
https://opendev.org/openstack/tacker-horizon
https://bugs.launchpad.net/tacker
https://opendev.org/openstack/trove-dashboard
https://bugs.launchpad.net/trove-dashboard
https://opendev.org/openstack/vitrage-dashboard
https://storyboard.openstack.org/#!/project/openstack/vitrage-dashboard
https://storyboard.openstack.org/#!/project/openstack/vitrage-dashboard
https://opendev.org/openstack/watcher-dashboard
https://bugs.launchpad.net/watcher-dashboard
https://opendev.org/openstack/zaqar-ui
https://bugs.launchpad.net/zaqar-ui
https://opendev.org/openstack/zun-ui
https://bugs.launchpad.net/zun-ui

Horizon Documentation, Release 18.6.5.dev13

2.2 Configuration Guide

2.2.1 Settings Reference

Introduction

Horizons settings broadly fall into four categories:

• General Settings: this includes visual settings like the modal backdrop style, bug url and theme
configuration, as well as settings that affect every service, such as page sizes on API requests.

• Service-specific Settings: Many services that Horizon consumes, such as Nova and Neutron, dont
advertise their capabilities via APIs, so Horizon carries configuration for operators to enable or
disable many items. This section covers all settings that are specific to a single service.

• Django Settings, which are common to all Django applications. The only ones documented here
are those that Horizon alters by default; however, you should read the Django settings documen-
tation to see the other options available to you.

• Other Settings: settings which do not fall into any of the above categories.

To modify your settings, you have two options:

• Preferred: Add .py settings snippets to the openstack_dashboard/local/
local_settings.d/ directory. Several example files (appended with .example) can
be found there. These must start with an underscore, and are evaluated alphabetically, after
local_settings.py.

• Modify your openstack_dashboard/local/local_settings.py. There is an file
found at openstack_dashboard/local/local_settings.py.example.

General Settings

ANGULAR_FEATURES

New in version 10.0.0(Newton).

Default:

{
'images_panel': True,
'key_pairs_panel': True,
'flavors_panel': False,
'domains_panel': False,
'users_panel': False,
'groups_panel': False,
'roles_panel': True

}

A dictionary of currently available AngularJS features. This allows simple toggling of legacy or rewrit-
ten features, such as new panels, workflows etc.

Note: If you toggle domains_panel to True, you also need to enable the setting of OPEN-
STACK_KEYSTONE_DEFAULT_DOMAIN and add OPENSTACK_KEYSTONE_DEFAULT_DOMAIN

2.2. Configuration Guide 19

https://docs.djangoproject.com/en/dev/topics/settings/
https://docs.djangoproject.com/en/dev/topics/settings/

Horizon Documentation, Release 18.6.5.dev13

to REST_API_REQUIRED_SETTINGS.

API_RESULT_LIMIT

New in version 2012.1(Essex).

Default: 1000

The maximum number of objects (e.g. Swift objects or Glance images) to display on a single page
before providing a paging element (a more link) to paginate results.

API_RESULT_PAGE_SIZE

New in version 2012.2(Folsom).

Default: 20

Similar to API_RESULT_LIMIT. This setting controls the number of items to be shown per page if
API pagination support for this exists.

AVAILABLE_THEMES

New in version 9.0.0(Mitaka).

Default:

AVAILABLE_THEMES = [
('default', 'Default', 'themes/default'),
('material', 'Material', 'themes/material'),

]

This setting tells Horizon which themes to use.

A list of tuples which define multiple themes. The tuple format is ('{{ theme_name }}', '{{
theme_label }}', '{{ theme_path }}').

The theme_name is the name used to define the directory which the theme is collected into, under
/{{ THEME_COLLECTION_DIR }}. It also specifies the key by which the selected theme is stored
in the browsers cookie.

The theme_label is the user-facing label that is shown in the theme picker. The theme picker is only
visible if more than one theme is configured, and shows under the topnavs user menu.

By default, the theme path is the directory that will serve as the static root of the theme and the entire
contents of the directory is served up at /{{ THEME_COLLECTION_DIR }}/{{ theme_name
}}. If you wish to include content other than static files in a theme directory, but do not wish that content
to be served up, then you can create a sub directory named static. If the theme folder contains a sub-
directory with the name static, then static/custom/static will be used as the root for the
content served at /static/custom.

The static root of the theme folder must always contain a _variables.scss file and a _styles.scss file.
These must contain or import all the bootstrap and horizon specific variables and styles which are used
to style the GUI. For example themes, see: /horizon/openstack_dashboard/themes/

20 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Horizon ships with two themes configured. default is the default theme, and material is based on Googles
Material Design.

DEFAULT_THEME

New in version 9.0.0(Mitaka).

Default: "default"

This setting tells Horizon which theme to use if the user has not yet selected a theme through the
theme picker and therefore set the cookie value. This value represents the theme_name key that
is used from AVAILABLE_THEMES. To use this setting, the theme must also be configured inside of
AVAILABLE_THEMES. Your default theme must be configured as part of SELECTABLE_THEMES. If
it is not, then your DEFAULT_THEME will default to the first theme in SELECTABLE_THEMES.

DISALLOW_IFRAME_EMBED

New in version 8.0.0(Liberty).

Default: True

This setting can be used to defend against Clickjacking and prevent Horizon from being embedded
within an iframe. Legacy browsers are still vulnerable to a Cross-Frame Scripting (XFS) vulnerability,
so this option allows extra security hardening where iframes are not used in deployment. When set to
true, a "frame-buster" script is inserted into the template header that prevents the web page from
being framed and therefore defends against clickjacking.

For more information see: http://tinyurl.com/anticlickjack

Note: If your deployment requires the use of iframes, you can set this setting to False to exclude the
frame-busting code and allow iframe embedding.

DROPDOWN_MAX_ITEMS

New in version 2015.1(Kilo).

Default: 30

This setting sets the maximum number of items displayed in a dropdown. Dropdowns that limit based
on this value need to support a way to observe the entire list.

2.2. Configuration Guide 21

http://tinyurl.com/anticlickjack

Horizon Documentation, Release 18.6.5.dev13

FILTER_DATA_FIRST

New in version 10.0.0(Newton).

Default:

{
'admin.instances': False,
'admin.images': False,
'admin.networks': False,
'admin.routers': False,
'admin.volumes': False

}

If the dict key-value is True, when the view loads, an empty table will be rendered and the user will be
asked to provide a search criteria first (in case no search criteria was provided) before loading any data.

Examples:

Override the dict:

{
'admin.instances': True,
'admin.images': True,
'admin.networks': False,
'admin.routers': False,
'admin.volumes': False

}

Or, if you want to turn this on for an specific panel/view do:

FILTER_DATA_FIRST['admin.instances'] = True

HORIZON_CONFIG

A dictionary of some Horizon configuration values. These are primarily separated for historic design
reasons.

Default:

HORIZON_CONFIG = {
'user_home': 'openstack_dashboard.views.get_user_home',
'ajax_queue_limit': 10,
'auto_fade_alerts': {

'delay': 3000,
'fade_duration': 1500,
'types': [

'alert-success',
'alert-info'

]
},
'bug_url': None,
'help_url': "https://docs.openstack.org/",
'exceptions': {

'recoverable': exceptions.RECOVERABLE,

(continues on next page)

22 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

'not_found': exceptions.NOT_FOUND,
'unauthorized': exceptions.UNAUTHORIZED

},
'modal_backdrop': 'static',
'angular_modules': [],
'js_files': [],
'js_spec_files': [],
'external_templates': [],

}

ajax_poll_interval

New in version 2012.1(Essex).

Default: 2500

How frequently resources in transition states should be polled for updates, expressed in milliseconds.

ajax_queue_limit

New in version 2012.1(Essex).

Default: 10

The maximum number of simultaneous AJAX connections the dashboard may try to make. This is
particularly relevant when monitoring a large number of instances, volumes, etc. which are all actively
trying to update/change state.

angular_modules

New in version 2014.2(Juno).

Default: []

A list of AngularJS modules to be loaded when Angular bootstraps. These modules are added as depen-
dencies on the root Horizon application horizon.

auto_fade_alerts

New in version 2013.2(Havana).

Default:

{
'delay': 3000,
'fade_duration': 1500,
'types': []

}

2.2. Configuration Guide 23

Horizon Documentation, Release 18.6.5.dev13

If provided, will auto-fade the alert types specified. Valid alert types include: [alert-default, alert-
success, alert-info, alert-warning, alert-danger] Can also define the delay before the alert fades and
the fade out duration.

bug_url

New in version 9.0.0(Mitaka).

Default: None

If provided, a Report Bug link will be displayed in the site header which links to the value of this setting
(ideally a URL containing information on how to report issues).

disable_password_reveal

New in version 2015.1(Kilo).

Default: False

Setting this to True will disable the reveal button for password fields, including on the login form.

exceptions

New in version 2012.1(Essex).

Default:

{
'unauthorized': [],
'not_found': [],
'recoverable': []

}

A dictionary containing classes of exceptions which Horizons centralized exception handling should be
aware of. Based on these exception categories, Horizon will handle the exception and display a message
to the user.

help_url

New in version 2012.2(Folsom).

Default: None

If provided, a Help link will be displayed in the site header which links to the value of this setting (ideally
a URL containing help information).

24 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

js_files

New in version 2014.2(Juno).

Default: []

A list of javascript source files to be included in the compressed set of files that are loaded on every
page. This is needed for AngularJS modules that are referenced in angular_modules and therefore
need to be include in every page.

js_spec_files

New in version 2015.1(Kilo).

Default: []

A list of javascript spec files to include for integration with the Jasmine spec runner. Jasmine is a
behavior-driven development framework for testing JavaScript code.

modal_backdrop

New in version 2014.2(Kilo).

Default: "static"

Controls how bootstrap backdrop element outside of modals looks and feels. Valid values are "true"
(show backdrop element outside the modal, close the modal after clicking on backdrop), "false" (do
not show backdrop element, do not close the modal after clicking outside of it) and "static" (show
backdrop element outside the modal, do not close the modal after clicking on backdrop).

password_autocomplete

New in version 2013.1(Grizzly).

Default: "off"

Controls whether browser autocompletion should be enabled on the login form. Valid values are "on"
and "off".

password_validator

New in version 2012.1(Essex).

Default:

{
'regex': '.*',
'help_text': _("Password is not accepted")

}

A dictionary containing a regular expression which will be used for password validation and help text
which will be displayed if the password does not pass validation. The help text should describe the
password requirements if there are any.

2.2. Configuration Guide 25

Horizon Documentation, Release 18.6.5.dev13

This setting allows you to set rules for passwords if your organization requires them.

user_home

New in version 2012.1(Essex).

Default: settings.LOGIN_REDIRECT_URL

This can be either a literal URL path (such as the default), or Pythons dotted string notation representing
a function which will evaluate what URL a user should be redirected to based on the attributes of that
user.

MESSAGES_PATH

New in version 9.0.0(Mitaka).

Default: None

The absolute path to the directory where message files are collected.

When the user logins to horizon, the message files collected are processed and displayed to the user.
Each message file should contain a JSON formatted data and must have a .json file extension. For
example:

{
"level": "info",
"message": "message of the day here"

}

Possible values for level are: success, info, warning and error.

NG_TEMPLATE_CACHE_AGE

New in version 10.0.0(Newton).

Angular Templates are cached using this duration (in seconds) if DEBUG is set to False. Default value
is 2592000 (or 30 days).

OPENSTACK_API_VERSIONS

New in version 2013.2(Havana).

Default:

{
"identity": 3,
"volume": 3,
"compute": 2

}

Overrides for OpenStack API versions. Use this setting to force the OpenStack dashboard to use a
specific API version for a given service API.

26 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Note: The version should be formatted as it appears in the URL for the service API. For example,
the identity service APIs have inconsistent use of the decimal point, so valid options would be 3. For
example:

OPENSTACK_API_VERSIONS = {
"identity": 3,
"volume": 3,
"compute": 2

}

OPENSTACK_CLOUDS_YAML_CUSTOM_TEMPLATE

New in version 15.0.0(Stein).

Default: None

Example:: my-clouds.yaml.template

A template name for a custom users clouds.yaml file. None means the default template for
clouds.yaml is used.

If the default template is not suitable for your deployment, you can provide your own clouds.yaml by
specifying this setting.

The default template is defined as clouds.yaml.template and available context parameters are found in
_get_openrc_credentials() and download_clouds_yaml_file() functions in open-
stack_dashboard/dashboards/project/api_access/views.py.

Note: Your template needs to be placed in the search paths of Django templates. You may need to
configure ADD_TEMPLATE_DIRS setting to contain a path where your template exists.

OPENSTACK_CLOUDS_YAML_NAME

New in version 12.0.0(Pike).

Default: "openstack"

The name of the entry to put into the users clouds.yaml file.

OPENSTACK_CLOUDS_YAML_PROFILE

New in version 12.0.0(Pike).

Default: None

If set, the name of the vendor profile from os-client-config.

2.2. Configuration Guide 27

https://opendev.org/openstack/horizon/src/branch/master/openstack_dashboard/dashboards/project/api_access/templates/api_access/clouds.yaml.template
https://opendev.org/openstack/horizon/src/branch/master/openstack_dashboard/dashboards/project/api_access/views.py
https://opendev.org/openstack/horizon/src/branch/master/openstack_dashboard/dashboards/project/api_access/views.py
https://docs.openstack.org/os-client-config/latest/user/vendor-support.html
https://docs.openstack.org/os-client-config/latest/

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_ENDPOINT_TYPE

New in version 2012.1(Essex).

Default: "publicURL"

A string which specifies the endpoint type to use for the endpoints in the Keystone service catalog. The
default value for all services except for identity is "publicURL" . The default value for the identity
service is "internalURL".

OPENSTACK_HOST

New in version 2012.1(Essex).

Default: "127.0.0.1"

The hostname of the Keystone server used for authentication if you only have one region. This is often
the only setting that needs to be set for a basic deployment.

If you have multiple regions you should use the AVAILABLE_REGIONS setting instead.

OPENRC_CUSTOM_TEMPLATE

New in version 15.0.0(Stein).

Default: None

Example:: my-openrc.sh.template

A template name for a custom users openrc file. None means the default template for openrc is
used.

If the default template is not suitable for your deployment, for example, if your deployment uses saml2,
openid and so on for authentication, the default openrc would not be sufficient. You can provide your
own clouds.yaml by specifying this setting.

The default template is defined as openrc.sh.template and available context parameters are
found in _get_openrc_credentials() and download_rc_file() functions in open-
stack_dashboard/dashboards/project/api_access/views.py.

Note: Your template needs to be placed in the search paths of Django templates. Check
TEMPLATES[0]['DIRS']. You may need to specify somewhere your template exist to DIRS in
TEMPLATES setting.

28 Chapter 2. Using Horizon

https://opendev.org/openstack/horizon/src/branch/master/openstack_dashboard/dashboards/project/api_access/templates/api_access/openrc.sh.template
https://opendev.org/openstack/horizon/src/branch/master/openstack_dashboard/dashboards/project/api_access/views.py
https://opendev.org/openstack/horizon/src/branch/master/openstack_dashboard/dashboards/project/api_access/views.py

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_PROFILER

New in version 11.0.0(Ocata).

Default: {"enabled": False}

Various settings related to integration with osprofiler library. Since it is a developer feature, it starts as
disabled. To enable it, more than a single "enabled" key should be specified. Additional keys that
should be specified in that dictionary are:

• "keys" is a list of strings, which are secret keys used to encode/decode the profiler data contained
in request headers. Encryption is used for security purposes, other OpenStack components that
are expected to profile themselves with osprofiler using the data from the request that Horizon
initiated must share a common set of keys with the ones in Horizon config. List of keys is used
so that security keys could be changed in non-obtrusive manner for every component in the cloud.
Example: "keys": ["SECRET_KEY", "MORE_SECRET_KEY"]. For more details see
osprofiler documentation.

• "notifier_connection_string" is a url to which trace messages are sent by Hori-
zon. For other components it is usually the only URL specified in config, because other com-
ponents act mostly as traces producers. Example: "notifier_connection_string":
"mongodb://%s" % OPENSTACK_HOST.

• "receiver_connection_string" is a url from which traces are retrieved by Horizon,
needed because Horizon is not only the traces producer, but also a consumer. Having 2 set-
tings which usually contain the same value is legacy feature from older versions of osprofiler
when OpenStack components could use oslo.messaging for notifications and the trace client
used ceilometer as a receiver backend. By default Horizon uses the same URL pointing to
a MongoDB cluster for both purposes. Example: "receiver_connection_string":
"mongodb://%s" % OPENSTACK_HOST.

OPENSTACK_SSL_CACERT

New in version 2013.2(Havana).

Default: None

When unset or set to None the default CA certificate on the system is used for SSL verification.

When set with the path to a custom CA certificate file, this overrides use of the default system CA
certificate. This custom certificate is used to verify all connections to openstack services when making
API calls.

OPENSTACK_SSL_NO_VERIFY

New in version 2012.2(Folsom).

Default: False

Disable SSL certificate checks in the OpenStack clients (useful for self-signed certificates).

2.2. Configuration Guide 29

https://docs.openstack.org/osprofiler/latest/user/integration.html#how-to-initialize-profiler-to-get-one-trace-across-all-services

Horizon Documentation, Release 18.6.5.dev13

OPERATION_LOG_ENABLED

New in version 10.0.0(Newton).

Default: False

This setting can be used to enable logging of all operations carried out by users of Horizon. The format
of the logs is configured via OPERATION_LOG_OPTIONS

Note: If you use this feature, you need to configure the logger setting like an outputting path for
operation log in local_settings.py.

OPERATION_LOG_OPTIONS

New in version 10.0.0(Newton).

Changed in version 12.0.0(Pike): Added ignored_urls parameter and added %(client_ip)s to
format

Default:

{
'mask_fields': ['password'],
'target_methods': ['POST'],
'ignored_urls': ['/js/', '/static/', '^/api/'],
'format': ("[%(domain_name)s] [%(domain_id)s] [%(project_name)s]"

" [%(project_id)s] [%(user_name)s] [%(user_id)s] [%(request_
↪→scheme)s]"

" [%(referer_url)s] [%(request_url)s] [%(message)s] [%(method)s]"
" [%(http_status)s] [%(param)s]"),

}

This setting controls the behavior of the operation log.

• mask_fields is a list of keys of post data which should be masked from the point of view of
security. Fields like password should be included. The fields specified in mask_fields are
logged as ********.

• target_methods is a request method which is logged to an operation log. The valid methods
are POST, GET, PUT, DELETE.

• ignored_urls is a list of request URLs to be hidden from a log.

• format defines the operation log format. Currently you can use the following keywords. The
default value contains all keywords.

– %(client_ip)s

– %(domain_name)s

– %(domain_id)s

– %(project_name)s

– %(project_id)s

– %(user_name)s

30 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

– %(user_id)s

– %(request_scheme)s

– %(referer_url)s

– %(request_url)s

– %(message)s

– %(method)s

– %(http_status)s

– %(param)s

OVERVIEW_DAYS_RANGE

New in version 10.0.0(Newton).

Default:: 1

When set to an integer N (as by default), the start date in the Overview panel meters will be today
minus N days. This setting is used to limit the amount of data fetched by default when rendering the
Overview panel. If set to None (which corresponds to the behavior in past Horizon versions), the start
date will be from the beginning of the current month until the current date. The legacy behaviour is not
recommended for large deployments as Horizon suffers significant lag in this case.

POLICY_CHECK_FUNCTION

New in version 2013.2(Havana).

Default:: openstack_auth.policy.check

This value should not be changed, although removing it or setting it to Nonewould be a means to bypass
all policy checks.

POLICY_DIRS

New in version 13.0.0(Queens).

Default:

{
'compute': ['nova_policy.d'],
'volume': ['cinder_policy.d'],

}

Specifies a list of policy directories per service types. The directories are relative to POL-
ICY_FILES_PATH. Services whose additional policies are defined here must be defined in POL-
ICY_FILES too. Otherwise, additional policies specified in POLICY_DIRS are not loaded.

Note: cinder_policy.d and nova_policy.d are registered by default to maintain policies
which have ben dropped from nova and cinder but horizon still uses. We recommend not to drop them.

2.2. Configuration Guide 31

Horizon Documentation, Release 18.6.5.dev13

POLICY_FILES

New in version 2013.2(Havana).

Default:

{
'compute': 'nova_policy.json',
'identity': 'keystone_policy.json',
'image': 'glance_policy.json',
'network': 'neutron_policy.json',
'volume': 'cinder_policy.json',

}

This should essentially be the mapping of the contents of POLICY_FILES_PATH to service types. When
policy.json files are added to POLICY_FILES_PATH, they should be included here too.

POLICY_FILES_PATH

New in version 2013.2(Havana).

Default: os.path.join(ROOT_PATH, "conf")

Specifies where service based policy files are located. These are used to define the policy rules actions
are verified against.

REST_API_REQUIRED_SETTINGS

New in version 2014.2(Kilo).

Default:

[
'CREATE_IMAGE_DEFAULTS',
'DEFAULT_BOOT_SOURCE',
'ENFORCE_PASSWORD_CHECK',
'LAUNCH_INSTANCE_DEFAULTS',
'OPENSTACK_HYPERVISOR_FEATURES',
'OPENSTACK_IMAGE_FORMATS',
'OPENSTACK_KEYSTONE_BACKEND',
'OPENSTACK_KEYSTONE_DEFAULT_DOMAIN',

]

This setting allows you to expose configuration values over Horizons internal REST API, so that the An-
gularJS panels can access them. Please be cautious about which values are listed here (and thus exposed
on the frontend). For security purpose, this exposure of settings should be recognized explicitly by oper-
ator. So REST_API_REQUIRED_SETTINGS is not set by default. Please refer local_settings.
py.example and confirm your local_settings.py.

32 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

SELECTABLE_THEMES

New in version 12.0.0(Pike).

Default: AVAILABLE_THEMES

This setting tells Horizon which themes to expose to the user as selectable in the theme picker wid-
get. This value defaults to all themes configured in AVAILABLE_THEMES, but a brander may wish
to simply inherit from an existing theme and not allow that parent theme to be selected by the user.
SELECTABLE_THEMES takes the exact same format as AVAILABLE_THEMES.

SESSION_REFRESH

New in version 15.0.0(Stein).

Default: True

Control whether the SESSION_TIMEOUT period is refreshed due to activity. If False, SES-
SION_TIMEOUT acts as a hard limit.

SESSION_TIMEOUT

New in version 2013.2(Havana).

Default: "3600"

This SESSION_TIMEOUT is a method to supercede the token timeout with a shorter horizon session
timeout (in seconds). If SESSION_REFRESH is True (the default) SESSION_TIMEOUT acts like an
idle timeout rather than being a hard limit, but will never exceed the token expiry. If your token expires
in 60 minutes, a value of 1800 will log users out after 30 minutes of inactivity, or 60 minutes with
activity. Setting SESSION_REFRESH to False will make SESSION_TIMEOUT act like a hard limit on
session times.

MEMOIZED_MAX_SIZE_DEFAULT

New in version 15.0.0(Stein).

Default: "25"

MEMOIZED_MAX_SIZE_DEFAULT allows setting a global default to help control memory usage
when caching. It should at least be 2 x the number of threads with a little bit of extra buffer.

SHOW_OPENRC_FILE

New in version 15.0.0(Stein).

Default:: True

Controls whether the keystone openrc file is accesible from the user menu and the api access panel.

See also:

OPENRC_CUSTOM_TEMPLATE to provide a custom openrc.

2.2. Configuration Guide 33

Horizon Documentation, Release 18.6.5.dev13

SHOW_OPENSTACK_CLOUDS_YAML

New in version 15.0.0(Stein).

Default:: True

Controls whether clouds.yaml is accesible from the user menu and the api access panel.

See also:

OPENSTACK_CLOUDS_YAML_CUSTOM_TEMPLATE to provide a custom clouds.yaml.

THEME_COLLECTION_DIR

New in version 9.0.0(Mitaka).

Default: "themes"

This setting tells Horizon which static directory to collect the available themes into, and therefore which
URL points to the theme collection root. For example, the default theme would be accessible via /{{
STATIC_URL }}/themes/default.

THEME_COOKIE_NAME

New in version 9.0.0(Mitaka).

Default: "theme"

This setting tells Horizon in which cookie key to store the currently set theme. The cookie expiration is
currently set to a year.

USER_MENU_LINKS

New in version 13.0.0(Queens).

Default:

[
{'name': _('OpenStack RC File'),
'icon_classes': ['fa-download',],
'url': 'horizon:project:api_access:openrc',
'external': False,
}

]

This setting controls the additional links on the user drop down menu. A list of dictionaries defining all
of the links should be provided. This defaults to the standard OpenStack RC files.

Each dictionary should contain these values:

name The name of the link

url Either the reversible Django url name or an absolute url

external True for absolute URLs, False for django urls.

34 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

icon_classes A list of classes for the icon next to the link. If None or an empty list is provided a
download icon will show

WEBROOT

New in version 2015.1(Kilo).

Default: "/"

Specifies the location where the access to the dashboard is configured in the web server.

For example, if youre accessing the Dashboard via https://<your server>/dashboard, you
would set this to "/dashboard/".

Note: Additional settings may be required in the config files of your webserver of choice. For example
to make "/dashboard/" the web root in Apache, the "sites-available/horizon.conf"
requires a couple of additional aliases set:

Alias /dashboard/static %HORIZON_DIR%/static

Alias /dashboard/media %HORIZON_DIR%/openstack_dashboard/static

Apache also requires changing your WSGIScriptAlias to reflect the desired path. For example, youd
replace / with /dashboard for the alias.

Service-specific Settings

The following settings inform the OpenStack Dashboard of information about the other OpenStack
projects which are part of this cloud and control the behavior of specific dashboards, panels, API calls,
etc.

Cinder

OPENSTACK_CINDER_FEATURES

New in version 2014.2(Juno).

Default: {'enable_backup': False}

A dictionary of settings which can be used to enable optional services provided by cinder. Currently
only the backup service is available.

2.2. Configuration Guide 35

Horizon Documentation, Release 18.6.5.dev13

Glance

CREATE_IMAGE_DEFAULTS

New in version 12.0.0(Pike).

Default:

{
'image_visibility': "public",

}

A dictionary of default settings for create image modal.

The image_visibility setting specifies the default visibility option. Valid values are "public"
and "private". By default, the visibility option is public on create image modal. If its set to
"private", the default visibility option is private.

HORIZON_IMAGES_UPLOAD_MODE

New in version 10.0.0(Newton).

Default: "legacy"

Valid values are "direct", "legacy" (default) and "off". "off" disables the ability to upload
images via Horizon. legacy enables local file upload by piping the image file through the Horizons
web-server. direct sends the image file directly from the web browser to Glance. This bypasses Hori-
zon web-server which both reduces network hops and prevents filling up Horizon web-servers filesystem.
direct is the preferred mode, but due to the following requirements it is not the default. The direct
setting requires a modern web browser, network access from the browser to the public Glance endpoint,
and CORS support to be enabled on the Glance API service. Without CORS support, the browser will
forbid the PUT request to a location different than the Horizon server. To enable CORS support for
Glance API service, you will need to edit [cors] section of glance-api.conf file (see here how to do it).
Set allowed_origin to the full hostname of Horizon web-server (e.g. http://<HOST_IP>/dashboard) and
restart glance-api process.

IMAGE_CUSTOM_PROPERTY_TITLES

New in version 2014.1(Icehouse).

Default:

{
"architecture": _("Architecture"),
"kernel_id": _("Kernel ID"),
"ramdisk_id": _("Ramdisk ID"),
"image_state": _("Euca2ools state"),
"project_id": _("Project ID"),
"image_type": _("Image Type")

}

Used to customize the titles for image custom property attributes that appear on image detail pages.

36 Chapter 2. Using Horizon

https://docs.openstack.org/oslo.middleware/latest/reference/cors.html#configuration-for-oslo-config
http:/

Horizon Documentation, Release 18.6.5.dev13

IMAGE_RESERVED_CUSTOM_PROPERTIES

New in version 2014.2(Juno).

Default: []

A list of image custom property keys that should not be displayed in the Update Metadata tree.

This setting can be used in the case where a separate panel is used for managing a custom property or if
a certain custom property should never be edited.

IMAGES_ALLOW_LOCATION

New in version 10.0.0(Newton).

Default: False

If set to True, this setting allows users to specify an image location (URL) as the image source when
creating or updating images. Depending on the Glance version, the ability to set an image location
is controlled by policies and/or the Glance configuration. Therefore IMAGES_ALLOW_LOCATION
should only be set to True if Glance is configured to allow specifying a location. This setting has no
effect when the Keystone catalog doesnt contain a Glance v2 endpoint.

IMAGES_LIST_FILTER_TENANTS

New in version 2013.1(Grizzly).

Default: None

A list of dictionaries to add optional categories to the image fixed filters in the Images panel, based on
project ownership.

Each dictionary should contain a tenant attribute with the project id, and optionally a text attribute
specifying the category name, and an icon attribute that displays an icon in the filter button. The icon
names are based on the default icon theme provided by Bootstrap.

Example:

[{'text': 'Official',
'tenant': '27d0058849da47c896d205e2fc25a5e8',
'icon': 'fa-check'}]

OPENSTACK_IMAGE_BACKEND

New in version 2013.2(Havana).

Default:

{
'image_formats': [

('', _('Select format')),
('aki', _('AKI - Amazon Kernel Image')),
('ami', _('AMI - Amazon Machine Image')),

(continues on next page)

2.2. Configuration Guide 37

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

('ari', _('ARI - Amazon Ramdisk Image')),
('docker', _('Docker')),
('iso', _('ISO - Optical Disk Image')),
('qcow2', _('QCOW2 - QEMU Emulator')),
('raw', _('Raw')),
('vdi', _('VDI')),
('vhd', _('VHD')),
('vmdk', _('VMDK'))

]
}

Used to customize features related to the image service, such as the list of supported image formats.

Keystone

ALLOW_USERS_CHANGE_EXPIRED_PASSWORD

New in version 16.0.0(Train).

Default: True

When enabled, this setting lets users change their password after it has expired or when it is required to
be changed on first use. Disabling it will force such users to either use the command line interface to
change their password, or contact the system administrator.

AUTHENTICATION_PLUGINS

New in version 2015.1(Kilo).

Default:

[
'openstack_auth.plugin.password.PasswordPlugin',
'openstack_auth.plugin.token.TokenPlugin'

]

A list of authentication plugins to be used. In most cases, there is no need to configure this.

AUTHENTICATION_URLS

New in version 2015.1(Kilo).

Default: ['openstack_auth.urls']

A list of modules from which to collate authentication URLs from. The default option adds URLs
from the django-openstack-auth module however others will be required for additional authentication
mechanisms.

38 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

AVAILABLE_REGIONS

New in version 2012.1(Essex).

Default: None

A list of tuples which define multiple regions. The tuple format is ('http://{{ keystone_host
}}/identity/v3', '{{ region_name }}'). If any regions are specified the login form will
have a dropdown selector for authenticating to the appropriate region, and there will be a region switcher
dropdown in the site header when logged in.

You should also define OPENSTACK_KEYSTONE_URL to indicate which of the regions is the default
one.

DEFAULT_SERVICE_REGIONS

New in version 12.0.0(Pike).

Default: {}

The default service region is set on a per-endpoint basis, meaning that once the user logs into some
Keystone endpoint, if a default service region is defined for it in this setting and exists within Keystone
catalog, it will be set as the initial service region in this endpoint. By default it is an empty dictionary
because upstream can neither predict service region names in a specific deployment, nor tell whether this
behavior is desired. The key of the dictionary is a full url of a Keystone endpoint with version suffix, the
value is a region name.

Example:

DEFAULT_SERVICE_REGIONS = {
OPENSTACK_KEYSTONE_URL: 'RegionOne'

}

As of Rocky you can optionally you can set '*' as the key, and if no matching endpoint is found this
will be treated as a global default.

Example:

DEFAULT_SERVICE_REGIONS = {
'*': 'RegionOne',
OPENSTACK_KEYSTONE_URL: 'RegionTwo'

}

ENABLE_CLIENT_TOKEN

New in version 10.0.0(Newton).

Default: True

This setting will Enable/Disable access to the Keystone Token to the browser.

2.2. Configuration Guide 39

Horizon Documentation, Release 18.6.5.dev13

ENFORCE_PASSWORD_CHECK

New in version 2015.1(Kilo).

Default: False

This setting will display an Admin Password field on the Change Password form to verify that it is
indeed the admin logged-in who wants to change the password.

KEYSTONE_PROVIDER_IDP_ID

New in version 11.0.0(Ocata).

Default: "localkeystone"

This ID is only used for comparison with the service provider IDs. This ID should not match any service
provider IDs.

KEYSTONE_PROVIDER_IDP_NAME

New in version 11.0.0(Ocata).

Default: "Local Keystone"

The Keystone Provider drop down uses Keystone to Keystone federation to switch between Keystone
service providers. This sets the display name for the Identity Provider (dropdown display name).

OPENSTACK_KEYSTONE_ADMIN_ROLES

New in version 2015.1(Kilo).

Default: ["admin"]

The list of roles that have administrator privileges in this OpenStack installation. This check is very
basic and essentially only works with keystone v3 with the default policy file. The setting assumes there
is a common admin like role(s) across services. Example uses of this setting are:

• to rename the admin role to cloud-admin

• allowing multiple roles to have administrative privileges, like ["admin", "cloud-admin",
"net-op"]

OPENSTACK_KEYSTONE_BACKEND

New in version 2012.1(Essex).

Default:

{
'name': 'native',
'can_edit_user': True,
'can_edit_group': True,
'can_edit_project': True,

(continues on next page)

40 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

'can_edit_domain': True,
'can_edit_role': True,

}

A dictionary containing settings which can be used to identify the capabilities of the auth backend for
Keystone.

If Keystone has been configured to use LDAP as the auth backend then set can_edit_user and
can_edit_project to False and name to "ldap".

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN

New in version 2013.2(Havana).

Default: "Default"

Overrides the default domain used when running on single-domain model with Keystone V3. All entities
will be created in the default domain.

OPENSTACK_KEYSTONE_DEFAULT_ROLE

New in version 2011.3(Diablo).

Default: "_member_"

The name of the role which will be assigned to a user when added to a project. This value
must correspond to an existing role name in Keystone. In general, the value should match the
member_role_name defined in keystone.conf.

OPENSTACK_KEYSTONE_DOMAIN_CHOICES

New in version 12.0.0(Pike).

Default:

(
('Default', 'Default'),

)

If OPENSTACK_KEYSTONE_DOMAIN_DROPDOWN is enabled, this option can be used to set the
available domains to choose from. This is a list of pairs whose first value is the domain name and the
second is the display name.

2.2. Configuration Guide 41

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_KEYSTONE_DOMAIN_DROPDOWN

New in version 12.0.0(Pike).

Default: False

Set this to True if you want available domains displayed as a dropdown menu on the login screen. It is
strongly advised NOT to enable this for public clouds, as advertising enabled domains to unauthenticated
customers irresponsibly exposes private information. This should only be used for private clouds where
the dashboard sits behind a corporate firewall.

OPENSTACK_KEYSTONE_FEDERATION_MANAGEMENT

New in version 9.0.0(Mitaka).

Default: False

Set this to True to enable panels that provide the ability for users to manage Identity Providers (IdPs) and
establish a set of rules to map federation protocol attributes to Identity API attributes. This extension
requires v3.0+ of the Identity API.

OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT

New in version 2013.2(Havana).

Default: False

Set this to True if running on multi-domain model. When this is enabled, it will require user to enter the
Domain name in addition to username for login.

OPENSTACK_KEYSTONE_URL

New in version 2011.3(Diablo).

Changed in version 17.1.0(Ussuri): The default value was changed to "http://%s/identity/v3"
% OPENSTACK_HOST

See also:

Horizons OPENSTACK_HOST documentation

Default: "http://%s/identity/v3" % OPENSTACK_HOST

The full URL for the Keystone endpoint used for authentication. Unless you are using HTTPS, running
your Keystone server on a nonstandard port, or using a nonstandard URL scheme you shouldnt need to
touch this setting.

42 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

PASSWORD_EXPIRES_WARNING_THRESHOLD_DAYS

New in version 12.0.0(Pike).

Default: -1

Password will have an expiration date when using keystone v3 and enabling the feature. This setting
allows you to set the number of days that the user will be alerted prior to the password expiration. Once
the password expires keystone will deny the access and users must contact an admin to change their
password. Setting this value to N days means the user will be alerted when the password expires in less
than N+1 days. -1 disables the feature.

PROJECT_TABLE_EXTRA_INFO

New in version 10.0.0(Newton).

See also:

USER_TABLE_EXTRA_INFO for the equivalent setting on the Users table

Default: {}

Adds additional information for projects as extra attributes. Projects can have extra attributes as defined
by Keystone v3. This setting allows those attributes to be shown in Horizon.

For example:

PROJECT_TABLE_EXTRA_INFO = {
'phone_num': _('Phone Number'),

}

SECURE_PROXY_ADDR_HEADER

Default: False

If horizon is behind a proxy server and the proxy is configured, the IP address from request is passed
using header variables inside the request. The header name depends on a proxy or a load-balancer.
This setting specifies the name of the header with remote IP address. The main use is for authenti-
cation log (success or fail) displaing the IP address of the user. The commom value for this setting
is HTTP_X_REAL_IP or HTTP_X_FORWARDED_FOR. If not present, then REMOTE_ADDR header
is used. (REMOTE_ADDR is the field of Django HttpRequest object which contains IP address of the
client.)

TOKEN_DELETION_DISABLED

New in version 10.0.0(Newton).

Default: False

This setting allows deployers to control whether a token is deleted on log out. This can be helpful when
there are often long running processes being run in the Horizon environment.

2.2. Configuration Guide 43

Horizon Documentation, Release 18.6.5.dev13

TOKEN_TIMEOUT_MARGIN

Default: 0

A time margin in seconds to subtract from the real tokens validity. An example use case is that the
token can be valid once the middleware passed, and invalid (timed-out) during a view rendering and this
generates authorization errors during the view rendering. By setting this value to a few seconds, you can
avoid token expiration during a view rendering.

USER_TABLE_EXTRA_INFO

New in version 10.0.0(Newton).

See also:

PROJECT_TABLE_EXTRA_INFO for the equivalent setting on the Projects table

Default: {}

Adds additional information for users as extra attributes. Users can have extra attributes as defined by
Keystone v3. This setting allows those attributes to be shown in Horizon.

For example:

USER_TABLE_EXTRA_INFO = {
'phone_num': _('Phone Number'),

}

WEBSSO_CHOICES

New in version 2015.1(Kilo).

Default:

(
("credentials", _("Keystone Credentials")),
("oidc", _("OpenID Connect")),
("saml2", _("Security Assertion Markup Language"))

)

This is the list of authentication mechanisms available to the user. It includes Keystone federation
protocols such as OpenID Connect and SAML, and also keys that map to specific identity provider
and federation protocol combinations (as defined in WEBSSO_IDP_MAPPING). The list of choices is
completely configurable, so as long as the id remains intact. Do not remove the credentials mechanism
unless you are sure. Once removed, even admins will have no way to log into the system via the
dashboard.

44 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

WEBSSO_ENABLED

New in version 2015.1(Kilo).

Default: False

Enables keystone web single-sign-on if set to True. For this feature to work, make sure that you are
using Keystone V3 and Django OpenStack Auth V1.2.0 or later.

WEBSSO_IDP_MAPPING

New in version 8.0.0(Liberty).

Default: {}

A dictionary of specific identity provider and federation protocol combinations. From the selected au-
thentication mechanism, the value will be looked up as keys in the dictionary. If a match is found, it will
redirect the user to a identity provider and federation protocol specific WebSSO endpoint in keystone,
otherwise it will use the value as the protocol_id when redirecting to the WebSSO by protocol endpoint.

Example:

WEBSSO_CHOICES = (
("credentials", _("Keystone Credentials")),
("oidc", _("OpenID Connect")),
("saml2", _("Security Assertion Markup Language")),
("acme_oidc", "ACME - OpenID Connect"),
("acme_saml2", "ACME - SAML2")

)

WEBSSO_IDP_MAPPING = {
"acme_oidc": ("acme", "oidc"),
"acme_saml2": ("acme", "saml2")

}

Note: The value is expected to be a tuple formatted as: (<idp_id>, <protocol_id>)

WEBSSO_INITIAL_CHOICE

New in version 2015.1(Kilo).

Default: "credentials"

Specifies the default authentication mechanism. When user lands on the login page, this is the first
choice they will see.

2.2. Configuration Guide 45

Horizon Documentation, Release 18.6.5.dev13

WEBSSO_DEFAULT_REDIRECT

New in version 15.0.0(Stein).

Default: False

Allows to redirect on login to the IdP provider defined on PROTOCOL and REGION In cases you
have a single IdP providing websso, in order to improve user experience, you can redirect on the lo-
gin page to the IdP directly by specifying WEBSSO_DEFAULT_REDIRECT_PROTOCOL and WEB-
SSO_DEFAULT_REDIRECT_REGION variables.

WEBSSO_DEFAULT_REDIRECT_PROTOCOL

New in version 15.0.0(Stein).

Default: None

Allows to specify the protocol for the IdP to contact if the WEBSSO_DEFAULT_REDIRECT is set to
True

WEBSSO_DEFAULT_REDIRECT_REGION

New in version 15.0.0(Stein).

Default: OPENSTACK_KEYSTONE_URL

Allows to specify thee region of the IdP to contact if the WEBSSO_DEFAULT_REDIRECT is set to
True

WEBSSO_DEFAULT_REDIRECT_LOGOUT

New in version 15.0.0(Stein).

Default: None

Allows to specify a callback to the IdP to cleanup the SSO resources. Once the user logs out it will
redirect to the IdP log out method.

WEBSSO_KEYSTONE_URL

New in version 15.0.0(Stein).

Default: None

The full auth URL for the Keystone endpoint used for web single-sign-on authentication. Use this
when OPENSTACK_KEYSTONE_URL is set to an internal Keystone endpoint and is not reachable
from the external network where the identity provider lives. This URL will take precedence over
OPENSTACK_KEYSTONE_URL if the login choice is an external identity provider (IdP).

46 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Neutron

ALLOWED_PRIVATE_SUBNET_CIDR

New in version 10.0.0(Newton).

Default:

{
'ipv4': [],
'ipv6': []

}

A dictionary used to restrict user private subnet CIDR range. An empty list means that user input will
not be restricted for a corresponding IP version. By default, there is no restriction for both IPv4 and
IPv6.

Example:

{
'ipv4': [

'192.168.0.0/16',
'10.0.0.0/8'

],
'ipv6': [

'fc00::/7',
]

}

OPENSTACK_NEUTRON_NETWORK

New in version 2013.1(Grizzly).

Default:

{
'default_dns_nameservers': [],
'enable_auto_allocated_network': False,
'enable_distributed_router': False,
'enable_fip_topology_check': True,
'enable_ha_router': False,
'enable_ipv6': True,
'enable_quotas': True,
'enable_rbac_policy': True,
'enable_router': True,
'extra_provider_types': {},
'physical_networks': [],
'segmentation_id_range': {},
'supported_provider_types': ["*"],
'supported_vnic_types': ["*"],

}

A dictionary of settings which can be used to enable optional services provided by Neutron and configure
Neutron specific features. The following options are available.

2.2. Configuration Guide 47

Horizon Documentation, Release 18.6.5.dev13

default_dns_nameservers

New in version 10.0.0(Newton).

Default: None (Empty)

Default DNS servers you would like to use when a subnet is created. This is only a default. Users can
still choose a different list of dns servers.

Example: ["8.8.8.8", "8.8.4.4", "208.67.222.222"]

enable_auto_allocated_network

New in version 14.0.0(Rocky).

Default: False

Enable or disable Nova and Neutron get-me-a-network feature. This sets up a neutron network topology
for a project if there is no network in the project. It simplifies the workflow when launching a server.
Horizon checks if both nova and neutron support the feature and enable it only when supported. How-
ever, whether the feature works properly depends on deployments, so this setting is disabled by default.
(The detail on the required preparation is described in the Networking Guide.)

enable_distributed_router

New in version 2014.2(Juno).

Default: False

Enable or disable Neutron distributed virtual router (DVR) feature in the Router panel. For the DVR fea-
ture to be enabled, this option needs to be set to True and your Neutron deployment must support DVR.
Even when your Neutron plugin (like ML2 plugin) supports DVR feature, DVR feature depends on
l3-agent configuration, so deployers should set this option appropriately depending on your deployment.

enable_fip_topology_check

New in version 8.0.0(Liberty).

Default: True

The Default Neutron implementation needs a router with a gateway to associate a FIP. So by default a
topology check will be performed by horizon to list only VM ports attached to a network which is itself
attached to a router with an external gateway. This is to prevent from setting a FIP to a port which will
fail with an error. Some Neutron vendors do not require it. Some can even attach a FIP to any port (e.g.:
OpenContrail) owned by a tenant. Set to False if you want to be able to associate a FIP to an instance
on a subnet with no router if your Neutron backend allows it.

48 Chapter 2. Using Horizon

https://docs.openstack.org/neutron/latest/admin/config-auto-allocation.html

Horizon Documentation, Release 18.6.5.dev13

enable_ha_router

New in version 2014.2(Juno).

Default: False

Enable or disable HA (High Availability) mode in Neutron virtual router in the Router panel. For
the HA router mode to be enabled, this option needs to be set to True and your Neutron deployment
must support HA router mode. Even when your Neutron plugin (like ML2 plugin) supports HA router
mode, the feature depends on l3-agent configuration, so deployers should set this option appropriately
depending on your deployment.

enable_ipv6

New in version 2014.2(Juno).

Default: False

Enable or disable IPv6 support in the Network panels. When disabled, Horizon will only expose IPv4
configuration for networks.

enable_quotas

Changed in version 17.0.0(Ussuri): The default value was changed to True

Default: True

Enable support for Neutron quotas feature. To make this feature work appropriately, you need to use
Neutron plugins with quotas extension support and quota_driver should be DbQuotaDriver (default con-
fig).

enable_rbac_policy

New in version 15.0.0(Stein).

Default: True

Set this to True to enable RBAC Policies panel that provide the ability for users to use RBAC function.
This option only affects when Neutron is enabled.

enable_router

New in version 2014.2(Juno).

Default: True

Enable (True) or disable (False) the panels and menus related to router and Floating IP features. This
option only affects when Neutron is enabled. If your Neutron deployment has no support for Layer-3
features, or you do not wish to provide the Layer-3 features through the Dashboard, this should be set to
False.

2.2. Configuration Guide 49

Horizon Documentation, Release 18.6.5.dev13

extra_provider_types

New in version 10.0.0(Newton).

Default: {}

For use with the provider network extension. This is a dictionary to define extra provider network defi-
nitions. Network types supported by Neutron depend on the configured plugin. Horizon has predefined
provider network types but horizon cannot cover all of them. If you are using a provider network type
not defined in advance, you can add a definition through this setting.

The key name of each item in this must be a network type used in the Neutron API. value should be a
dictionary which contains the following items:

• display_name: string displayed in the network creation form.

• require_physical_network: a boolean parameter which indicates this network type re-
quires a physical network.

• require_segmentation_id: a boolean parameter which indicates this network type re-
quires a segmentation ID. If True, a valid segmentation ID range must be configured in
segmentation_id_range settings above.

Example:

{
'awesome': {

'display_name': 'Awesome',
'require_physical_network': False,
'require_segmentation_id': True,

},
}

physical_networks

New in version 12.0.0(Pike).

Default: []

Default to an empty list and the physical network field on the admin create network modal will be a
regular input field where users can type in the name of the physical network to be used. If it is set to a
list of available physical networks, the physical network field will be shown as a dropdown menu where
users can select a physical network to be used.

Example: ['default', 'test']

50 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

segmentation_id_range

New in version 2014.2(Juno).

Default: {}

For use with the provider network extension. This is a dictionary where each key is a provider network
type and each value is a list containing two numbers. The first number is the minimum segmentation ID
that is valid. The second number is the maximum segmentation ID. Pertains only to the vlan, gre, and
vxlan network types. By default this option is not provided and each minimum and maximum value will
be the default for the provider network type.

Example:

{
'vlan': [1024, 2048],
'gre': [4094, 65536]

}

supported_provider_types

New in version 2014.2(Juno).

Default: ["*"]

For use with the provider network extension. Use this to explicitly set which provider network types are
supported. Only the network types in this list will be available to choose from when creating a network.
Network types defined in Horizon or defined in extra_provider_types settings can be specified in this
list. As of the Newton release, the network types defined in Horizon include network types supported
by Neutron ML2 plugin with Open vSwitch driver (local, flat, vlan, gre, vxlan and geneve)
and supported by Midonet plugin (midonet and uplink). ["*"] means that all provider network
types supported by Neutron ML2 plugin will be available to choose from.

Example: ['local', 'flat', 'gre']

supported_vnic_types

New in version 2015.1(Kilo).

Changed in version 12.0.0(Pike): Added virtio-forwarder VNIC type Clarified VNIC type avail-
ability for users and operators

Default ['*']

For use with the port binding extension. Use this to explicitly set which VNIC types are available for
users to choose from, when creating or editing a port. The VNIC types actually supported are determined
by resource availability and Neutron ML2 plugin support. Currently, error reporting for users selecting
an incompatible or unavailable VNIC type is restricted to receiving a message from the scheduler that
the instance cannot spawn because of insufficient resources. VNIC types include normal, direct,
direct-physical, macvtap, baremetal and virtio-forwarder. By default all VNIC
types will be available to choose from.

Example: ['normal', 'direct']

To disable VNIC type selection, set an empty list ([]) or None.

2.2. Configuration Guide 51

Horizon Documentation, Release 18.6.5.dev13

Nova

CREATE_INSTANCE_FLAVOR_SORT

New in version 2013.2(Havana).

Default:

{
'key': 'ram'

}

When launching a new instance the default flavor is sorted by RAM usage in ascending order. You
can customize the sort order by: id, name, ram, disk and vcpus. Additionally, you can insert any
custom callback function. You can also provide a flag for reverse sort. See the description in lo-
cal_settings.py.example for more information.

This example sorts flavors by vcpus in descending order:

CREATE_INSTANCE_FLAVOR_SORT = {
'key':'vcpus',
'reverse': True,

}

CONSOLE_TYPE

New in version 2013.2(Havana).

Changed in version 2014.2(Juno): Added the None option, which deactivates the in-browser console

Changed in version 2015.1(Kilo): Added the SERIAL option

Changed in version 2017.11(Queens): Added the MKS option

Default: "AUTO"

This setting specifies the type of in-browser console used to access the VMs. Valid values are "AUTO",
"VNC", "SPICE", "RDP", "SERIAL", "MKS", and None.

DEFAULT_BOOT_SOURCE

New in version 18.1.0(Ussuri).

Default: image

A default instance boot source. Allowed values are:

• image - boot instance from image (default option)

• snapshot - boot instance from instance snapshot

• volume - boot instance from volume

• volume_snapshot - boot instance from volume snapshot

52 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

INSTANCE_LOG_LENGTH

New in version 2015.1(Kilo).

Default: 35

This setting enables you to change the default number of lines displayed for the log of an instance. Valid
value must be a positive integer.

LAUNCH_INSTANCE_DEFAULTS

New in version 9.0.0(Mitaka).

Changed in version 10.0.0(Newton): Added the disable_image,
disable_instance_snapshot, disable_volume and disable_volume_snapshot
options.

Changed in version 12.0.0(Pike): Added the create_volume option.

Changed in version 15.0.0(Stein): Added the hide_create_volume option.

Default:

{
"config_drive": False,
"create_volume": True,
"hide_create_volume": False,
"disable_image": False,
"disable_instance_snapshot": False,
"disable_volume": False,
"disable_volume_snapshot": False,
"enable_scheduler_hints": True,

}

A dictionary of settings which can be used to provide the default values for properties found in the
Launch Instance modal. An explanation of each setting is provided below.

config_drive

New in version 9.0.0(Mitaka).

Default: False

This setting specifies the default value for the Configuration Drive property.

2.2. Configuration Guide 53

Horizon Documentation, Release 18.6.5.dev13

create_volume

New in version 12.0.0(Pike).

Default: True

This setting allows you to specify the default value for the option of creating a new volume in the
workflow for image and instance snapshot sources.

hide_create_volume

New in version 15.0.0(Stein).

Default: False

This setting allow your to hide the Create New Volume option and rely on the default value you select
with create_volume to be the most suitable for your users.

disable_image

New in version 10.0.0(Newton).

Default: False

This setting disables Images as a valid boot source for launching instances. Image sources wont show
up in the Launch Instance modal.

disable_instance_snapshot

New in version 10.0.0(Newton).

Default: False

This setting disables Snapshots as a valid boot source for launching instances. Snapshots sources wont
show up in the Launch Instance modal.

disable_volume

New in version 10.0.0(Newton).

Default: False

This setting disables Volumes as a valid boot source for launching instances. Volumes sources wont
show up in the Launch Instance modal.

54 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

disable_volume_snapshot

New in version 10.0.0(Newton).

Default: False

This setting disables Volume Snapshots as a valid boot source for launching instances. Volume Snap-
shots sources wont show up in the Launch Instance modal.

enable_scheduler_hints

New in version 9.0.0(Mitaka).

Default: True

This setting specifies whether or not Scheduler Hints can be provided when launching an instance.

LAUNCH_INSTANCE_LEGACY_ENABLED

New in version 8.0.0(Liberty).

Changed in version 9.0.0(Mitaka): The default value for this setting has been changed to False

Default: False

This setting enables the Python Launch Instance workflow.

Note: It is possible to run both the AngularJS and Python workflows simultaneously, so the other may
be need to be toggled with LAUNCH_INSTANCE_NG_ENABLED

LAUNCH_INSTANCE_NG_ENABLED

New in version 8.0.0(Liberty).

Changed in version 9.0.0(Mitaka): The default value for this setting has been changed to True

Default: True

This setting enables the AngularJS Launch Instance workflow.

Note: It is possible to run both the AngularJS and Python workflows simultaneously, so the other may
be need to be toggled with LAUNCH_INSTANCE_LEGACY_ENABLED

2.2. Configuration Guide 55

Horizon Documentation, Release 18.6.5.dev13

OPENSTACK_ENABLE_PASSWORD_RETRIEVE

New in version 2014.1(Icehouse).

Default: "False"

When set, enables the instance action Retrieve password allowing password retrieval from metadata
service.

OPENSTACK_HYPERVISOR_FEATURES

New in version 2012.2(Folsom).

Changed in version 2014.1(Icehouse): can_set_mount_point and can_set_password now
default to False

Default:

{
'can_set_mount_point': False,
'can_set_password': False,
'requires_keypair': False,
'enable_quotas': True

}

A dictionary containing settings which can be used to identify the capabilities of the hypervisor for
Nova.

The Xen Hypervisor has the ability to set the mount point for volumes attached to instances (other
Hypervisors currently do not). Setting can_set_mount_point to True will add the option to set
the mount point from the UI.

Setting can_set_password to True will enable the option to set an administrator password when
launching or rebuilding an instance.

Setting requires_keypair to True will require users to select a key pair when launching an in-
stance.

Setting enable_quotas to False will make Horizon treat all Nova quotas as disabled, thus it wont
try to modify them. By default, quotas are enabled.

OPENSTACK_INSTANCE_RETRIEVE_IP_ADDRESSES

New in version 13.0.0(Queens).

Default: True

This settings controls whether IP addresses of servers are retrieved from neutron in the project instance
table. Setting this to False may mitigate a performance issue in the project instance table in large
deployments.

If your deployment has no support of floating IP like provider network scenario, you can set this to
False in most cases. If your deployment supports floating IP, read the detail below and understand the
under-the-hood before setting this to False.

56 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Nova has a mechanism to cache network info but it is not fast enough in some cases. For example, when
a user associates a floating IP or updates an IP address of an server port, it is not reflected to the nova
network info cache immediately. This means an action which a user makes from the horizon instance
table is not reflected into the table content just after the action. To avoid this, horizon retrieves IP address
info from neutron when retrieving a list of servers from nova.

On the other hand, this operation requires a full list of neutron ports and can potentially lead to a per-
formance issue in large deployments (bug 1722417). This issue can be avoided by skipping querying
IP addresses to neutron and setting this to False achieves this. Note that when disabling the query to
neutron it takes some time until associated floating IPs are visible in the project instance table and users
may reload the table to check them.

OPENSTACK_NOVA_EXTENSIONS_BLACKLIST

New in version 8.0.0(Liberty).

Deprecated since version 17.2.0(Ussuri).

Default: []

Ignore all listed Nova extensions, and behave as if they were unsupported. Can be used to selectively
disable certain costly extensions for performance reasons.

Along with the deprecation, the current plan on individual effective values in this setting is as follows.

The support of SimpleTenantUsage will be replaced by a new setting which controls whether
SimpleTenantUsage nova API feature is used or not (not implemented yet as of Victoria; planned
in Wallaby release). This setting will not be droped until the new setting is implemented.

The support of the following values will be simply dropped as nova provides all features in the recent
API versions.

• AdminActions

• Aggregates

• BlockDeviceMappingV2Boot

• ConfigDrive

• DiskConfig

• Keypairs

• SchedulerHints

• ServerGroups

• Services

• Shelve

2.2. Configuration Guide 57

https://bugs.launchpad.net/horizon/+bug/1722417

Horizon Documentation, Release 18.6.5.dev13

Swift

SWIFT_FILE_TRANSFER_CHUNK_SIZE

New in version 2015.1(Kilo).

Default: 512 * 1024

This setting specifies the size of the chunk (in bytes) for downloading objects from Swift. Do not make it
very large (higher than several dozens of Megabytes, exact number depends on your connection speed),
otherwise you may encounter socket timeout. The default value is 524288 bytes (or 512 Kilobytes).

SWIFT_STORAGE_POLICY_DISPLAY_NAMES

New in version 18.3.0(Ussuri).

Default: {}

A dictionary mapping from the swift storage policy name to an alternate, user friendly display name
which will be rendered on the dashboard. If no display is specified for a storage policy, the storage
policy name will be used verbatim.

Django Settings

Note: This is not meant to be anywhere near a complete list of settings for Django. You should always
consult the upstream documentation, especially with regards to deployment considerations and security
best-practices.

ADD_INSTALLED_APPS

New in version 2015.1(Kilo).

See also:

Djangos INSTALLED_APPS documentation

A list of Django applications to be prepended to the INSTALLED_APPS setting. Allows extending the
list of installed applications without having to override it completely.

ALLOWED_HOSTS

New in version 2013.2(Havana).

See also:

Djangos ALLOWED_HOSTS documentation

Default: ['localhost']

58 Chapter 2. Using Horizon

https://docs.djangoproject.com/en/dev/topics/settings/
https://docs.djangoproject.com/en/dev/ref/settings/#installed_apps
https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

Horizon Documentation, Release 18.6.5.dev13

This list should contain names (or IP addresses) of the host running the dashboard; if its being accessed
via name, the DNS name (and probably short-name) should be added, if its accessed via IP address, that
should be added. The setting may contain more than one entry.

Note: ALLOWED_HOSTS is required. If Horizon is running in production (DEBUG is False), set this
with the list of host/domain names that the application can serve. For more information see Djangos
Allowed Hosts documentation

DEBUG

New in version 2011.2(Cactus).

See also:

Djangos DEBUG documentation

Default: True

Controls whether unhandled exceptions should generate a generic 500 response or present the user with
a pretty-formatted debug information page.

When set, CACHED_TEMPLATE_LOADERS will not be cached.

This setting should always be set to False for production deployments as the debug page can display
sensitive information to users and attackers alike.

SECRET_KEY

New in version 2012.1(Essex).

See also:

Djangos SECRET_KEY documentation

This should absolutely be set to a unique (and secret) value for your deployment. Unless you are run-
ning a load-balancer with multiple Horizon installations behind it, each Horizon instance should have a
unique secret key.

Note: Setting a custom secret key:

You can either set it to a specific value or you can let Horizon generate a default secret key that is unique
on this machine, regardless of the amount of Python WSGI workers (if used behind Apache+mod_wsgi).
However, there may be situations where you would want to set this explicitly, e.g. when multiple dash-
board instances are distributed on different machines (usually behind a load-balancer). Either you have
to make sure that a session gets all requests routed to the same dashboard instance or you set the same
SECRET_KEY for all of them.

from horizon.utils import secret_key

SECRET_KEY = secret_key.generate_or_read_from_file(
os.path.join(LOCAL_PATH, '.secret_key_store'))

2.2. Configuration Guide 59

https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/dev/ref/settings/#debug
https://docs.djangoproject.com/en/dev/ref/settings/#secret-key

Horizon Documentation, Release 18.6.5.dev13

The local_settings.py.example file includes a quick-and-easy way to generate a secret key
for a single installation.

STATIC_ROOT

New in version 8.0.0(Liberty).

See also:

Djangos STATIC_ROOT documentation

Default: <path_to_horizon>/static

The absolute path to the directory where static files are collected when collectstatic is run.

STATIC_URL

New in version 8.0.0(Liberty).

See also:

Djangos STATIC_URL documentation

Default: /static/

URL that refers to files in STATIC_ROOT .

By default this value is WEBROOT/static/.

This value can be changed from the default. When changed, the alias in your webserver configuration
should be updated to match.

Note: The value for STATIC_URL must end in /.

This value is also available in the scss namespace with the variable name $static_url. Make sure
you run python manage.py collectstatic and python manage.py compress after
any changes to this value in settings.py.

TEMPLATES

New in version 10.0.0(Newton).

See also:

Djangos TEMPLATES documentation

Horizons usage of the TEMPLATES involves 3 further settings below; it is generally advised to use those
before attempting to alter the TEMPLATES setting itself.

60 Chapter 2. Using Horizon

https://docs.djangoproject.com/en/dev/ref/settings/#static-root
https://docs.djangoproject.com/en/dev/ref/settings/#static-url
https://docs.djangoproject.com/en/dev/ref/settings/#templates

Horizon Documentation, Release 18.6.5.dev13

ADD_TEMPLATE_DIRS

New in version 15.0.0(Stein).

Template directories defined here will be added to DIRS option of Django TEMPLATES setting. It is
useful when you would like to load deployment-specific templates.

ADD_TEMPLATE_LOADERS

New in version 10.0.0(Newton).

Template loaders defined here will be loaded at the end of TEMPLATE_LOADERS, after the
CACHED_TEMPLATE_LOADERS and will never have a cached output.

CACHED_TEMPLATE_LOADERS

New in version 10.0.0(Newton).

Template loaders defined here will have their output cached if DEBUG is set to False.

TEMPLATE_LOADERS

New in version 10.0.0(Newton).

These template loaders will be the first loaders and get loaded before the
CACHED_TEMPLATE_LOADERS. Use ADD_TEMPLATE_LOADERS if you want to add
loaders at the end and not cache loaded templates. After the whole settings process has gone through,
TEMPLATE_LOADERS will be:

TEMPLATE_LOADERS += (
('django.template.loaders.cached.Loader', CACHED_TEMPLATE_LOADERS),

) + tuple(ADD_TEMPLATE_LOADERS)

Other Settings

KUBECONFIG_ENABLED

New in version TBD.

Default: False

Kubernetes clusters can use Keystone as an external identity provider. Horizon can generate a
kubeconfig file from the application credentials control panel which can be used for authenticat-
ing with a Kubernetes cluster. This setting enables this behavior.

See also:

KUBECONFIG_KUBERNETES_URL and KUBECONFIG_CERTIFICATE_AUTHORITY_DATA to
provide parameters for the kubeconfig file.

2.2. Configuration Guide 61

Horizon Documentation, Release 18.6.5.dev13

KUBECONFIG_KUBERNETES_URL

New in version TBD.

Default: ""

A Kubernetes API endpoint URL to be included in the generated kubeconfig file.

See also:

KUBECONFIG_ENABLED to enable the kubeconfig file generation.

KUBECONFIG_CERTIFICATE_AUTHORITY_DATA

New in version TBD.

Default: ""

Kubernetes API endpoint certificate authority data to be included in the generated kubeconfig file.

See also:

KUBECONFIG_ENABLED to enable the kubeconfig file generation.

2.2.2 Pluggable Panels and Groups

Introduction

Horizon allows dashboards, panels and panel groups to be added without modifying the default settings.
Pluggable settings are a mechanism to allow settings to be stored in separate files. Those files are read
at startup and used to modify the default settings.

The default location for the dashboard configuration files is openstack_dashboard/enabled,
with another directory, openstack_dashboard/local/enabled for local overrides. Both sets
of files will be loaded, but the settings in openstack_dashboard/local/enabled will over-
write the default ones. The settings are applied in alphabetical order of the filenames. If the same
dashboard has configuration files in enabled and local/enabled, the local name will be used.
Note, that since names of python modules cant start with a digit, the files are usually named with a
leading underscore and a number, so that you can control their order easily.

General Pluggbale Settings

Before we describe the specific use cases, the following keys can be used in any pluggable settings file:

62 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

ADD_EXCEPTIONS

New in version 2014.1(Icehouse).

A dictionary of exception classes to be added to HORIZON['exceptions'].

ADD_INSTALLED_APPS

New in version 2014.1(Icehouse).

A list of applications to be prepended to INSTALLED_APPS. This is needed to expose static files from
a plugin.

ADD_ANGULAR_MODULES

New in version 2014.2(Juno).

A list of AngularJS modules to be loaded when Angular bootstraps. These modules are added as depen-
dencies on the root Horizon application horizon.

ADD_JS_FILES

New in version 2014.2(Juno).

A list of javascript source files to be included in the compressed set of files that are loaded on every page.
This is needed for AngularJS modules that are referenced in ADD_ANGULAR_MODULES and therefore
need to be included in every page.

ADD_JS_SPEC_FILES

New in version 2015.1(Kilo).

A list of javascript spec files to include for integration with the Jasmine spec runner. Jasmine is a
behavior-driven development framework for testing JavaScript code.

ADD_SCSS_FILES

New in version 8.0.0(Liberty).

A list of scss files to be included in the compressed set of files that are loaded on every page. We
recommend one scss file per dashboard, use @import if you need to include additional scss files for
panels.

2.2. Configuration Guide 63

Horizon Documentation, Release 18.6.5.dev13

ADD_XSTATIC_MODULES

New in version 14.0.0(Rocky).

A list of xstatic modules containing javascript and scss files to be included in the compressed set of
files that are loaded on every page. Related files specified in ADD_XSTATIC_MODULES do not need
to be included in ADD_JS_FILES. This option expects a list of tuples, each consists of a xstatic mod-
ule and a list of javascript files to be loaded if any. For more details, please check the comment of
BASE_XSTATIC_MODULES in openstack_dashboard/utils/settings.py.

Example:

ADD_XSTATIC_MODULES = [
('xstatic.pkg.foo', ['foo.js']),
('xstatic.pkg.bar', None),

]

AUTO_DISCOVER_STATIC_FILES

New in version 8.0.0(Liberty).

If set to True, JavaScript files and static angular html template files will be automatically discovered
from the static folder in each apps listed in ADD_INSTALLED_APPS.

JavaScript source files will be ordered based on naming convention: files with extension .module.js listed
first, followed by other JavaScript source files.

JavaScript files for testing will also be ordered based on naming convention: files with extension .mock.js
listed first, followed by files with extension .spec.js.

If ADD_JS_FILES and/or ADD_JS_SPEC_FILES are also specified, files manually listed there will be
appended to the auto-discovered files.

DISABLED

New in version 2014.1(Icehouse).

If set to True, this settings file will not be added to the settings.

EXTRA_STEPS

New in version 14.0.0(Rocky).

Extra workflow steps can be added to a workflow in horizon or other horizon plugins by using this
setting. Extra steps will be shown after default steps defined in a corresponding workflow.

This is a dict setting. A key of the dict specifies a workflow which extra step(s) are added. The key must
match a full class name of the target workflow.

A value of the dict is a list of full name of an extra step classes (where a module name and a class name
must be delimiteed by a period). Steps specified via EXTRA_STEPS will be displayed in the order of
being registered.

Example:

64 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

EXTRA_STEPS = {
'openstack_dashboard.dashboards.identity.projects.workflows.UpdateQuota

↪→':
(

('openstack_dashboard.dashboards.identity.projects.workflows.'
'UpdateVolumeQuota'),
('openstack_dashboard.dashboards.identity.projects.workflows.'
'UpdateNetworkQuota'),

),
}

EXTRA_TABS

New in version 14.0.0(Rocky).

Extra tabs can be added to a tab group implemented in horizon or other horizon plugins by using this
setting. Extra tabs will be shown after default tabs defined in a corresponding tab group.

This is a dict setting. A key of the dict specifies a tab group which extra tab(s) are added. The key must
match a full class name of the target tab group.

A value of the dict is a list of full name of an extra tab classes (where a module name and a class name
must be delimiteed by a period). Tabs specified via EXTRA_TABS will be displayed in the order of
being registered.

There might be cases where you would like to specify the order of the extra tabs as multiple horizon
plugins can register extra tabs. You can specify a priority of each tab in EXTRA_TABS by using a tuple
of priority and a tab class as an element of a dict value instead of a full name of an extra tab. Priority
is an integer of a tab and a tab with a lower value will be displayed first. If a priority of an extra tab is
omitted, 0 is assumed as a priority.

Example:

EXTRA_TABS = {
'openstack_dashboard.dashboards.project.networks.tabs.

↪→NetworkDetailsTabs': (
'openstack_dashboard.dashboards.project.networks.subnets.tabs.

↪→SubnetsTab',
'openstack_dashboard.dashboards.project.networks.ports.tabs.

↪→PortsTab',
),

}

Example (with priority):

EXTRA_TABS = {
'openstack_dashboard.dashboards.project.networks.tabs.

↪→NetworkDetailsTabs': (
(1, 'openstack_dashboard.dashboards.project.networks.subnets.tabs.

↪→SubnetsTab'),
(2, 'openstack_dashboard.dashboards.project.networks.ports.tabs.

↪→PortsTab'),
),

}

2.2. Configuration Guide 65

Horizon Documentation, Release 18.6.5.dev13

UPDATE_HORIZON_CONFIG

New in version 2014.2(Juno).

A dictionary of values that will replace the values in HORIZON_CONFIG.

Pluggable Settings for Dashboards

New in version 2014.1(Icehouse).

The following keys are specific to registering a dashboard:

DASHBOARD

New in version 2014.1(Icehouse).

The slug of the dashboard to be added to HORIZON['dashboards']. Required.

DEFAULT

New in version 2014.1(Icehouse).

If set to True, this dashboard will be set as the default dashboard.

Examples

To disable a dashboard locally, create a file openstack_dashboard/local/enabled/
_40_dashboard-name.py with the following content:

DASHBOARD = '<dashboard-name>'
DISABLED = True

To add a Tuskar-UI (Infrastructure) dashboard, you have to install it, and then create a file
openstack_dashboard/local/enabled/_50_tuskar.py with:

from tuskar_ui import exceptions

DASHBOARD = 'infrastructure'
ADD_INSTALLED_APPS = [

'tuskar_ui.infrastructure',
]
ADD_EXCEPTIONS = {

'recoverable': exceptions.RECOVERABLE,
'not_found': exceptions.NOT_FOUND,
'unauthorized': exceptions.UNAUTHORIZED,

}

66 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Pluggable Settings for Panels

New in version 2014.1(Icehouse).

The following keys are specific to registering or removing a panel:

PANEL

New in version 2014.1(Icehouse).

The slug of the panel to be added to HORIZON_CONFIG. Required.

PANEL_DASHBOARD

New in version 2014.1(Icehouse).

The slug of the dashboard the PANEL associated with. Required.

PANEL_GROUP

New in version 2014.1(Icehouse).

The slug of the panel group the PANEL is associated with. If you want the panel to show up without a
panel group, use the panel group default.

DEFAULT_PANEL

New in version 2014.1(Icehouse).

If set, it will update the default panel of the PANEL_DASHBOARD.

ADD_PANEL

New in version 2014.1(Icehouse).

Python panel class of the PANEL to be added.

REMOVE_PANEL

New in version 2014.1(Icehouse).

If set to True, the PANEL will be removed from PANEL_DASHBOARD/PANEL_GROUP.

2.2. Configuration Guide 67

Horizon Documentation, Release 18.6.5.dev13

Examples

To add a new panel to the Admin panel group in Admin dashboard, create a file
openstack_dashboard/local/enabled/_60_admin_add_panel.py with the following
content:

PANEL = 'plugin_panel'
PANEL_DASHBOARD = 'admin'
PANEL_GROUP = 'admin'
ADD_PANEL = 'test_panels.plugin_panel.panel.PluginPanel'

To remove Info panel from Admin panel group in Admin dashboard locally, create a file
openstack_dashboard/local/enabled/_70_admin_remove_panel.py with the fol-
lowing content:

PANEL = 'info'
PANEL_DASHBOARD = 'admin'
PANEL_GROUP = 'admin'
REMOVE_PANEL = True

To change the default panel of Admin dashboard to Instances panel, create a file
openstack_dashboard/local/enabled/_80_admin_default_panel.py with the
following content:

PANEL = 'instances'
PANEL_DASHBOARD = 'admin'
PANEL_GROUP = 'admin'
DEFAULT_PANEL = 'instances'

Pluggable Settings for Panel Groups

New in version 2014.1(Icehouse).

The following keys are specific to registering a panel group:

PANEL_GROUP

New in version 2014.1(Icehouse).

The slug of the panel group to be added to HORIZON_CONFIG. Required.

PANEL_GROUP_NAME

New in version 2014.1(Icehouse).

The display name of the PANEL_GROUP. Required.

68 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

PANEL_GROUP_DASHBOARD

New in version 2014.1(Icehouse).

The slug of the dashboard the PANEL_GROUP associated with. Required.

Examples

To add a new panel group to the Admin dashboard, create a file openstack_dashboard/local/
enabled/_90_admin_add_panel_group.py with the following content:

PANEL_GROUP = 'plugin_panel_group'
PANEL_GROUP_NAME = 'Plugin Panel Group'
PANEL_GROUP_DASHBOARD = 'admin'

2.2.3 Customizing Horizon

See also:

You may also be interested in Themes and Branding Horizon.

Changing the Site Title

The OpenStack Dashboard Site Title branding (i.e. OpenStack Dashboard) can be overwritten by
adding the attribute SITE_BRANDING to local_settings.py with the value being the desired
name.

The file local_settings.py can be found at the Horizon directory path of
openstack_dashboard/local/local_settings.py.

Changing the Brand Link

The logo also acts as a hyperlink. The default behavior is to redirect to horizon:user_home.
By adding the attribute SITE_BRANDING_LINK with the desired url target e.g., http://
sample-company.com in local_settings.py, the target of the hyperlink can be changed.

Customizing the Footer

It is possible to customize the global and login footers by using Djangos recursive inheritance to extend
the base.html, auth/login.html, and auth/_login_form.html templates. You do this by
naming your template the same name as the template you wish to extend and only overriding the blocks
you wish to change.

Your themes base.html:

{% extends "base.html" %}

{% block footer %}
<p>My custom footer</p>

{% endblock %}

2.2. Configuration Guide 69

Horizon Documentation, Release 18.6.5.dev13

Your themes auth/login.html:

{% extends "auth/login.html" %}

{% block footer %}
<p>My custom login footer</p>

{% endblock %}

Your themes auth/_login_form.html:

{% extends "auth/_login_form.html" %}

{% block login_footer %}
{% comment %}

You MUST have block.super because that includes the login button.
{% endcomment %}
{{ block.super }}
<p>My custom login form footer</p>

{% endblock %}

See the example theme for a working theme that uses these blocks.

Modifying Existing Dashboards and Panels

If you wish to alter dashboards or panels which are not part of your codebase, you can specify a custom
python module which will be loaded after the entire Horizon site has been initialized, but prior to the
URLconf construction. This allows for common site-customization requirements such as:

• Registering or unregistering panels from an existing dashboard.

• Changing the names of dashboards and panels.

• Re-ordering panels within a dashboard or panel group.

Default Horizon panels are loaded based upon files within the openstack_dashboard/enabled/ folder.
These files are loaded based upon the filename order, with space left for more files to be added. There
are some example files available within this folder, with the .example suffix added. Developers and
deployers should strive to use this method of customization as much as possible, and support for this is
given preference over more exotic methods such as monkey patching and overrides files.

Horizon customization module (overrides)

Horizon has a global overrides mechanism available to perform customizations that are not yet customiz-
able via configuration settings. This file can perform monkey patching and other forms of customization
which are not possible via the enabled folders customization method.

This method of customization is meant to be available for deployers of Horizon, and use of this should
be avoided by Horizon plugins at all cost. Plugins needing this level of monkey patching and flexibility
should instead look for changing their __init__.py file and performing customizations through other
means.

To specify the python module containing your modifications, add the key customization_module
to your HORIZON_CONFIG dictionary in local_settings.py. The value should be a string con-
taining the path to your module in dotted python path notation. Example:

70 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

HORIZON_CONFIG["customization_module"] = "my_project.overrides"

You can do essentially anything you like in the customization module. For example, you could change
the name of a panel:

from django.utils.translation import ugettext_lazy as _

import horizon

Rename "User Settings" to "User Options"
settings = horizon.get_dashboard("settings")
user_panel = settings.get_panel("user")
user_panel.name = _("User Options")

Or get the instances panel:

projects_dashboard = horizon.get_dashboard("project")
instances_panel = projects_dashboard.get_panel("instances")

Or just remove it entirely:

projects_dashboard.unregister(instances_panel.__class__)

You cannot unregister a default_panel. If you wish to remove a default_panel, you need to
make a different panel in the dashboard as a default_panel and then unregister the former. For
example, if you wished to remove the overview_panel from the Project dashboard, you could
do the following:

project = horizon.get_dashboard('project')
project.default_panel = "instances"
overview = project.get_panel('overview')
project.unregister(overview.__class__)

You can also override existing methods with your own versions:

from openstack_dashboard.dashboards.admin.info import tabs
from openstack_dashboard.dashboards.project.instances import tables

NO = lambda *x: False

tables.AssociateIP.allowed = NO
tables.SimpleAssociateIP.allowed = NO
tables.SimpleDisassociateIP.allowed = NO

You could also customize what columns are displayed in an existing table, by redefining the columns
attribute of its Meta class. This can be achieved in 3 steps:

1. Extend the table that you wish to modify

2. Redefine the columns attribute under the Meta class for this new table

3. Modify the table_class attribute for the related view so that it points to the new table

For example, if you wished to remove the Admin State column from the NetworksTable, you could
do the following:

2.2. Configuration Guide 71

Horizon Documentation, Release 18.6.5.dev13

from openstack_dashboard.dashboards.project.networks import tables
from openstack_dashboard.dashboards.project.networks import views

class MyNetworksTable(tables.NetworksTable):

class Meta(tables.NetworksTable.Meta):
columns = ('name', 'subnets', 'shared', 'status')

views.IndexView.table_class = MyNetworksTable

If you want to add a column you can override the parent table in a similar way, add the new column
definition and then use the Meta columns attribute to control the column order as needed.

Note: my_project.overrides needs to be importable by the python process running Horizon. If
your module is not installed as a system-wide python package, you can either make it installable (e.g.,
with a setup.py) or you can adjust the python path used by your WSGI server to include its location.

Probably the easiest way is to add a python-path argument to the WSGIDaemonProcess line in
Apaches Horizon config.

Assuming your my_project module lives in /opt/python/my_project, youd make it look like
the following:

WSGIDaemonProcess [... existing options ...] python-path=/opt/python

Customize the project and user table columns

Keystone V3 has a place to store extra information regarding project and user. Using the override
mechanism described in Horizon customization module (overrides), Horizon is able to show these extra
information as a custom column. For example, if a user in Keystone has an attribute phone_num, you
could define new column:

from django.utils.translation import ugettext_lazy as _

from horizon import forms
from horizon import tables

from openstack_dashboard.dashboards.identity.users import tables as user_
↪→tables
from openstack_dashboard.dashboards.identity.users import views

class MyUsersTable(user_tables.UsersTable):
phone_num = tables.Column('phone_num',

verbose_name=_('Phone Number'),
form_field=forms.CharField(),)

class Meta(user_tables.UsersTable.Meta):
columns = ('name', 'description', 'phone_num')

views.IndexView.table_class = MyUsersTable

72 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Customize Angular dashboards

In Angular, you may write a plugin to extend certain features. Two components in the Horizon frame-
work that make this possible are the extensibility service and the resource type registry service. The
extensibleService allows certain Horizon elements to be extended dynamically, including add,
remove, and replace. The resourceTypeRegistry service provides methods to set and get infor-
mation pertaining to a resource type object. We use Heat type names like OS::Glance::Image as
our reference name.

Some information you may place in the registry include:

• API to fetch data from

• Property names

• Actions (e.g. Create Volume)

• URL paths to detail view or detail drawer

• Property information like labels or formatting for property values

These properties in the registry use the extensibility service (as of Newton release):

• globalActions

• batchActions

• itemActions

• detailViews

• tableColumns

• filterFacets

Using the information from the registry, we can build out our dashboard panels. Panels use the high-level
directive hzResourceTable that replaces common templates so we do not need to write boilerplate
HTML and controller code. It gives developers a quick way to build a new table or change an existing
table.

Note: You may still choose to use the HTML template for complete control of form and functionality.
For example, you may want to create a custom footer. You may also use the hzDynamicTable direc-
tive (what hzResourceTable uses under the hood) directly. However, neither of these is extensible.
You would need to override the panel completely.

This is a sample module file to demonstrate how to make some customizations to the Images Panel.:

(function() {
'use strict';

angular
.module('horizon.app.core.images')
.run(customizeImagePanel);

customizeImagePanel.$inject = [
'horizon.framework.conf.resource-type-registry.service',
'horizon.app.core.images.basePath',
'horizon.app.core.images.resourceType',

(continues on next page)

2.2. Configuration Guide 73

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

'horizon.app.core.images.actions.surprise.service'
];

function customizeImagePanel(registry, basePath, imageResourceType,
↪→surpriseService) {

// get registry for ``OS::Glance::Image``
registry = registry.getResourceType(imageResourceType);

// replace existing Size column to make the font color red
var column = {

id: 'size',
priority: 2,
template: '{$ item.size | bytes $}'

};
registry.tableColumns.replace('size', column);

// add a new detail view
registry.detailsViews

.append({
id: 'anotherDetailView',
name: gettext('Another Detail View'),
template: basePath + 'demo/detail.html'

});

// set a different summary drawer template
registry.setSummaryTemplateUrl(basePath + 'demo/drawer.html');

// add a new global action
registry.globalActions

.append({
id: 'surpriseAction',
service: surpriseService,
template: {

text: gettext('Surprise')
}

});
}

})();

Additionally, you should have content defined in detail.html and drawer.html, as well as define
the surpriseService which is based off the actions directive and needs allowed and perform
methods defined.

Icons

Horizon uses font icons from Font Awesome. Please see Font Awesome for instructions on how to use
icons in the code.

To add icon to Table Action, use icon property. Example:

class CreateSnapshot(tables.LinkAction):
name = "snapshot"
verbose_name = _("Create Snapshot")
icon = "camera"

74 Chapter 2. Using Horizon

https://fortawesome.github.io/Font-Awesome/

Horizon Documentation, Release 18.6.5.dev13

Additionally, the site-wide default button classes can be configured by setting
ACTION_CSS_CLASSES to a tuple of the classes you wish to appear on all action buttons in
your local_settings.py file.

Custom Stylesheets

It is possible to define custom stylesheets for your dashboards. Horizons base template
openstack_dashboard/templates/base.html defines multiple blocks that can be overrid-
den.

To define custom css files that apply only to a specific dashboard, create a base template in your
dashboards templates folder, which extends Horizons base template e.g. openstack_dashboard/
dashboards/my_custom_dashboard/ templates/my_custom_dashboard/base.
html.

In this template, redefine block css. (Dont forget to include _stylesheets.html which in-
cludes all Horizons default stylesheets.):

{% extends 'base.html' %}

{% block css %}
{% include "_stylesheets.html" %}

{% load compress %}
{% compress css %}
<link href='{{ STATIC_URL }}my_custom_dashboard/scss/my_custom_dashboard.

↪→scss' type='text/scss' media='screen' rel='stylesheet' />
{% endcompress %}

{% endblock %}

The custom stylesheets then reside in the dashboards own static folder openstack_dashboard/
dashboards/my_custom_dashboard/static/my_custom_dashboard/scss/
my_custom_dashboard.scss.

All dashboards templates have to inherit from dashboards base.html:

{% extends 'my_custom_dashboard/base.html' %}
...

Custom Javascript

Similarly to adding custom styling (see above), it is possible to include custom javascript files.

All Horizons javascript files are listed in the openstack_dashboard/templates/horizon/
_scripts.html partial template, which is included in Horizons base template in block js.

To add custom javascript files, create an _scripts.html partial template in your dash-
board openstack_dashboard/dashboards/my_custom_dashboard/templates/
my_custom_dashboard/_scripts.html which extends horizon/_scripts.html. In
this template override the block custom_js_files including your custom javascript files:

{% extends 'horizon/_scripts.html' %}

{% block custom_js_files %}

(continues on next page)

2.2. Configuration Guide 75

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

<script src='{{ STATIC_URL }}my_custom_dashboard/js/my_custom_js.js'
↪→type='text/javascript' charset='utf-8'></script>
{% endblock %}

In your dashboards own base template openstack_dashboard/dashboards/
my_custom_dashboard/templates/my_custom_dashboard/base.html override
block js with inclusion of dashboards own _scripts.html:

{% block js %}
{% include "my_custom_dashboard/_scripts.html" %}

{% endblock %}

The result is a single compressed js file consisting both Horizon and dashboards custom scripts.

Custom Head js

Additionally, some scripts require you to place them within the pages <head> tag. To do this, recursively
extend the base.html template in your theme to override the custom_head_js block.

Your themes base.html:

{% extends "base.html" %}

{% block custom_head_js %}
<script src='{{ STATIC_URL }}/my_custom_dashboard/js/my_custom_js.js'

↪→type='text/javascript' charset='utf-8'></script>
{% endblock %}

See the example theme for a working theme that uses these blocks.

Warning: Dont use the custom_head_js block for analytics tracking. See below.

Custom Analytics

For analytics or tracking scripts you should avoid the custom_head_js block. We have a specific
block instead called custom_analytics. Much like the custom_head_js block this inserts
additional content into the head of the base.html template and it will be on all pages.

The reason for an analytics specific block is that for security purposes we want to be able to turn off
tracking on certain pages that we deem sensitive. This is done for the safety of the users and the cloud
admins. By using this block instead, pages using base.html can override it themselves when they
want to avoid tracking. They cant simply override the custom js because it may be non-tracking code.

Your themes base.html:

{% extends "base.html" %}

{% block custom_analytics %}
<script src='{{ STATIC_URL }}/my_custom_dashboard/js/my_tracking_js.js'

↪→type='text/javascript' charset='utf-8'></script>
{% endblock %}

76 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

See the example theme for a working theme that uses these blocks.

Customizing Meta Attributes

To add custom metadata attributes to your projects base template use the custom_metadata
block. To do this, recursively extend the base.html template in your theme to override the
custom_metadata block. The contents of this block will be inserted into the pages <head> just
after the default Horizon meta tags.

Your themes base.html:

{% extends "base.html" %}

{% block custom_metadata %}
<meta name="description" content="My custom metadata.">

{% endblock %}

See the example theme for a working theme that uses these blocks.

2.2.4 Themes

As of the Kilo release, styling for the OpenStack Dashboard can be altered through the use of a theme. A
theme is a directory containing a _variables.scss file to override the color codes used throughout
the SCSS and a _styles.scss file with additional styles to load after dashboard styles have loaded.

As of the Mitaka release, Horizon can be configured to run with multiple themes available at run time.
It uses a browser cookie to allow users to toggle between the configured themes. By default, Horizon is
configured with the two standard themes available: default and material.

To configure or alter the available themes, set AVAILABLE_THEMES in local_settings.py to a
list of tuples, such that ('name', 'label', 'path')

name The key by which the theme value is stored within the cookie

label The label shown in the theme toggle under the User Menu

path The directory location for the theme. The path must be relative to the
openstack_dashboard directory or an absolute path to an accessible location on the
file system

To use a custom theme, set AVAILABLE_THEMES in local_settings.py to a list of themes. If
you wish to run in a mode similar to legacy Horizon, set AVAILABLE_THEMES with a single tuple, and
the theme toggle will not be available at all through the application to allow user configuration themes.

For example, a configuration with multiple themes:

AVAILABLE_THEMES = [
('default', 'Default', 'themes/default'),
('material', 'Material', 'themes/material'),

]

A configuration with a single theme:

AVAILABLE_THEMES = [
('default', 'Default', 'themes/default'),

]

2.2. Configuration Guide 77

Horizon Documentation, Release 18.6.5.dev13

Both the Dashboard custom variables and Bootstrap variables can be overridden. For a full list of the
Dashboard SCSS variables that can be changed, see the variables file at openstack_dashboard/
static/dashboard/scss/_variables.scss.

In order to build a custom theme, both _variables.scss and _styles.scss are required and
_variables.scss must provide all the default Bootstrap variables.

Inherit from an Existing Theme

Custom themes must implement all of the Bootstrap variables required by Horizon in _variables.
scss and _styles.scss. To make this easier, you can inherit the variables needed in the default
theme and only override those that you need to customize. To inherit from the default theme, put this in
your themes _variables.scss:

@import "/themes/default/variables";

Once you have made your changes you must re-generate the static files with:

python manage.py collectstatic

By default, all of the themes configured by AVAILABLE_THEMES setting are collected by hori-
zon during the collectstatic process. By default, the themes are collected into the dynamic
static/themes directory, but this location can be customized via the local_settings.py variable:
THEME_COLLECTION_DIR

Once collected, any theme configured via AVAILABLE_THEMES is available to inherit from by import-
ing its variables and styles from its collection directory. The following is an example of inheriting from
the material theme:

@import "/themes/material/variables";
@import "/themes/material/styles";

All themes will need to be configured in AVAILABLE_THEMES to allow inheritance. If you wish to
inherit from a theme, but not show that theme as a selectable option in the theme picker widget, then
simply configure the SELECTABLE_THEMES to exclude the parent theme. SELECTABLE_THEMES
must be of the same format as AVAILABLE_THEMES. It defaults to AVAILABLE_THEMES if it is not
set explicitly.

Bootswatch

Horizon packages the Bootswatch SCSS files for use with its material theme. Because of this, it is
simple to use an existing Bootswatch theme as a base. This is due to the fact that Bootswatch is loaded as
a 3rd party static asset, and therefore is automatically collected into the static directory in /horizon/lib/.
The following is an example of how to inherit from Bootswatchs darkly theme:

@import "/horizon/lib/bootswatch/darkly/variables";
@import "/horizon/lib/bootswatch/darkly/bootswatch";

78 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Organizing Your Theme Directory

A custom theme directory can be organized differently, depending on the level of customization that is
desired, as it can include static files as well as Django templates. It can include special subdirectories
that will be used differently: static, templates and img.

The static Folder

If the theme folder contains a sub-folder called static, then that sub folder will be used as the static
root of the theme. I.e., Horizon will look in that sub-folder for the _variables.scss and _styles.scss files.
The contents of this folder will also be served up at /static/custom.

The templates Folder

If the theme folder contains a sub-folder templates, then the path to that sub-folder will be prepended
to the TEMPLATE_DIRS tuple to allow for theme specific template customizations.

Using the templates Folder

Any Django template that is used in Horizon can be overridden through a theme. This allows highly cus-
tomized user experiences to exist within the scope of different themes. Any template that is overridden
must adhere to the same directory structure that the extending template expects.

For example, if you wish to customize the sidebar, Horizon expects the template to live at horizon/
_sidebar.html. You would need to duplicate that directory structure under your templates directory,
such that your override would live at { theme_path }/templates/horizon/_sidebar.
html.

The img Folder

If the static root of the theme folder contains an img directory, then all images that make use of the {%
themable_asset %} templatetag can be overridden.

These assets include logo.svg, splash-logo.svg and favicon.ico, however overriding the SVG/GIF assets
used by Heat within the dashboard/img folder is not currently supported.

Customizing the Logo

Simple

If you wish to customize the logo that is used on the splash screen or in the top navigation bar, then
you need to create an img directory under your themes static root directory and place your custom
logo.svg or logo-splash.svg within it.

If you wish to override the logo.svg using the previous method, and if the image used is larger than
the height of the top navigation, then the image will be constrained to fit within the height of nav. You can
customize the height of the top navigation bar by customizing the SCSS variable: $navbar-height.

2.2. Configuration Guide 79

Horizon Documentation, Release 18.6.5.dev13

If the images height is smaller than the navbar height, then the image will retain its original resolution
and size, and simply be centered vertically in the available space.

Prior to the Kilo release the images files inside of Horizon needed to be replaced by your images files or
the Horizon stylesheets needed to be altered to point to the location of your image.

Advanced

If you need to do more to customize the logo than simply replacing the existing PNG, then you can also
override the _brand.html through a custom theme. To use this technique, simply add a templates/
header/_brand.html to the root of your custom theme, and add markup directly to the file. For
an example of how to do this, see openstack_dashboard/themes/material/templates/
header/_brand.html.

The splash / login panel can also be customized by adding templates/auth/_splash.html.
See openstack_dashboard/themes/material/templates/auth/_splash.html for
an example.

2.2.5 Branding Horizon

As of the Liberty release, Horizon has begun to conform more strictly to Bootstrap standards in an effort
to embrace more responsive web design as well as alleviate the future need to re-brand new functionality
for every release.

Supported Components

The following components, organized by release, are the only ones that make full use of the Bootstrap
theme architecture.

• 8.0.0 (Liberty)

– Top Navbar

– Side Nav

– Pie Charts

• 9.0.0 (Mitaka)

– Tables

– Bar Charts

– Login

– Tabs

– Alerts

– Checkboxes

80 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Step 1

The first step needed to create a custom branded theme for Horizon is to create a custom Bootstrap
theme. There are several tools to aid in this. Some of the more useful ones include:

• Bootswatchr

• Paintstrap

• Bootstrap

Note: Bootstrap uses LESS by default, but we use SCSS. All of the above tools will provide the
variables.less file, which will need to be converted to _variables.scss

Top Navbar

The top navbar in Horizon now uses a native Bootstrap navbar. There are a number of variables that
can be used to customize this element. Please see the Navbar section of your variables file for specifics
on what can be set: any variables that use navbar-default.

It is important to also note that the navbar now uses native Bootstrap dropdowns, which are customizable
with variables. Please see the Dropdowns section of your variables file.

The top navbar is now responsive on smaller screens. When the window size hits your $screen-sm
value, the topbar will compress into a design that is better suited for small screens.

Side Nav

The side navigation component has been refactored to use the native Stacked Pills element from Boot-
strap. See Pills section of your variables file for specific variables to customize.

Charts

Pie Charts

Pie Charts are SVG elements. SVG elements allow CSS customizations for only a basic elements look
and feel (i.e. colors, size).

Since there is no native element in Bootstrap specifically for pie charts, the look and feel of the charts
are inheriting from other elements of the theme. Please see _pie_charts.scss for specifics.

2.2. Configuration Guide 81

https://codepen.io/technabors/pen/eWPXEd
http://paintstrap.com
http://getbootstrap.com/customize/

Horizon Documentation, Release 18.6.5.dev13

Bar Charts

Bar Charts can be either a Bootstrap Progress Bar or an SVG element. Either implementation will use
the Bootstrap Progress Bar styles.

The SVG implementation will not make use of the customized Progress Bar height though, so it is
recommended that Bootstrap Progress Bars are used whenever possible.

Please see _bar_charts.scss for specifics on what can be customized for SVGs. See the Progress
bars section of your variables file for specific variables to customize.

Tables

The standard Django tables now make use of the native Bootstrap table markup. See Tables section of
your variables file for variables to customize.

The standard Bootstrap tables will be borderless by default. If you wish to add a border, like the
default theme, see openstack_dashboard/themes/default/horizon/components/
_tables.scss

Login

Login Splash Page

The login splash page now uses a standard Bootstrap panel in its implementation. See the Panels section
in your variables file to variables to easily customize.

Modal Login

The modal login experience, as used when switching regions, uses a standard Bootstrap dialog. See the
Modals section of your variables file for specific variables to customize.

Tabs

The standard tabs make use of the native Bootstrap tab markup.

See Tabs section of your variables file for variables to customize.

Alerts

Alerts use the basic Bootstrap brand colors. See Colors section of your variables file for specifics.

82 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Checkboxes

Horizon uses icon fonts to represent checkboxes. In order to customize this,
you simply need to override the standard scss. For an example of this, see
themes/material/static/horizon/components/_checkboxes.scss

Bootswatch and Material Design

Bootswatch is a collection of free themes for Bootstrap and is now available for use in Horizon.

In order to showcase what can be done to enhance an existing Bootstrap theme, Horizon now includes a
secondary theme, roughly based on Googles Material Design called material. Bootswatchs Paper is
a simple Bootstrap implementation of Material Design and is used by material.

Bootswatch provides a number of other themes, that once Horizon is fully theme compliant, will allow
easy toggling and customizations for darker or accessibility driven experiences.

Development Tips

When developing a new theme for Horizon, it is required that the dynamically generated static directory
be cleared after each change and the server restarted. This is not always ideal. If you wish to develop
and not have to restart the server each time, it is recommended that you configure your development en-
vironment to not run in OFFLINE mode. Simply verify the following settings in your local_settings.py:

COMPRESS_OFFLINE = False
COMPRESS_ENABLED = False

2.3 OpenStack Dashboard User Documentation

As a cloud end user, you can use the OpenStack dashboard to provision your own resources within the
limits set by administrators. You can modify the examples provided in this section to create other types
and sizes of server instances.

2.3.1 Log in to the dashboard

The dashboard is generally installed on the controller node.

1. Ask the cloud operator for the host name or public IP address from which you can access the
dashboard, and for your user name and password. If the cloud supports multi-domain model, you
also need to ask for your domain name.

2. Open a web browser that has JavaScript and cookies enabled.

Note: To use the Virtual Network Computing (VNC) client for the dashboard, your browser
must support HTML5 Canvas and HTML5 WebSockets. The VNC client is based on noVNC. For
details, see noVNC: HTML5 VNC Client. For a list of supported browsers, see Browser support.

2.3. OpenStack Dashboard User Documentation 83

http://bootswatch.com
https://www.google.com/design/spec/material-design/introduction.html
https://github.com/novnc/noVNC/blob/master/README.md
https://github.com/novnc/noVNC#browser-requirements

Horizon Documentation, Release 18.6.5.dev13

3. In the address bar, enter the host name or IP address for the dashboard, for example, https://
ipAddressOrHostName/.

Note: If a certificate warning appears when you try to access the URL for the first time, a self-
signed certificate is in use, which is not considered trustworthy by default. Verify the certificate
or add an exception in the browser to bypass the warning.

4. On the Log In page, enter your user name and password, and click Sign In. If the cloud supports
multi-domain model, you also need to enter your domain name.

The top of the window displays your user name. You can also access the Settings tab (OpenStack
dashboard Settings tab) or sign out of the dashboard.

The visible tabs and functions in the dashboard depend on the access permissions, or roles, of the
user you are logged in as.

• If you are logged in as an end user, the Project tab (OpenStack dashboard Project tab) and
Identity tab (OpenStack dashboard Identity tab) are displayed.

• If you are logged in as an administrator, the Project tab (OpenStack dashboard Project tab)
and Admin tab (OpenStack dashboard Admin tab) and Identity tab (OpenStack dashboard
Identity tab) are displayed.

OpenStack dashboard Project tab

Projects are organizational units in the cloud and are also known as tenants or accounts. Each user is a
member of one or more projects. Within a project, a user creates and manages instances.

From the Project tab, you can view and manage the resources in a selected project, including instances
and images. You can select the project from the drop-down menu at the top left. If the cloud supports
multi-domain model, you can also select the domain from this menu.

From the Project tab, you can access the following categories:

• API Access: View API endpoints.

Compute tab

• Overview: View reports for the project.

• Instances: View, launch, create a snapshot from, stop, pause, or reboot instances, or connect to
them through VNC.

• Images: View images and instance snapshots created by project users, plus any images that are
publicly available. Create, edit, and delete images, and launch instances from images and snap-
shots.

• Key Pairs: View, create, edit, import, and delete key pairs.

84 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Fig. 1: Figure: Project tab

Volume tab

• Volumes: View, create, edit, and delete volumes.

• Backups: View, create, edit, and delete backups.

• Snapshots: View, create, edit, and delete volume snapshots.

• Consistency Groups: View, create, edit, and delete consistency groups.

• Consistency Group Snapshots: View, create, edit, and delete consistency group snapshots.

Network tab

• Network Topology: View the network topology.

• Networks: Create and manage public and private networks.

• Routers: Create and manage routers.

• Security Groups: View, create, edit, and delete security groups and security group rules..

• Floating IPs: Allocate an IP address to or release it from a project.

2.3. OpenStack Dashboard User Documentation 85

Horizon Documentation, Release 18.6.5.dev13

Object Store tab

• Containers: Create and manage containers and objects.

OpenStack dashboard Admin tab

Administrative users can use the Admin tab to view usage and to manage instances, volumes, flavors,
images, networks, and so on.

Fig. 2: Figure: Admin tab

From the Admin tab, you can access the following category to complete these tasks:

Overview tab

• Overview: View basic reports.

Compute tab

• Hypervisors: View the hypervisor summary.

• Host Aggregates: View, create, and edit host aggregates. View the list of availability zones.

• Instances: View, pause, resume, suspend, migrate, soft or hard reboot, and delete running in-
stances that belong to users of some, but not all, projects. Also, view the log for an instance or
access an instance through VNC.

• Flavors: View, create, edit, view extra specifications for, and delete flavors. A flavor is the size of
an instance.

• Images: View, create, edit properties for, and delete custom images.

86 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Volume tab

• Volumes: View, create, manage, and delete volumes.

• Snapshots: View, manage, and delete volume snapshots.

• Volume Types: View, create, manage, and delete volume types.

Network tab

• Networks: View, create, edit properties for, and delete networks.

• Routers: View, create, edit properties for, and delete routers.

• Floating IPs: Allocate an IP address for a project or release it.

System tab

• Defaults: View default quota values. Quotas are hard-coded in OpenStack Compute and define
the maximum allowable size and number of resources.

• Metadata Definitions: Import namespace and view the metadata information.

• System Information: Use the following tabs to view the service information:

– Services: View a list of the services.

– Compute Services: View a list of all Compute services.

– Block Storage Services: View a list of all Block Storage services.

– Network Agents: View the network agents.

OpenStack dashboard Identity tab

Fig. 3: Figure:Identity tab

2.3. OpenStack Dashboard User Documentation 87

Horizon Documentation, Release 18.6.5.dev13

• Projects: View, create, assign users to, remove users from, and delete projects.

• Users: View, create, enable, disable, and delete users.

OpenStack dashboard Settings tab

Fig. 4: Figure:Settings tab

Click the Settings button from the user drop down menu at the top right of any page, you will see the
Settings tab.

• User Settings: View and manage dashboard settings.

• Change Password: Change the password of the user.

2.3.2 Upload and manage images

A virtual machine image, referred to in this document simply as an image, is a single file that contains
a virtual disk that has a bootable operating system installed on it. Images are used to create virtual
machine instances within the cloud. For information about creating image files, see the OpenStack
Virtual Machine Image Guide.

Depending on your role, you may have permission to upload and manage virtual machine images. Op-
erators might restrict the upload and management of images to cloud administrators or operators only.
If you have the appropriate privileges, you can use the dashboard to upload and manage images in the
admin project.

Note: You can also use the openstack and glance command-line clients or the Image service to
manage images.

88 Chapter 2. Using Horizon

https://docs.openstack.org/image-guide/
https://docs.openstack.org/image-guide/

Horizon Documentation, Release 18.6.5.dev13

Upload an image

Follow this procedure to upload an image to a project:

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab and click Images category.

4. Click Create Image.

The Create An Image dialog box appears.

Fig. 5: Dashboard Create Image

5. Enter the following values:

2.3. OpenStack Dashboard User Documentation 89

Horizon Documentation, Release 18.6.5.dev13

Image Name Enter a name for the image.
Image De-
scription

Enter a brief description of the image.

Image
Source

Choose the image source from the dropdown list. Your choices are Image
Location and Image File.

Image File or
Image Loca-
tion

Based on your selection for Image Source, you either enter the location URL
of the image in the Image Location field, or browse for the image file on your
file system and add it.

Format Select the image format (for example, QCOW2) for the image.
Architecture Specify the architecture. For example, i386 for a 32-bit architecture or

x86_64 for a 64-bit architecture.
Minimum
Disk (GB)

Leave this field empty.

Minimum
RAM (MB)

Leave this field empty.

Copy Data Specify this option to copy image data to the Image service.
Visibility The access permission for the image. Public or Private.
Protected Select this check box to ensure that only users with permissions can delete the

image. Yes or No.
Image Meta-
data

Specify this option to add resource metadata. The glance Metadata Catalog
provides a list of metadata image definitions. (Note: Not all cloud providers
enable this feature.)

6. Click Create Image.

The image is queued to be uploaded. It might take some time before the status changes from
Queued to Active.

Update an image

Follow this procedure to update an existing image.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. Select the image that you want to edit.

4. In the Actions column, click the menu button and then select Edit Image from the list.

5. In the Edit Image dialog box, you can perform various actions. For example:

• Change the name of the image.

• Change the description of the image.

• Change the format of the image.

• Change the minimum disk of the image.

• Change the minimum RAM of the image.

• Select the Public button to make the image public.

• Clear the Private button to make the image private.

90 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

• Change the metadata of the image.

6. Click Edit Image.

Delete an image

Deletion of images is permanent and cannot be reversed. Only users with the appropriate permissions
can delete images.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab and click Images category.

4. Select the images that you want to delete.

5. Click Delete Images.

6. In the Confirm Delete Images dialog box, click Delete Images to confirm the deletion.

2.3.3 Configure access and security for instances

Before you launch an instance, you should add security group rules to enable users to ping and use SSH
to connect to the instance. Security groups are sets of IP filter rules that define networking access and
are applied to all instances within a project. To do so, you either add rules to the default security group
Add a rule to the default security group or add a new security group with rules.

Key pairs are SSH credentials that are injected into an instance when it is launched. To use key pair
injection, the image that the instance is based on must contain the cloud-init package. Each project
should have at least one key pair. For more information, see the section Add a key pair.

If you have generated a key pair with an external tool, you can import it into OpenStack. The key pair
can be used for multiple instances that belong to a project. For more information, see the section Import
a key pair.

Note: A key pair belongs to an individual user, not to a project. To share a key pair across multiple
users, each user needs to import that key pair.

When an instance is created in OpenStack, it is automatically assigned a fixed IP address in the network
to which the instance is assigned. This IP address is permanently associated with the instance until the
instance is terminated. However, in addition to the fixed IP address, a floating IP address can also be
attached to an instance. Unlike fixed IP addresses, floating IP addresses are able to have their associations
modified at any time, regardless of the state of the instances involved.

2.3. OpenStack Dashboard User Documentation 91

Horizon Documentation, Release 18.6.5.dev13

Add a rule to the default security group

This procedure enables SSH and ICMP (ping) access to instances. The rules apply to all instances within
a given project, and should be set for every project unless there is a reason to prohibit SSH or ICMP
access to the instances.

This procedure can be adjusted as necessary to add additional security group rules to a project, if your
cloud requires them.

Note: When adding a rule, you must specify the protocol used with the destination port or source port.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Network tab. The Security Groups tab shows the security groups that
are available for this project.

4. Select the default security group and click Manage Rules.

5. To allow SSH access, click Add Rule.

6. In the Add Rule dialog box, enter the following values:

• Rule: SSH

• Remote: CIDR

• CIDR: 0.0.0.0/0

Note: To accept requests from a particular range of IP addresses, specify the IP address block in
the CIDR box.

7. Click Add.

Instances will now have SSH port 22 open for requests from any IP address.

8. To add an ICMP rule, click Add Rule.

9. In the Add Rule dialog box, enter the following values:

• Rule: All ICMP

• Direction: Ingress

• Remote: CIDR

• CIDR: 0.0.0.0/0

10. Click Add.

Instances will now accept all incoming ICMP packets.

92 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Add a key pair

Create at least one key pair for each project.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab.

4. Click the Key Pairs tab, which shows the key pairs that are available for this project.

5. Click Create Key Pair.

6. In the Create Key Pair dialog box, enter a name for your key pair, and click Create Key Pair.

7. The private key will be downloaded automatically.

8. To change its permissions so that only you can read and write to the file, run the following com-
mand:

$ chmod 0600 yourPrivateKey.pem

Note: If you are using the Dashboard from a Windows computer, use PuTTYgen to load the
*.pem file and convert and save it as *.ppk. For more information see the WinSCP web page
for PuTTYgen.

9. To make the key pair known to SSH, run the ssh-add command.

$ ssh-add yourPrivateKey.pem

Import a key pair

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab.

4. Click the Key Pairs tab, which shows the key pairs that are available for this project.

5. Click Import Key Pair.

6. In the Import Key Pair dialog box, enter the name of your key pair, copy the public key into the
Public Key box, and then click Import Key Pair.

The Compute database registers the public key of the key pair.

The Dashboard lists the key pair on the Key Pairs tab.

2.3. OpenStack Dashboard User Documentation 93

https://winscp.net/eng/docs/ui_puttygen
https://winscp.net/eng/docs/ui_puttygen

Horizon Documentation, Release 18.6.5.dev13

Allocate a floating IP address to an instance

When an instance is created in OpenStack, it is automatically assigned a fixed IP address in the network
to which the instance is assigned. This IP address is permanently associated with the instance until the
instance is terminated.

However, in addition to the fixed IP address, a floating IP address can also be attached to an instance.
Unlike fixed IP addresses, floating IP addresses can have their associations modified at any time, regard-
less of the state of the instances involved. This procedure details the reservation of a floating IP address
from an existing pool of addresses and the association of that address with a specific instance.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Network tab.

4. Click the Floating IPs tab, which shows the floating IP addresses allocated to instances.

5. Click Allocate IP To Project.

6. Choose the pool from which to pick the IP address.

7. Click Allocate IP.

8. In the Floating IPs list, click Associate.

9. In the Manage Floating IP Associations dialog box, choose the following options:

• The IP Address field is filled automatically, but you can add a new IP address by clicking the
+ button.

• In the Port to be associated field, select a port from the list.

The list shows all the instances with their fixed IP addresses.

10. Click Associate.

Note: To disassociate an IP address from an instance, click the Disassociate button.

To release the floating IP address back into the floating IP pool, click the Release Floating IP option in
the Actions column.

2.3.4 Launch and manage instances

Instances are virtual machines that run inside the cloud. You can launch an instance from the following
sources:

• Images uploaded to the Image service.

• Image that you have copied to a persistent volume. The instance launches from the volume, which
is provided by the cinder-volume API through iSCSI.

• Instance snapshot that you took.

94 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Launch an instance

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab and click Instances category.

The dashboard shows the instances with its name, its private and floating IP addresses, size, status,
task, power state, and so on.

4. Click Launch Instance.

5. In the Launch Instance dialog box, specify the following values:

Details tab

Instance Name Assign a name to the virtual machine.

Note: The name you assign here becomes the initial host name of the server. If the name is
longer than 63 characters, the Compute service truncates it automatically to ensure dnsmasq
works correctly.

After the server is built, if you change the server name in the API or change the host name
directly, the names are not updated in the dashboard.

Server names are not guaranteed to be unique when created so you could have two instances
with the same host name.

Description You can assign a brief description of the virtual machine.

Availability Zone By default, this value is set to the availability zone given by the cloud provider
(for example, us-west or apac-south). For some cases, it could be nova.

Count To launch multiple instances, enter a value greater than 1. The default is 1.

Source tab

Instance Boot Source Your options are:

Boot from image If you choose this option, a new field for Image Name displays. You can
select the image from the list.

Boot from snapshot If you choose this option, a new field for Instance Snapshot displays.
You can select the snapshot from the list.

Boot from volume If you choose this option, a new field for Volume displays. You can
select the volume from the list.

Boot from image (creates a new volume) With this option, you can boot from an image
and create a volume by entering the Device Size and Device Name for your volume.
Click the Delete Volume on Instance Delete option to delete the volume on deleting the
instance.

Boot from volume snapshot (creates a new volume) Using this option, you can boot from
a volume snapshot and create a new volume by choosing Volume Snapshot from a list
and adding a Device Name for your volume. Click the Delete Volume on Instance Delete
option to delete the volume on deleting the instance.

2.3. OpenStack Dashboard User Documentation 95

Horizon Documentation, Release 18.6.5.dev13

Image Name This field changes based on your previous selection. If you have chosen to launch
an instance using an image, the Image Name field displays. Select the image name from the
dropdown list.

Instance Snapshot This field changes based on your previous selection. If you have chosen to
launch an instance using a snapshot, the Instance Snapshot field displays. Select the snapshot
name from the dropdown list.

Volume This field changes based on your previous selection. If you have chosen to launch an
instance using a volume, the Volume field displays. Select the volume name from the drop-
down list. If you want to delete the volume on instance delete, check the Delete Volume on
Instance Delete option.

Flavor tab

Flavor Specify the size of the instance to launch.

Note: The flavor is selected based on the size of the image selected for launching an in-
stance. For example, while creating an image, if you have entered the value in the Minimum
RAM (MB) field as 2048, then on selecting the image, the default flavor is m1.small.

Networks tab

Selected Networks To add a network to the instance, click the + in the Available field.

Network Ports tab

Ports Activate the ports that you want to assign to the instance.

Security Groups tab

Security Groups Activate the security groups that you want to assign to the instance.

Security groups are a kind of cloud firewall that define which incoming network traffic is
forwarded to instances.

If you have not created any security groups, you can assign only the default security group
to the instance.

Key Pair tab

Key Pair Specify a key pair.

If the image uses a static root password or a static key set (neither is recommended), you do
not need to provide a key pair to launch the instance.

Configuration tab

Customization Script Source Specify a customization script that runs after your instance
launches.

Metadata tab

Available Metadata Add Metadata items to your instance.

6. Click Launch Instance.

The instance starts on a compute node in the cloud.

96 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Note: If you did not provide a key pair, security groups, or rules, users can access the instance only
from inside the cloud through VNC. Even pinging the instance is not possible without an ICMP rule
configured.

You can also launch an instance from the Images or Volumes category when you launch an instance from
an image or a volume respectively.

When you launch an instance from an image, OpenStack creates a local copy of the image on the
compute node where the instance starts.

For details on creating images, see Creating images manually in the OpenStack Virtual Machine Image
Guide.

When you launch an instance from a volume, note the following steps:

• To select the volume from which to launch, launch an instance from an arbitrary image on the
volume. The arbitrary image that you select does not boot. Instead, it is replaced by the image on
the volume that you choose in the next steps.

To boot a Xen image from a volume, the image you launch in must be the same type, fully
virtualized or paravirtualized, as the one on the volume.

• Select the volume or volume snapshot from which to boot. Enter a device name. Enter vda for
KVM images or xvda for Xen images.

Note: When running QEMU without support for the hardware virtualization, set cpu_mode="none"
alongside virt_type=qemu in /etc/nova/nova-compute.conf to solve the following error:

libvirtError: unsupported configuration: CPU mode 'host-model'
for ``x86_64`` qemu domain on ``x86_64`` host is not supported by hypervisor

Connect to your instance by using SSH

To use SSH to connect to your instance, use the downloaded keypair file.

Note: The user name is ubuntu for the Ubuntu cloud images on TryStack.

1. Copy the IP address for your instance.

2. Use the ssh command to make a secure connection to the instance. For example:

$ ssh -i MyKey.pem ubuntu@10.0.0.2

3. At the prompt, type yes.

It is also possible to SSH into an instance without an SSH keypair, if the administrator has enabled root
password injection. For more information about root password injection, see Injecting the administrator
password in the OpenStack Administrator Guide.

2.3. OpenStack Dashboard User Documentation 97

https://docs.openstack.org/image-guide/create-images-manually.html
https://docs.openstack.org/nova/latest/admin/admin-password-injection.html
https://docs.openstack.org/nova/latest/admin/admin-password-injection.html

Horizon Documentation, Release 18.6.5.dev13

Track usage for instances

You can track usage for instances for each project. You can track costs per month by showing meters
like number of vCPUs, disks, RAM, and uptime for all your instances.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab and click Overview category.

4. To query the instance usage for a month, select a month and click Submit.

5. To download a summary, click Download CSV Summary.

Create an instance snapshot

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab and click the Instances category.

4. Select the instance from which to create a snapshot.

5. In the actions column, click Create Snapshot.

6. In the Create Snapshot dialog box, enter a name for the snapshot, and click Create Snapshot.

The Images category shows the instance snapshot.

To launch an instance from the snapshot, select the snapshot and click Launch. Proceed with launching
an instance.

Manage an instance

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Compute tab and click Instances category.

4. Select an instance.

5. In the menu list in the actions column, select the state.

You can resize or rebuild an instance. You can also choose to view the instance console log, edit
instance or the security groups. Depending on the current state of the instance, you can pause,
resume, suspend, soft or hard reboot, or terminate it.

98 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

2.3.5 Create and manage networks

The OpenStack Networking service provides a scalable system for managing the network connectivity
within an OpenStack cloud deployment. It can easily and quickly react to changing network needs (for
example, creating and assigning new IP addresses).

Networking in OpenStack is complex. This section provides the basic instructions for creating a network
and a router. For detailed information about managing networks, refer to the OpenStack Networking
Guide.

Create a network

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Network tab and click Networks category.

4. Click Create Network.

5. In the Create Network dialog box, specify the following values.

Network tab

Network Name: Specify a name to identify the network.

Shared: Share the network with other projects. Non admin users are not allowed to set shared
option.

Admin State: The state to start the network in.

Create Subnet: Select this check box to create a subnet

You do not have to specify a subnet when you create a network, but if you do not specify a subnet,
the network can not be attached to an instance.

Subnet tab

Subnet Name: Specify a name for the subnet.

Network Address: Specify the IP address for the subnet.

IP Version: Select IPv4 or IPv6.

Gateway IP: Specify an IP address for a specific gateway. This parameter is optional.

Disable Gateway: Select this check box to disable a gateway IP address.

Subnet Details tab

Enable DHCP: Select this check box to enable DHCP.

Allocation Pools: Specify IP address pools.

DNS Name Servers: Specify a name for the DNS server.

Host Routes: Specify the IP address of host routes.

6. Click Create.

The dashboard shows the network on the Networks tab.

2.3. OpenStack Dashboard User Documentation 99

https://docs.openstack.org/neutron/latest/admin/
https://docs.openstack.org/neutron/latest/admin/

Horizon Documentation, Release 18.6.5.dev13

Create a router

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Network tab and click Routers category.

4. Click Create Router.

5. In the Create Router dialog box, specify a name for the router and External Network, and click
Create Router.

The new router is now displayed in the Routers tab.

6. To connect a private network to the newly created router, perform the following steps:

A) On the Routers tab, click the name of the router.

B) On the Router Details page, click the Interfaces tab, then click Add Interface.

C) In the Add Interface dialog box, select a Subnet.

Optionally, in the Add Interface dialog box, set an IP Address for the router interface for the
selected subnet.

If you choose not to set the IP Address value, then by default OpenStack Networking uses
the first host IP address in the subnet.

The Router Name and Router ID fields are automatically updated.

7. Click Add Interface.

You have successfully created the router. You can view the new topology from the Network Topology
tab.

Create a port

1. Log in to the dashboard.

2. Select the appropriate project from the drop-down menu at the top left.

3. On the Project tab, click Networks category.

4. Click on the Network Name of the network in which the port has to be created.

5. Go to the Ports tab and click Create Port.

6. In the Create Port dialog box, specify the following values.

Name: Specify name to identify the port.

Device ID: Device ID attached to the port.

Device Owner: Device owner attached to the port.

Binding Host: The ID of the host where the port is allocated.

Binding VNIC Type: Select the VNIC type that is bound to the neutron port.

7. Click Create Port.

The new port is now displayed in the Ports list.

100 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

2.3.6 Create and manage object containers

OpenStack Object Storage (swift) is used for redundant, scalable data storage using clusters of standard-
ized servers to store petabytes of accessible data. It is a long-term storage system for large amounts of
static data which can be retrieved and updated.

OpenStack Object Storage provides a distributed, API-accessible storage platform that can be integrated
directly into an application or used to store any type of file, including VM images, backups, archives, or
media files. In the OpenStack dashboard, you can only manage containers and objects.

In OpenStack Object Storage, containers provide storage for objects in a manner similar to a Windows
folder or Linux file directory, though they cannot be nested. An object in OpenStack consists of the file
to be stored in the container and any accompanying metadata.

Create a container

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Object Store tab and click Containers category.

4. Click Container.

5. In the Create Container dialog box, enter a name for the container, and then click Create.

You have successfully created a container.

Note: To delete a container, click the More button and select Delete Container.

Upload an object

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Object Store tab and click Containers category.

4. Select the container in which you want to store your object.

5. Click the Upload File icon.

The Upload File To Container: <name> dialog box appears. <name> is the name of the container
to which you are uploading the object.

6. Enter a name for the object.

7. Browse to and select the file that you want to upload.

8. Click Upload File.

You have successfully uploaded an object to the container.

Note: To delete an object, click the More button and select Delete Object.

2.3. OpenStack Dashboard User Documentation 101

Horizon Documentation, Release 18.6.5.dev13

Manage an object

To edit an object

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Object Store tab and click Containers category.

4. Select the container in which you want to store your object.

5. Click the menu button and choose Edit from the dropdown list.

The Edit Object dialog box is displayed.

6. Browse to and select the file that you want to upload.

7. Click Update Object.

Note: To delete an object, click the menu button and select Delete Object.

To copy an object from one container to another

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Object Store tab and click Containers category.

4. Select the container in which you want to store your object.

5. Click the menu button and choose Copy from the dropdown list.

6. In the Copy Object launch dialog box, enter the following values:

• Destination Container: Choose the destination container from the list.

• Path: Specify a path in which the new copy should be stored inside of the selected container.

• Destination object name: Enter a name for the object in the new container.

7. Click Copy Object.

To create a metadata-only object without a file

You can create a new object in container without a file available and can upload the file later when it is
ready. This temporary object acts a place-holder for a new object, and enables the user to share object
metadata and URL info in advance.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Object Store tab and click Containers category.

4. Select the container in which you want to store your object.

5. Click Upload Object.

The Upload Object To Container: <name> dialog box is displayed.

<name> is the name of the container to which you are uploading the object.

102 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

6. Enter a name for the object.

7. Click Update Object.

To create a pseudo-folder

Pseudo-folders are similar to folders in your desktop operating system. They are virtual collections
defined by a common prefix on the objects name.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Object Store tab and click Containers category.

4. Select the container in which you want to store your object.

5. Click Create Pseudo-folder.

The Create Pseudo-Folder in Container <name> dialog box is displayed. <name> is the name
of the container to which you are uploading the object.

6. Enter a name for the pseudo-folder.

A slash (/) character is used as the delimiter for pseudo-folders in Object Storage.

7. Click Create.

2.3.7 Create and manage volumes

Volumes are block storage devices that you attach to instances to enable persistent storage. You can
attach a volume to a running instance or detach a volume and attach it to another instance at any time.
You can also create a snapshot from or delete a volume. Only administrative users can create volume
types.

Create a volume

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Volumes tab and click Volumes category.

4. Click Create Volume.

In the dialog box that opens, enter or select the following values.

Volume Name: Specify a name for the volume.

Description: Optionally, provide a brief description for the volume.

Volume Source: Select one of the following options:

• No source, empty volume: Creates an empty volume. An empty volume does not contain a
file system or a partition table.

• Snapshot: If you choose this option, a new field for Use snapshot as a source displays. You
can select the snapshot from the list.

• Image: If you choose this option, a new field for Use image as a source displays. You can
select the image from the list.

2.3. OpenStack Dashboard User Documentation 103

Horizon Documentation, Release 18.6.5.dev13

• Volume: If you choose this option, a new field for Use volume as a source displays. You can
select the volume from the list. Options to use a snapshot or a volume as the source for a
volume are displayed only if there are existing snapshots or volumes.

Type: Leave this field blank.

Size (GB): The size of the volume in gibibytes (GiB).

Availability Zone: Select the Availability Zone from the list. By default, this value is set to the
availability zone given by the cloud provider (for example, us-west or apac-south). For
some cases, it could be nova.

5. Click Create Volume.

The dashboard shows the volume on the Volumes tab.

Attach a volume to an instance

After you create one or more volumes, you can attach them to instances. You can attach a volume to one
instance at a time.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Volumes tab and click Volumes category.

4. Select the volume to add to an instance and click Manage Attachments.

5. In the Manage Volume Attachments dialog box, select an instance.

6. Enter the name of the device from which the volume is accessible by the instance.

Note: The actual device name might differ from the volume name because of hypervisor settings.

7. Click Attach Volume.

The dashboard shows the instance to which the volume is now attached and the device name.

You can view the status of a volume in the Volumes tab of the dashboard. The volume is either Available
or In-Use.

Now you can log in to the instance and mount, format, and use the disk.

Detach a volume from an instance

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Volumes tab and click the Volumes category.

4. Select the volume and click Manage Attachments.

5. Click Detach Volume and confirm your changes.

A message indicates whether the action was successful.

104 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Create a snapshot from a volume

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Volumes tab and click Volumes category.

4. Select a volume from which to create a snapshot.

5. In the Actions column, click Create Snapshot.

6. In the dialog box that opens, enter a snapshot name and a brief description.

7. Confirm your changes.

The dashboard shows the new volume snapshot in Volume Snapshots tab.

Edit a volume

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Volumes tab and click Volumes category.

4. Select the volume that you want to edit.

5. In the Actions column, click Edit Volume.

6. In the Edit Volume dialog box, update the name and description of the volume.

7. Click Edit Volume.

Note: You can extend a volume by using the Extend Volume option available in the More drop-
down list and entering the new value for volume size.

Delete a volume

When you delete an instance, the data in its attached volumes is not deleted.

1. Log in to the dashboard.

2. Select the appropriate project from the drop down menu at the top left.

3. On the Project tab, open the Volumes tab and click Volumes category.

4. Select the check boxes for the volumes that you want to delete.

5. Click Delete Volumes and confirm your choice.

A message indicates whether the action was successful.

2.3. OpenStack Dashboard User Documentation 105

Horizon Documentation, Release 18.6.5.dev13

2.3.8 Supported Browsers

Horizon is primarily tested and supported on the latest version of Firefox and the latest version of
Chrome. Issues related to IE, Safari and Opera will also be considered.

This page aims to informally document what that means for different releases, everyone is warmly
encouraged to update this page based on the versions theyve tested with.

Legend:

• Very good: Very well tested, should work as expected

• Good: Moderately tested, should look nice and work fine, maybe a few visual hiccups

• Poor: Doesnt look good

• Broken: Essential functionality not working (link to bug in the notes)

• No: Not supported

Status Notes
Firefox Very good
Chrome Very good
MS Edge Poor Therere some bugs but most of

features work
IE 11 Poor

Therere some bugs but most
of features work

IE 10 and below Not supported.
Safari Good
Opera ? Is should work good with We-

bkit

2.4 Administration Guide

The OpenStack Dashboard is a web-based interface that allows you to manage OpenStack resources
and services. The Dashboard allows you to interact with the OpenStack Compute cloud controller using
the OpenStack APIs. For more information about installing and configuring the Dashboard, see the
Installation Guide for your operating system.

2.4.1 Customize and configure the Dashboard

Once you have the Dashboard installed, you can customize the way it looks and feels to suit the needs
of your environment, your project, or your business.

You can also configure the Dashboard for a secure HTTPS deployment, or an HTTP deployment. The
standard OpenStack installation uses a non-encrypted HTTP channel, but you can enable SSL support
for the Dashboard.

For information on configuring HTTPS or HTTP, see Configure the Dashboard.

106 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Customize the Dashboard

The OpenStack Dashboard on Ubuntu installs the openstack-dashboard-ubuntu-theme pack-
age by default. If you do not want to use this theme, remove it and its dependencies:

apt-get remove --auto-remove openstack-dashboard-ubuntu-theme

Note: This guide focuses on the local_settings.py file.

The following Dashboard content can be customized to suit your needs:

• Logo

• Site colors

• HTML title

• Logo link

• Help URL

Logo and site colors

1. Create two PNG logo files with transparent backgrounds using the following sizes:

• Login screen: 365 x 50

• Logged in banner: 216 x 35

2. Upload your new images to /usr/share/openstack-dashboard/
openstack_dashboard/static/dashboard/img/.

3. Create a CSS style sheet in /usr/share/openstack-dashboard/
openstack_dashboard/static/dashboard/scss/.

4. Change the colors and image file names as appropriate. Ensure the relative directory paths are the
same. The following example file shows you how to customize your CSS file:

/*
* New theme colors for dashboard that override the defaults:

* dark blue: #355796 / rgb(53, 87, 150)

* light blue: #BAD3E1 / rgb(186, 211, 225)

*
* By Preston Lee <plee@tgen.org>

*/
h1.brand {
background: #355796 repeat-x top left;
border-bottom: 2px solid #BAD3E1;
}
h1.brand a {
background: url(../img/my_cloud_logo_small.png) top left no-repeat;
}
#splash .login {
background: #355796 url(../img/my_cloud_logo_medium.png) no-repeat
↪→center 35px;
}

(continues on next page)

2.4. Administration Guide 107

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

#splash .login .modal-header {
border-top: 1px solid #BAD3E1;
}
.btn-primary {
background-image: none !important;
background-color: #355796 !important;
border: none !important;
box-shadow: none;
}
.btn-primary:hover,
.btn-primary:active {
border: none;
box-shadow: none;
background-color: #BAD3E1 !important;
text-decoration: none;
}

5. Open the following HTML template in an editor of your choice:

/usr/share/openstack-dashboard/openstack_dashboard/templates/_
↪→stylesheets.html

6. Add a line to include your newly created style sheet. For example, custom.css file:

<link href='{{ STATIC_URL }}bootstrap/css/bootstrap.min.css' media=
↪→'screen' rel='stylesheet' />
<link href='{{ STATIC_URL }}dashboard/css/{% choose_css %}' media=
↪→'screen' rel='stylesheet' />
<link href='{{ STATIC_URL }}dashboard/css/custom.css' media='screen'
↪→rel='stylesheet' />

7. Restart the Apache service.

8. To view your changes, reload your Dashboard. If necessary, go back and modify your CSS file as
appropriate.

HTML title

1. Set the HTML title, which appears at the top of the browser window, by adding the following line
to local_settings.py:

SITE_BRANDING = "Example, Inc. Cloud"

2. Restart Apache for this change to take effect.

108 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Logo link

1. The logo also acts as a hyperlink. The default behavior is to redirect to horizon:user_home.
To change this, add the following attribute to local_settings.py:

SITE_BRANDING_LINK = "http://example.com"

2. Restart Apache for this change to take effect.

Help URL

1. By default, the help URL points to https://docs.openstack.org. To change this, edit the following
attribute in local_settings.py:

HORIZON_CONFIG["help_url"] = "http://openstack.mycompany.org"

2. Restart Apache for this change to take effect.

Configure the Dashboard

The following section on configuring the Dashboard for a secure HTTPS deployment, or a HTTP de-
ployment, uses concrete examples to ensure the procedure is clear. The file path varies by distribution,
however. If needed, you can also configure the VNC window size in the Dashboard.

Configure the Dashboard for HTTP

You can configure the Dashboard for a simple HTTP deployment. The standard installation uses a
non-encrypted HTTP channel.

1. Specify the host for your Identity service endpoint in the local_settings.py file with the
OPENSTACK_HOST setting.

The following example shows this setting:

import os

from django.utils.translation import ugettext_lazy as _

DEBUG = False
TEMPLATE_DEBUG = DEBUG
PROD = True

SITE_BRANDING = 'OpenStack Dashboard'

Ubuntu-specific: Enables an extra panel in the 'Settings' section
that easily generates a Juju environments.yaml for download,
preconfigured with endpoints and credentials required for bootstrap
and service deployment.
ENABLE_JUJU_PANEL = True

Note: You should change this value
SECRET_KEY = 'elj1IWiLoWHgryYxFT6j7cM5fGOOxWY0'

(continues on next page)

2.4. Administration Guide 109

https://docs.openstack.org

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

Specify a regular expression to validate user passwords.
HORIZON_CONFIG = {
"password_validator": {
"regex": '.*',
"help_text": _("Your password does not meet the
↪→requirements.")
}
}

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))

CACHES = {
'default': {

'BACKEND' : 'django.core.cache.backends.memcached.
↪→MemcachedCache',

'LOCATION' : '127.0.0.1:11211'
}

}

Send email to the console by default
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
Or send them to /dev/null
#EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'

Configure these for your outgoing email host
EMAIL_HOST = 'smtp.my-company.com'
EMAIL_PORT = 25
EMAIL_HOST_USER = 'djangomail'
EMAIL_HOST_PASSWORD = 'top-secret!'

For multiple regions uncomment this configuration, and add
↪→(endpoint, title).
AVAILABLE_REGIONS = [
('http://cluster1.example.com/identity/v3', 'cluster1'),
('http://cluster2.example.com/identity/v3', 'cluster2'),
]

OPENSTACK_HOST = "127.0.0.1"
OPENSTACK_KEYSTONE_URL = "http://%s/identity/v3" % OPENSTACK_HOST
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "Member"

The OPENSTACK_KEYSTONE_BACKEND settings can be used to identify the
capabilities of the auth backend for Keystone.
If Keystone has been configured to use LDAP as the auth backend
↪→then set
can_edit_user to False and name to 'ldap'.
#
TODO(tres): Remove these once Keystone has an API to identify auth
↪→backend.
OPENSTACK_KEYSTONE_BACKEND = {

'name': 'native',
'can_edit_user': True

}

OPENSTACK_ENDPOINT_TYPE specifies the endpoint type to use for the
↪→endpoints (continues on next page)

110 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

in the Keystone service catalog. Use this setting when Horizon is
↪→running
external to the OpenStack environment. The default is 'internalURL'.
#OPENSTACK_ENDPOINT_TYPE = "publicURL"

The number of Swift containers and objects to display on a single
↪→page before
providing a paging element (a "more" link) to paginate results.
API_RESULT_LIMIT = 1000

If you have external monitoring links, eg:
EXTERNAL_MONITORING = [
['Nagios','http://foo.com'],
['Ganglia','http://bar.com'],
]

LOGGING = {
'version': 1,
When set to True this will disable all logging except
for loggers specified in this configuration dictionary.

↪→Note that
if nothing is specified here and disable_existing_loggers

↪→is True,
django.db.backends will still log unless it is disabled

↪→explicitly.
'disable_existing_loggers': False,
'handlers': {

'null': {
'level': 'DEBUG',
'class': 'logging.NullHandler',
},

'console': {
Set the level to "DEBUG" for verbose output logging.
'level': 'INFO',
'class': 'logging.StreamHandler',
},

},
'loggers': {

Logging from django.db.backends is VERY verbose, send
↪→to null

by default.
'django.db.backends': {

'handlers': ['null'],
'propagate': False,
},

'horizon': {
'handlers': ['console'],
'propagate': False,

},
'novaclient': {

'handlers': ['console'],
'propagate': False,

},
'keystoneclient': {

'handlers': ['console'],
'propagate': False,

(continues on next page)

2.4. Administration Guide 111

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

}
}

}

The service catalog configuration in the Identity service determines whether a service appears in
the Dashboard. For the full listing, see Settings Reference.

2. Restart the Apache HTTP Server.

3. Restart memcached.

Configure the Dashboard for HTTPS

You can configure the Dashboard for a secured HTTPS deployment. While the standard installation uses
a non-encrypted HTTP channel, you can enable SSL support for the Dashboard.

This example uses the http://openstack.example.com domain. Use a domain that fits your
current setup.

1. In the local_settings.py file, update the following options:

CSRF_COOKIE_SECURE = True
SESSION_COOKIE_SECURE = True
SESSION_COOKIE_HTTPONLY = True

The other options require that HTTPS is enabled; these options defend against cross-site scripting.

2. Edit the openstack-dashboard.conf file as shown in the Example After:

Example Before

WSGIScriptAlias / /usr/share/openstack-dashboard/openstack_dashboard/
↪→wsgi.py
WSGIDaemonProcess horizon user=www-data group=www-data processes=3
↪→threads=10
Alias /static /usr/share/openstack-dashboard/openstack_dashboard/
↪→static/
<Location />
<ifVersion >=2.4>

Require all granted
</ifVersion>
<ifVersion <2.4>

Order allow,deny
Allow from all

</ifVersion>
</Location>

Example After

<VirtualHost *:80>
ServerName openstack.example.com
<IfModule mod_rewrite.c>

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI}

(continues on next page)

112 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

</IfModule>
<IfModule !mod_rewrite.c>

RedirectPermanent / https://openstack.example.com
</IfModule>

</VirtualHost>

<VirtualHost *:443>
ServerName openstack.example.com

SSLEngine On
Remember to replace certificates and keys with valid paths in

↪→your environment
SSLCertificateFile /etc/apache2/SSL/openstack.example.com.crt
SSLCACertificateFile /etc/apache2/SSL/openstack.example.com.crt
SSLCertificateKeyFile /etc/apache2/SSL/openstack.example.com.key
SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown

HTTP Strict Transport Security (HSTS) enforces that all
↪→communications
with a server go over SSL. This mitigates the threat from attacks

↪→such
as SSL-Strip which replaces links on the wire, stripping away

↪→https prefixes
and potentially allowing an attacker to view confidential

↪→information on the
wire
Header add Strict-Transport-Security "max-age=15768000"

WSGIScriptAlias / /usr/share/openstack-dashboard/openstack_
↪→dashboard/wsgi.py
WSGIDaemonProcess horizon user=www-data group=www-data processes=3

↪→threads=10
Alias /static /usr/share/openstack-dashboard/openstack_dashboard/

↪→static/
<Location />

Options None
AllowOverride None
For Apache http server 2.4 and later:
<ifVersion >=2.4>

Require all granted
</ifVersion>
For Apache http server 2.2 and earlier:
<ifVersion <2.4>

Order allow,deny
Allow from all

</ifVersion>
</Location>

</VirtualHost>

In this configuration, the Apache HTTP Server listens on port 443 and redirects all non-secure
requests to the HTTPS protocol. The secured section defines the private key, public key, and
certificate to use.

3. Restart the Apache HTTP Server.

4. Restart memcached.

2.4. Administration Guide 113

Horizon Documentation, Release 18.6.5.dev13

If you try to access the Dashboard through HTTP, the browser redirects you to the HTTPS page.

Note: Configuring the Dashboard for HTTPS also requires enabling SSL for the noVNC proxy
service. On the controller node, add the following additional options to the [DEFAULT] section
of the /etc/nova/nova.conf file:

[DEFAULT]
...
ssl_only = true
cert = /etc/apache2/SSL/openstack.example.com.crt
key = /etc/apache2/SSL/openstack.example.com.key

On the compute nodes, ensure the nonvncproxy_base_url option points to a URL with an
HTTPS scheme:

[DEFAULT]
...
novncproxy_base_url = https://controller:6080/vnc_auto.html

2.4.2 Set up session storage for the Dashboard

The Dashboard uses Django sessions framework to handle user session data. However, you can use any
available session back end. You customize the session back end through the SESSION_ENGINE setting
in your local_settings.py file.

After architecting and implementing the core OpenStack services and other required services, combined
with the Dashboard service steps below, users and administrators can use the OpenStack dashboard.
Refer to the OpenStack User Documentation chapter of the OpenStack End User Guide for further
instructions on logging in to the Dashboard.

The following sections describe the pros and cons of each option as it pertains to deploying the Dash-
board.

Local memory cache

Local memory storage is the quickest and easiest session back end to set up, as it has no external depen-
dencies whatsoever. It has the following significant drawbacks:

• No shared storage across processes or workers.

• No persistence after a process terminates.

The local memory back end is enabled as the default for Horizon solely because it has no dependencies.
It is not recommended for production use, or even for serious development work.

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {

'default' : {
'BACKEND': 'django.core.cache.backends.locmem.LocMemCache'

}
}

114 Chapter 2. Using Horizon

https://docs.djangoproject.com/en/dev/topics/http/sessions/

Horizon Documentation, Release 18.6.5.dev13

You can use applications such as Memcached or Redis for external caching. These applications offer
persistence and shared storage and are useful for small-scale deployments and development.

Memcached

Memcached is a high-performance and distributed memory object caching system providing in-memory
key-value store for small chunks of arbitrary data.

Requirements:

• Memcached service running and accessible.

• Python module python-memcached installed.

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {

'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': 'my_memcached_host:11211',

}
}

Redis

Redis is an open source, BSD licensed, advanced key-value store. It is often referred to as a data structure
server.

Requirements:

• Redis service running and accessible.

• Python modules redis and django-redis installed.

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {

"default": {
"BACKEND": "redis_cache.cache.RedisCache",
"LOCATION": "127.0.0.1:6379:1",
"OPTIONS": {

"CLIENT_CLASS": "redis_cache.client.DefaultClient",
}

}
}

Initialize and configure the database

Database-backed sessions are scalable, persistent, and can be made high-concurrency and highly avail-
able.

However, database-backed sessions are one of the slower session storages and incur a high overhead un-
der heavy usage. Proper configuration of your database deployment can also be a substantial undertaking
and is far beyond the scope of this documentation.

1. Start the MySQL command-line client.

2.4. Administration Guide 115

Horizon Documentation, Release 18.6.5.dev13

mysql

2. Enter the MySQL root users password when prompted.

3. To configure the MySQL database, create the dash database.

mysql> CREATE DATABASE dash;

4. Create a MySQL user for the newly created dash database that has full control of the database.
Replace DASH_DBPASS with a password for the new user.

mysql> GRANT ALL PRIVILEGES ON dash.* TO 'dash'@'%' IDENTIFIED BY
↪→'DASH_DBPASS';
mysql> GRANT ALL PRIVILEGES ON dash.* TO 'dash'@'localhost'
↪→IDENTIFIED BY 'DASH_DBPASS';

5. Enter quit at the mysql> prompt to exit MySQL.

6. In the local_settings.py file, change these options:

SESSION_ENGINE = 'django.contrib.sessions.backends.db'
DATABASES = {

'default': {
Database configuration here
'ENGINE': 'django.db.backends.mysql',
'NAME': 'dash',
'USER': 'dash',
'PASSWORD': 'DASH_DBPASS',
'HOST': 'localhost',
'default-character-set': 'utf8'

}
}

7. After configuring the local_settings.py file as shown, you can run the manage.py
migrate command to populate this newly created database.

/usr/share/openstack-dashboard/manage.py migrate

8. To avoid a warning when you restart Apache on Ubuntu, create a blackhole directory in the
Dashboard directory, as follows.

mkdir -p /var/lib/dash/.blackhole

9. Restart the Apache service.

10. On Ubuntu, restart the nova-api service to ensure that the API server can connect to the Dash-
board without error.

service nova-api restart

116 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Cached database

To mitigate the performance issues of database queries, you can use the Django cached_db session
back end, which utilizes both your database and caching infrastructure to perform write-through caching
and efficient retrieval.

Enable this hybrid setting by configuring both your database and cache, as discussed previously. Then,
set the following value:

SESSION_ENGINE = "django.contrib.sessions.backends.cached_db"

Cookies

If you use Django 1.4 or later, the signed_cookies back end avoids server load and scaling prob-
lems.

This back end stores session data in a cookie, which is stored by the users browser. The back end uses
a cryptographic signing technique to ensure session data is not tampered with during transport. This is
not the same as encryption; session data is still readable by an attacker.

The pros of this engine are that it requires no additional dependencies or infrastructure overhead, and it
scales indefinitely as long as the quantity of session data being stored fits into a normal cookie.

The biggest downside is that it places session data into storage on the users machine and transports it
over the wire. It also limits the quantity of session data that can be stored.

See the Django cookie-based sessions documentation.

2.4.3 Create and manage images

As an administrative user, you can create and manage images for the projects to which you belong. You
can also create and manage images for users in all projects to which you have access.

To create and manage images in specified projects as an end user, see the upload and manage images
with Dashboard in OpenStack End User Guide and manage images with CLI in OpenStack End User
Guide.

To create and manage images as an administrator for other users, use the following procedures.

Create images

For details about image creation, see the Virtual Machine Image Guide.

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Compute tab and click the Images category. The images that you can
administer for cloud users appear on this page.

3. Click Create Image, which opens the Create An Image window.

4. In the Create An Image window, enter or select the following values:

2.4. Administration Guide 117

https://docs.djangoproject.com/en/dev/topics/http/sessions/#using-cookie-based-sessions
https://docs.openstack.org/glance/latest/admin/manage-images.html
https://docs.openstack.org/glance/latest/admin/manage-images.html
https://docs.openstack.org/image-guide/

Horizon Documentation, Release 18.6.5.dev13

Fig. 6: FigureăDashboard Create Image

118 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Name Enter a name for the image.
Description Enter a brief description of the image.
Image Source Choose the image source from the dropdown list. Your choices are Image

Location and Image File.
Image File or
Image Loca-
tion

Based on your selection, there is an Image File or Image Location field. You
can include the location URL or browse for the image file on your file system
and add it.

Format Select the image format.
Architecture Specify the architecture. For example, i386 for a 32-bit architecture or

x86_64 for a 64-bit architecture.
Minimum
Disk (GB)

Leave this field empty.

Minimum
RAM (MB)

Leave this field empty.

Copy Data Specify this option to copy image data to the Image service.
Public Select this option to make the image public to all users.
Protected Select this option to ensure that only users with permissions can delete it.

5. Click Create Image.

The image is queued to be uploaded. It might take several minutes before the status changes from
Queued to Active.

Update images

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Compute tab and click the Images category.

3. Select the images that you want to edit. Click Edit Image.

4. In the Edit Image window, you can change the image name.

Select the Public check box to make the image public. Clear this check box to make the image
private. You cannot change the Kernel ID, Ramdisk ID, or Architecture attributes for an image.

5. Click Edit Image.

Delete images

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Compute tab and click the Images category.

3. Select the images that you want to delete.

4. Click Delete Images.

5. In the Confirm Delete Images window, click Delete Images to confirm the deletion.

You cannot undo this action.

2.4. Administration Guide 119

Horizon Documentation, Release 18.6.5.dev13

2.4.4 Create and manage roles

A role is a personality that a user assumes to perform a specific set of operations. A role includes a set
of rights and privileges. A user assumes that role inherits those rights and privileges.

Note: OpenStack Identity service defines a users role on a project, but it is completely up to the
individual service to define what that role means. This is referred to as the services policy. To get details
about what the privileges for each role are, refer to the policy.json file available for each service
in the /etc/SERVICE/policy.json file. For example, the policy defined for OpenStack Identity
service is defined in the /etc/keystone/policy.json file.

Create a role

1. Log in to the dashboard and select the admin project from the drop-down list.

2. On the Identity tab, click the Roles category.

3. Click the Create Role button.

In the Create Role window, enter a name for the role.

4. Click the Create Role button to confirm your changes.

Edit a role

1. Log in to the dashboard and select the Identity project from the drop-down list.

2. On the Identity tab, click the Roles category.

3. Click the Edit button.

In the Update Role window, enter a new name for the role.

4. Click the Update Role button to confirm your changes.

Note: Using the dashboard, you can edit only the name assigned to a role.

Delete a role

1. Log in to the dashboard and select the Identity project from the drop-down list.

2. On the Identity tab, click the Roles category.

3. Select the role you want to delete and click the Delete Roles button.

4. In the Confirm Delete Roles window, click Delete Roles to confirm the deletion.

You cannot undo this action.

120 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

2.4.5 Manage projects and users

OpenStack administrators can create projects, and create accounts for new users using the OpenStack
Dasboard. Projects own specific resources in your OpenStack environment. You can associate users
with roles, projects, or both.

Add a new project

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Projects.

3. Select the Create Project push button. The Create Project window will open.

4. Enter the Project name and description. Leave the Domain ID field set at default.

5. Click Create Project.

Note: Your new project will appear in the list of projects displayed under the Projects page of the
dashboard. Projects are listed in alphabetical order, and you can check on the Project ID, Domain
name, and status of the project in this section.

Delete a project

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Projects.

3. Select the checkbox to the left of the project you would like to delete.

4. Click on the Delete Projects push button.

Update a project

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Projects.

3. Locate the project you wish to update, and under the Actions column click on the drop down arrow
next to the Manage Members push button. The Update Project window will open.

4. Update the name of the project, enable the project, or disable the project as needed.

2.4. Administration Guide 121

Horizon Documentation, Release 18.6.5.dev13

Add a new user

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Users.

3. Click Create User.

4. Enter a Domain Name, the Username, and a password for the new user. Enter an email for the
new user, and specify which Primary Project they belong to. Leave the Domain ID field set at
default. You can also enter a decription for the new user.

5. Click the Create User push button.

Note: The new user will then appear in the list of projects displayed under the Users page of the
dashboard. You can check on the User Name, User ID, Domain name, and the User status in this
section.

Delete a new user

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Users.

3. Select the checkbox to the left of the user you would like to delete.

4. Click on the Delete Users push button.

Update a user

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Users.

3. Locate the User you would like to update, and select the Edit push button under the Actions
column.

4. Adjust the Domain Name, User Name, Description, Email, and Primary Project.

Enable or disable a user

1. Log into the OpenStack Dashboard as the Admin user.

2. Click on the Identity label on the left column, and click Users.

3. Locate the User you would like to update, and select the arrow to the right of the Edit push button.
This will open a drop down menu.

4. Select Disable User.

Note: To reactivate a disabled user, select Enable User under the drop down menu.

122 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

2.4.6 Manage instances

As an administrative user, you can manage instances for users in various projects. You can view, termi-
nate, edit, perform a soft or hard reboot, create a snapshot from, and migrate instances. You can also
view the logs for instances or launch a VNC console for an instance.

For information about using the Dashboard to launch instances as an end user, see the OpenStack End
User Guide.

Create instance snapshots

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Compute tab and click the Instances category.

3. Select an instance to create a snapshot from it. From the Actions drop-down list, select Create
Snapshot.

4. In the Create Snapshot window, enter a name for the snapshot.

5. Click Create Snapshot. The Dashboard shows the instance snapshot in the Images category.

6. To launch an instance from the snapshot, select the snapshot and click Launch. For information
about launching instances, see the OpenStack End User Guide.

Control the state of an instance

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Compute tab and click the Instances category.

3. Select the instance for which you want to change the state.

4. From the drop-down list in the Actions column, select the state.

Depending on the current state of the instance, you can perform various actions on the instance.
For example, pause, un-pause, suspend, resume, soft or hard reboot, or terminate (actions in red
are dangerous).

Fig. 7: FigureăDashboard Instance Actions

2.4. Administration Guide 123

Horizon Documentation, Release 18.6.5.dev13

Track usage

Use the Overview category to track usage of instances for each project.

You can track costs per month by showing meters like number of VCPUs, disks, RAM, and uptime of
all your instances.

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, click the Overview category.

3. Select a month and click Submit to query the instance usage for that month.

4. Click Download CSV Summary to download a CSV summary.

2.4.7 Manage flavors

In OpenStack, a flavor defines the compute, memory, and storage capacity of a virtual server, also known
as an instance. As an administrative user, you can create, edit, and delete flavors.

As of Newton, there are no default flavors. The following table lists the default flavors for Mitaka and
earlier.

Flavor VCPUs Disk (in GB) RAM (in MB)
m1.tiny 1 1 512
m1.small 1 20 2048
m1.medium 2 40 4096
m1.large 4 80 8192
m1.xlarge 8 160 16384

Create flavors

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. In the Admin tab, open the Compute tab and click the Flavors category.

3. Click Create Flavor.

4. In the Create Flavor window, enter or select the parameters for the flavor in the Flavor Information
tab.

124 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Fig. 8: Dashboard Create Flavor

2.4. Administration Guide 125

Horizon Documentation, Release 18.6.5.dev13

Name Enter the flavor name.
ID Unique ID (integer or UUID) for the new flavor. If specifying auto, a UUID will be

automatically generated.
VC-
PUs

Enter the number of virtual CPUs to use.

RAM
(MB)

Enter the amount of RAM to use, in megabytes.

Root
Disk
(GB)

Enter the amount of disk space in gigabytes to use for the root (/) partition.

Ephemeral
Disk
(GB)

Enter the amount of disk space in gigabytes to use for the ephemeral partition. If
unspecified, the value is 0 by default.
Ephemeral disks offer machine local disk storage linked to the lifecycle of a VM
instance. When a VM is terminated, all data on the ephemeral disk is lost. Ephemeral
disks are not included in any snapshots.

Swap
Disk
(MB)

Enter the amount of swap space (in megabytes) to use. If unspecified, the default is 0.

RX/TX
Fac-
tor

Optional property allows servers with a different bandwidth to be created with the
RX/TX Factor. The default value is 1. That is, the new bandwidth is the same as that
of the attached network.

5. In the Flavor Access tab, you can control access to the flavor by moving projects from the All
Projects column to the Selected Projects column.

Only projects in the Selected Projects column can use the flavor. If there are no projects in the
right column, all projects can use the flavor.

6. Click Create Flavor.

Update flavors

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. In the Admin tab, open the Compute tab and click the Flavors category.

3. Select the flavor that you want to edit. Click Edit Flavor.

4. In the Edit Flavor window, you can change the flavor name, VCPUs, RAM, root disk, ephemeral
disk, and swap disk values.

5. Click Save.

126 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Update Metadata

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. In the Admin tab, open the Compute tab and click the Flavors category.

3. Select the flavor that you want to update. In the drop-down list, click Update Metadata or click
No or Yes in the Metadata column.

4. In the Update Flavor Metadata window, you can customize some metadata keys, then add it to
this flavor and set them values.

5. Click Save.

Optional metadata keys

CPU limits quota:cpu_shares
quota:cpu_period
quota:cpu_limit
quota:cpu_reservation
quota:cpu_quota

Disk tuning quota:disk_read_bytes_sec
quota:disk_read_iops_sec
quota:disk_write_bytes_sec
quota:disk_write_iops_sec
quota:disk_total_bytes_sec
quota:disk_total_iops_sec

Bandwidth I/O quota:vif_inbound_average
quota:vif_inbound_burst
quota:vif_inbound_peak
quota:vif_outbound_average
quota:vif_outbound_burst
quota:vif_outbound_peak

Watchdog behavior hw:watchdog_action
Random-number generator hw_rng:allowed

hw_rng:rate_bytes
hw_rng:rate_period

For information about supporting metadata keys, see the the Compute service documentation.

Delete flavors

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. In the Admin tab, open the Compute tab and click the Flavors category.

3. Select the flavors that you want to delete.

4. Click Delete Flavors.

5. In the Confirm Delete Flavors window, click Delete Flavors to confirm the deletion. You cannot
undo this action.

2.4. Administration Guide 127

Horizon Documentation, Release 18.6.5.dev13

2.4.8 Manage volumes and volume types

Volumes are the Block Storage devices that you attach to instances to enable persistent storage. Users
can attach a volume to a running instance or detach a volume and attach it to another instance at any
time. For information about using the dashboard to create and manage volumes as an end user, see the
OpenStack End User Guide.

As an administrative user, you can manage volumes and volume types for users in various projects. You
can create and delete volume types, and you can view and delete volumes. Note that a volume can be
encrypted by using the steps outlined below.

Create a volume type

1. Log in to the dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Volume tab.

3. Click the Volume Types tab, and click Create Volume Type button. In the Create Volume Type
window, enter a name for the volume type.

4. Click Create Volume Type button to confirm your changes.

Note: A message indicates whether the action succeeded.

Create an encrypted volume type

1. Create a volume type using the steps above for Create a volume type.

2. Click Create Encryption in the Actions column of the newly created volume type.

3. Configure the encrypted volume by setting the parameters below from available options (see ta-
ble):

Provider Specifies the encryption provider format.

Control Location Specifies whether the encryption is from the front end (nova) or the back end
(cinder).

Cipher Specifies the encryption algorithm.

Key Size (bits) Specifies the encryption key size.

4. Click Create Volume Type Encryption.

The table below provides a few alternatives available for creating encrypted volumes.

128 Chapter 2. Using Horizon

Horizon Documentation, Release 18.6.5.dev13

Fig. 9: Encryption Options

2.4. Administration Guide 129

Horizon Documentation, Release 18.6.5.dev13

En-
cryp-
tion
pa-
rame-
ters

Parameter
options

Comments

Provider luks (Recom-
mended)

Allows easier import and migration of imported encrypted volumes,
and allows access key to be changed without re-encrypting the volume

plain Less disk overhead than LUKS
Control
Loca-
tion

front-end (Rec-
ommended)

The encryption occurs within nova so that the data transmitted over
the network is encrypted

back-end This could be selected if a cinder plug-in supporting an encrypted
back-end block storage device becomes available in the future. TLS
or other network encryption would also be needed to protect data as it
traverses the network

Cipher aes-xts-plain64
(Recommended)

See NIST reference below to see advantages*

aes-cbc-essiv Note: On the command line, type cryptsetup benchmark for additional
options

Key
Size
(bits)

256 (Recom-
mended for aes-
xts-plain64 and
aes-cbc-essiv)

Using this selection for aes-xts, the underlying key size would only
be 128-bits*

* Source NIST SP 800-38E

Note: To see further information and CLI instructions, see Create an encrypted volume type in the
OpenStack Block Storage Configuration Guide.

Delete volume types

When you delete a volume type, volumes of that type are not deleted.

1. Log in to the dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Volume tab.

3. Click the Volume Types tab, select the volume type or types that you want to delete.

4. Click Delete Volume Types button.

5. In the Confirm Delete Volume Types window, click the Delete Volume Types button to confirm the
action.

Note: A message indicates whether the action succeeded.

130 Chapter 2. Using Horizon

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-encryption.html#create-an-encrypted-volume-type

Horizon Documentation, Release 18.6.5.dev13

Delete volumes

When you delete an instance, the data of its attached volumes is not destroyed.

1. Log in to the dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Volume tab.

3. Click the Volumes tab, Select the volume or volumes that you want to delete.

4. Click Delete Volumes button.

5. In the Confirm Delete Volumes window, click the Delete Volumes button to confirm the action.

Note: A message indicates whether the action succeeded.

2.4.9 View and manage quotas

To prevent system capacities from being exhausted without notification, you can set up quotas. Quotas
are operational limits. For example, the number of gigabytes allowed for each project can be controlled
so that cloud resources are optimized. Quotas can be enforced at both the project and the project-user
level.

Typically, you change quotas when a project needs more than ten volumes or 1ăTB on a compute node.

Using the Dashboard, you can view default Compute and Block Storage quotas for new projects, as well
as update quotas for existing projects.

Note: Using the command-line interface, you can manage quotas for the OpenStack Compute service,
the OpenStack Block Storage service, and the OpenStack Networking service (For CLI details, see
OpenStackClient CLI reference). Additionally, you can update Compute service quotas for project
users.

The following table describes the Compute and Block Storage service quotas:

Quota Descriptions

Quota Name Defines the number of Service
Gigabytes Volume gigabytes allowed for each project. Block Storage
Instances Instances allowed for each project. Compute
Injected Files Injected files allowed for each project. Compute
Injected File Content Bytes Content bytes allowed for each injected file. Compute
Keypairs Number of keypairs. Compute
Metadata Items Metadata items allowed for each instance. Compute
RAM (MB) RAM megabytes allowed for each instance. Compute
Security Groups Security groups allowed for each project. Compute
Security Group Rules Security group rules allowed for each project. Compute
Snapshots Volume snapshots allowed for each project. Block Storage
VCPUs Instance cores allowed for each project. Compute
Volumes Volumes allowed for each project. Block Storage

2.4. Administration Guide 131

https://docs.openstack.org/nova/latest/admin/quotas.html
https://docs.openstack.org/cinder/latest/cli/cli-set-quotas.html
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/quota.html

Horizon Documentation, Release 18.6.5.dev13

View default project quotas

1. Log in to the dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the System tab and click the Defaults category.

3. The default quota values are displayed.

Note: You can sort the table by clicking on either the Quota Name or Limit column headers.

Update project quotas

1. Log in to the dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the System tab and click the Defaults category.

3. Click the Update Defaults button.

4. In the Update Default Quotas window, you can edit the default quota values.

5. Click the Update Defaults button.

Note: The dashboard does not show all possible project quotas. To view and update the quotas for a
service, use its command-line client. See OpenStack Administrator Guide.

2.4.10 View services information

As an administrative user, you can view information for OpenStack services.

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the System tab and click the System Information category.

View the following information on these tabs:

• Services: Displays the internal name and the public OpenStack name for each service, the
host on which the service runs, and whether or not the service is enabled.

• Compute Services: Displays information specific to the Compute service. Both host and
zone are listed for each service, as well as its activation status.

• Block Storage Services: Displays information specific to the Block Storage service. Both
host and zone are listed for each service, as well as its activation status.

• Network Agents: Displays the network agents active within the cluster, such as L3 and DHCP
agents, and the status of each agent.

132 Chapter 2. Using Horizon

https://docs.openstack.org/admin-guide/cli-set-quotas.html

Horizon Documentation, Release 18.6.5.dev13

2.4.11 Create and manage host aggregates

Host aggregates enable administrative users to assign key-value pairs to groups of machines.

Each node can have multiple aggregates and each aggregate can have multiple key-value pairs. You can
assign the same key-value pair to multiple aggregates.

The scheduler uses this information to make scheduling decisions. For information, see Scheduling.

To create a host aggregate

1. Log in to the Dashboard and select the admin project from the drop-down list.

2. On the Admin tab, open the Compute tab and click the Host Aggregates category.

3. Click Create Host Aggregate.

4. In the Create Host Aggregate dialog box, enter or select the following values on the Host Aggre-
gate Information tab:

• Name: The host aggregate name.

• Availability Zone: The cloud provider defines the default availability zone, such as
us-west, apac-south, or nova. You can target the host aggregate, as follows:

– When the host aggregate is exposed as an availability zone, select the availability zone
when you launch an instance.

– When the host aggregate is not exposed as an availability zone, select a flavor and its
extra specs to target the host aggregate.

5. Assign hosts to the aggregate using the Manage Hosts within Aggregate tab in the same dialog
box.

To assign a host to the aggregate, click + for the host. The host moves from the All available hosts
list to the Selected hosts list.

You can add one host to one or more aggregates. To add a host to an existing aggregate, edit the
aggregate.

To manage host aggregates

1. Select the admin project from the drop-down list at the top of the page.

2. On the Admin tab, open the Compute tab and click the Host Aggregates category.

• To edit host aggregates, select the host aggregate that you want to edit. Click Edit Host
Aggregate.

In the Edit Host Aggregate dialog box, you can change the name and availability zone for
the aggregate.

• To manage hosts, locate the host aggregate that you want to edit in the table. Click More and
select Manage Hosts.

In the Add/Remove Hosts to Aggregate dialog box, click + to assign a host to an aggregate.
Click - to remove a host that is assigned to an aggregate.

2.4. Administration Guide 133

https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html

Horizon Documentation, Release 18.6.5.dev13

• To delete host aggregates, locate the host aggregate that you want to edit in the table. Click
More and select Delete Host Aggregate.

• To deploy the dashboard, see the Installation Guide.

• To launch instances with the dashboard as an end user, see the Launch and manage instances in
the OpenStack End User Guide.

• To create and manage ports, see the Create and manage networks section of the OpenStack End
User Guide.

134 Chapter 2. Using Horizon

CHAPTER

THREE

CONTRIBUTOR DOCS

For those wishing to develop Horizon itself, or go in-depth with building your own Dashboard or
Panel classes, the following documentation is provided.

3.1 Contributor Documentation

3.1.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with horizon.

Project Resources

• Source code: https://opendev.org/openstack/horizon

• Documentation: https://docs.openstack.org/horizon/latest/

• Project page: https://launchpad.net/horizon

• Bug tracker: https://bugs.launchpad.net/horizon

• Code review: https://review.opendev.org/#/q/project:openstack/horizon+status:open

Communication

• IRC channel: #openstack-horizon at OFTC

Most active contributors are online at IRC while they are active, so it would be the easiest way to
contact the team directly. Note that all IRC conversations are stored here.

• Mailing list: openstack-discuss with [horizon] tag.

The mailing list would be a good place if you would like to discuss your topic with the OpenStack
community more broadly. Most OpenStack users, operators and developers subscribe it and you
can get useful feedbacks from various perspectives.

• Team meeting:

The horizon team has a weekly meeting which covers all things related to the horizon project like
announcements, project priorities, community goals, bugs and so on.

135

https://docs.openstack.org/contributors/
https://opendev.org/openstack/horizon
https://docs.openstack.org/horizon/latest/
https://launchpad.net/horizon
https://bugs.launchpad.net/horizon
https://review.opendev.org/#/q/project:openstack/horizon+status:open
http://eavesdrop.openstack.org/irclogs/%23openstack-horizon/
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Horizon Documentation, Release 18.6.5.dev13

There is the On Demand Agenda section at the end of the meeting, where anyone can add a topic
to discuss with the team. It is suggested to add such topic to the On-Demand agenda in the Weekly
meeting in horizon release priority etherpad.

– Time: http://eavesdrop.openstack.org/#Horizon_Team_Meeting

– Agenda: https://wiki.openstack.org/wiki/Meetings/Horizon

Contacting the Core Team

The list of the current core reviewers is found at gerrit.

Most core reviewers are online in the IRC channel and you can contact them there.

New Feature Planning

If you would like to add a new feature to horizon, file a blueprint to https://blueprints.launchpad.net/
horizon. You can find a template for a blueprint at https://blueprints.launchpad.net/horizon/+spec/
template. The template is not a strict requirement but it would be nice to cover a motivation and an
approach of your blueprint. From the nature of GUI, a discussion on UI design during a patch review
could be more productive, so there is no need to explain the detail of UI design in your blueprint pro-
posal.

We dont have a specific deadline during a development cycle. You can propose a feature any time. Only
thing you keep in your mind is that we do not merge features during the feature freeze period after the
milestone 3 in each cycle.

There are a number of unsupported OpenStack features in horizon. Implementing such would be appre-
ciated even if it is small.

Task Tracking

We track our tasks in Launchpad.

If youre looking for some smaller, please look through the list of bugs and find what you think you
can work on. If you are not sure the status of a bug feel free to ask to the horizon team. We can help
you. Note that we recently do not maintain low-hanging-fruit tag and some of them with this tag are not
simple enough.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad.

Please file a bug first even if you already have a fix for it. If you can reproduce the bug reliably and
identify its cause then its usually safe to start working on it. However, getting independent confirmation
(and verifying that its not a duplicate) is always a good idea if you can be patient.

136 Chapter 3. Contributor Docs

https://etherpad.opendev.org/p/horizon-release-priorities
http://eavesdrop.openstack.org/#Horizon_Team_Meeting
https://wiki.openstack.org/wiki/Meetings/Horizon
https://review.opendev.org/#/admin/groups/43,members
https://blueprints.launchpad.net/horizon
https://blueprints.launchpad.net/horizon
https://blueprints.launchpad.net/horizon/+spec/template
https://blueprints.launchpad.net/horizon/+spec/template
https://bugs.launchpad.net/horizon
https://bugs.launchpad.net/horizon

Horizon Documentation, Release 18.6.5.dev13

Getting Your Patch Merged

All changes proposed to horizon require two +2 votes from the horizon core reviewers before one of the
core reviewers can approve a change by giving Workflow +1 vote.

In general, all changes should be proposed along with at least unit test coverage (python or JavaScript).
Integration test support would be appreciated.

More detailed guidelines for reviewers of patches are available at OpenDev Developers Guide.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

The horizon PTL is expected to coordinate and encourage the core reviewer team and contributors for
the success. The expectations for the core reviewer team is documented at Core Reviewer Team and the
PTL would play an important role in this.

Etiquette

The communitys guidelines for etiquette are fairly simple:

• Treat everyone respectfully and professionally.

• If a bug is in progress in the bug tracker, dont start working on it without contacting the author. Try
on IRC, or via the launchpad email contact link. If you dont get a response after a reasonable time,
then go ahead. Checking first avoids duplicate work and makes sure nobodys toes get stepped on.

• If a blueprint is assigned, even if it hasnt been started, be sure you contact the assignee before
taking it on. These larger issues often have a history of discussion or specific implementation
details that the assignee may be aware of that you are not.

• Please dont re-open tickets closed by a core developer. If you disagree with the decision on the
ticket, the appropriate solution is to take it up on IRC or the mailing list.

• Give credit where credit is due; if someone helps you substantially with a piece of code, its polite
(though not required) to thank them in your commit message.

3.1.2 Horizon Basics

Values

Think simple as my old master used to say - meaning reduce the whole of its parts into the
simplest terms, getting back to first principles.

—Frank Lloyd Wright

Horizon holds several key values at the core of its design and architecture:

• Core Support: Out-of-the-box support for all core OpenStack projects.

• Extensible: Anyone can add a new component as a first-class citizen.

• Manageable: The core codebase should be simple and easy-to-navigate.

• Consistent: Visual and interaction paradigms are maintained throughout.

3.1. Contributor Documentation 137

https://docs.opendev.org/opendev/infra-manual/latest/developers.html#code-review
https://docs.openstack.org/project-team-guide/ptl.html

Horizon Documentation, Release 18.6.5.dev13

• Stable: A reliable API with an emphasis on backwards-compatibility.

• Usable: Providing an awesome interface that people want to use.

The only way to attain and uphold those ideals is to make it easy for developers to implement those
values.

History

Horizon started life as a single app to manage OpenStacks compute project. As such, all it needed was
a set of views, templates, and API calls.

From there it grew to support multiple OpenStack projects and APIs gradually, arranged rigidly into
dash and syspanel groupings.

During the Diablo release cycle an initial plugin system was added using signals to hook in additional
URL patterns and add links into the dash and syspanel navigation.

This incremental growth served the goal of Core Support phenomenally, but left Extensible and Manage-
able behind. And while the other key values took shape of their own accord, it was time to re-architect
for an extensible, modular future.

The Current Architecture & How It Meets Our Values

At its core, Horizon should be a registration pattern for applications to hook into. Heres what that
means and how it is implemented in terms of our values:

Core Support

Horizon ships with three central dashboards, a User Dashboard, a System Dashboard, and a Settings
dashboard. Between these three they cover the core OpenStack applications and deliver on Core Support.

The Horizon application also ships with a set of API abstractions for the core OpenStack projects in
order to provide a consistent, stable set of reusable methods for developers. Using these abstractions,
developers working on Horizon dont need to be intimately familiar with the APIs of each OpenStack
project.

Extensible

A Horizon dashboard application is based around the Dashboard class that provides a consistent API
and set of capabilities for both core OpenStack dashboard apps shipped with Horizon and equally for
third-party apps. The Dashboard class is treated as a top-level navigation item.

Should a developer wish to provide functionality within an existing dashboard (e.g. adding a monitoring
panel to the user dashboard) the simple registration pattern makes it possible to write an app which
hooks into other dashboards just as easily as creating a new dashboard. All you have to do is import the
dashboard you wish to modify.

138 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Manageable

Within the application, there is a simple method for registering a Panel (sub-navigation items). Each
panel contains the necessary logic (views, forms, tests, etc.) for that interface. This granular breakdown
prevents files (such as api.py) from becoming thousands of lines long and makes code easy to find by
correlating it directly to the navigation.

Consistent

By providing the necessary core classes to build from, as well as a solid set of reusable templates and
additional tools (base form classes, base widget classes, template tags, and perhaps even class-based
views) we can maintain consistency across applications.

Stable

By architecting around these core classes and reusable components we create an implicit contract that
changes to these components will be made in the most backwards-compatible ways whenever possible.

Usable

Ultimately thats up to each and every developer that touches the code, but if we get all the other goals
out of the way then we are free to focus on the best possible experience.

See also:

• Quickstart A short guide to getting started with using Horizon.

• Frequently Asked Questions Common questions and answers.

• Glossary Common terms and their definitions.

3.1.3 Project Policies

This page collects basic policies on horizon development.

Supported Software

Back-end service support

• N release of horizon supports N and N-1 releases of back-end OpenStack services (like nova, cin-
der, neutron and so on). This allows operators to upgrade horizon separately from other OpenStack
services.

• Horizon should check features in back-end services through APIs as much as possible by using
micro-versioning for nova, cinder and so on and API extensions for neutron (and others if any).

• Related to the previous item, features available in N-4 releases (which means the recent four
releases including the development version) are assumed without checking the availability of fea-
tures to simplify the implementation.

3.1. Contributor Documentation 139

Horizon Documentation, Release 18.6.5.dev13

• Removals and deprecations of back-end feature supports basically follows the standard depreca-
tion policy defined by the technical committee, but there are some notes. Deprecations in back-end
services are applied to corresponding horizon features automatically and it is allowed to drop some
feature from horizon without an explicit deprecation.

Django support

• Horizon usually syncs with Djangos Roadmap and supports LTS (long term support) versions of
Django as of the feature freeze of each OpenStack release. Supports for other maintained Django
versions are optional and best-effort.

Core Reviewer Team

The horizon core reviewer team is responsible for many aspects of the horizon project. These include,
but are not limited to:

• Mentor community contributors in solution design, testing, and the review process

• Actively reviewing patch submissions, considering whether the patch: - is functional - fits use
cases and vision of the project - is complete in terms of testing, documentation, and release notes
- takes into consideration upgrade concerns from previous versions

• Assist in bug triage and delivery of bug fixes

• Curating the gate and triaging failures

• Maintaining accurate, complete, and relevant documentation

• Ensuring the level of testing is adequate and remains relevant as features are added

• Answering questions and participating in mailing list discussions

• Interfacing with other OpenStack teams

• Helping horizon plugin maintenances

In essence, core reviewers share the following common ideals:

• They share responsibility in the projects success in its mission.

• They value a healthy, vibrant, and active developer and user community.

• They have made a long-term, recurring time investment to improve the project.

• They spend their time doing what needs to be done to ensure the projects success, not necessarily
what is the most interesting or fun.

• A core reviewers responsibility doesnt end with merging code.

140 Chapter 3. Contributor Docs

https://governance.openstack.org/tc/reference/tags/assert_follows-standard-deprecation.html
https://governance.openstack.org/tc/reference/tags/assert_follows-standard-deprecation.html
https://www.djangoproject.com/weblog/2015/jun/25/roadmap/

Horizon Documentation, Release 18.6.5.dev13

Core Reviewer Expectations

Members of the core reviewer team are expected to:

• Attend and participate in the weekly IRC meetings (if your timezone allows)

• Monitor and participate in-channel at #openstack-horizon

• Monitor and participate in [horizon] discussions on the mailing list

• Participate in related design sessions at Project Team Gatherings (PTGs)

• Review patch submissions actively and consistently

Please note in-person attendance at PTGs, mid-cycles, and other code sprints is not a requirement to be
a core reviewer. Participation can also include contributing to the design documents discussed at the
design sessions.

Active and consistent review of review activity, bug triage and other activity will be performed periodi-
cally and fed back to the core reviewer team so everyone knows how things are progressing.

Code Merge Responsibilities

While everyone is encouraged to review changes, members of the core reviewer team have the ability
to +2/-2 and +A changes to these repositories. This is an extra level of responsibility not to be taken
lightly. Correctly merging code requires not only understanding the code itself, but also how the code
affects things like documentation, testing, upgrade impacts and interactions with other projects. It also
means you pay attention to release milestones and understand if a patch you are merging is marked for
the release, especially critical during the feature freeze.

Horizon Plugin Maintenance

GUI supports for most OpenStack projects are achieved via horizon plugins. The horizon core reviewer
team has responsibility to help horizon plugin teams from the perspective of horizon related changes
as the framework, for example, Django version bump, testing improvements, plugin interface changes
in horizon and so on. A member of the team is expected to send and review patches related to such
changes.

Note that involvements in more works in horizon plugins are up to individuals but it would be nice to be
involved if you have time :)

3.1.4 Quickstart

Note: This section has been tested for Horizon on Ubuntu (18.04-amd64) and RPM-based (RHEL 8.x)
distributions. Feel free to add notes and any changes according to your experiences or operating system.

3.1. Contributor Documentation 141

Horizon Documentation, Release 18.6.5.dev13

Linux Systems

Install the prerequisite packages.

On Ubuntu

$ sudo apt-get install git python3-dev python3-pip

On RPM-based distributions (e.g., Fedora/RHEL/CentOS)

$ sudo yum install gcc git-core python3-devel python3-virtualenv

Note: Some tests rely on the Chrome web browser being installed. While the above requirements will
allow you to run and manually test Horizon, you will need to install Chrome to run the full test suite.

Setup

To begin setting up a Horizon development environment simply clone the Horizon git repository from
https://opendev.org/openstack/horizon

$ git clone https://opendev.org/openstack/horizon

Next you will need to configure Horizon by adding a local_settings.py file. A good starting
point is to use the example config with the following command, from within the horizon directory.

$ cp openstack_dashboard/local/local_settings.py.example openstack_
↪→dashboard/local/local_settings.py

Horizon connects to the rest of OpenStack via a Keystone service catalog. By default Horizon looks
for an endpoint at http://localhost/identity/v3; this can be customised by modifying
the OPENSTACK_HOST and OPENSTACK_KEYSTONE_URL values in openstack_dashboard/
local/local_settings.py

Note: The DevStack project (http://devstack.org/) can be used to install an OpenStack development
environment from scratch. For a local.conf that enables most services that Horizon supports managing,
see DevStack for Horizon

Horizon uses tox to manage virtual environments for testing and other development tasks. You can
install it with

$ pip install tox

or

$ pip3 install tox

The tox environments provide wrappers around manage.py. For more information on manage.py,
which is a Django command, see https://docs.djangoproject.com/en/dev/ref/django-admin/

To start the Horizon development server use the command below

142 Chapter 3. Contributor Docs

https://opendev.org/openstack/horizon
http://devstack.org/
https://docs.djangoproject.com/en/dev/ref/django-admin/

Horizon Documentation, Release 18.6.5.dev13

$ tox -e runserver

Note: The default port for runserver is 8000 which might be already consumed by heat-api-cfn in DevS-
tack. If running in DevStack tox -e runserver -- localhost:9000 will start the test server
at http://localhost:9000. If you use tox -e runserver for developments, then con-
figure SESSION_ENGINE to django.contrib.sessions.backends.signed_cookies in
openstack_dashboard/local/local_settings.py file.

Once the Horizon server is running, point a web browser to http://localhost or to the IP and
port the server is listening for. Enter your Keystone credentials, log in and youll be presented with the
Horizon dashboard. Congratulations!

Managing Settings

You can save changes you made to openstack_dashboard/local/local_settings.py
with the following command:

$ python manage.py migrate_settings --gendiff

Note: This creates a local_settings.diff file which is a diff between local_settings.py
and local_settings.py.example

If you upgrade Horizon, you might need to update your openstack_dashboard/local/
local_settings.py file with new parameters from openstack_dashboard/local/
local_settings.py.example to do so, first update Horizon

$ git remote update && git pull --ff-only origin master

Then update your openstack_dashboard/local/local_settings.py file

$ mv openstack_dashboard/local/local_settings.py openstack_dashboard/local/
↪→local_settings.py.old
$ python manage.py migrate_settings

Note: This applies openstack_dashboard/local/local_settings.diff on
openstack_dashboard/local/local_settings.py.example to regenerate an
openstack_dashboard/local/local_settings.py file. The migration can sometimes
have difficulties to migrate some settings, if this happens you will be warned with a conflict message
pointing to an openstack_dashboard/local/local_settings.py_Some_DateTime.
rej file. In this file, you will see the lines which could not be automatically changed and you will have
to redo only these few changes manually instead of modifying the full openstack_dashboard/
local/local_settings.py.example file.

When all settings have been migrated, it is safe to regenerate a clean diff in order to prevent Conflicts
for future migrations

3.1. Contributor Documentation 143

Horizon Documentation, Release 18.6.5.dev13

$ mv openstack_dashboard/local/local_settings.diff openstack_dashboard/
↪→local/local_settings.diff.old
$ python manage.py migrate_settings --gendiff

Editing Horizons Source

Although DevStack installs and configures an instance of Horizon when running stack.sh, the preferred
development setup follows the instructions above on the server/VM running DevStack. There are several
advantages to maintaining a separate copy of the Horizon repo, rather than editing the DevStack installed
copy.

• Source code changes arent as easily lost when running unstack.sh / stack.sh

• The development server picks up source code changes while still running.

• Log messages and print statements go directly to the console.

• Debugging with pdb becomes much simpler to interact with.

Note: To ensure that JS and CSS changes are picked up without a server restart, you can disable
compression with COMPRESS_ENABLED = False in your local settings file.

Horizons Structure

This project is a bit different from other OpenStack projects in that it has two very distinct components
underneath it: horizon, and openstack_dashboard.

The horizon directory holds the generic libraries and components that can be used in any Django
project.

The openstack_dashboard directory contains a reference Django project that uses horizon.

If dependencies are added to either horizon or openstack_dashboard, they should be added to
requirements.txt.

Project Structure

Dashboard configuration

To add a new dashboard to your project, you need to add a configuration file to
openstack_dashboard/local/enabled directory. For more information on this, see Plug-
gable Panels and Groups.

144 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

URLs

Then you add a single line to your projects urls.py

url(r'', include(horizon.urls)),

Those urls are automatically constructed based on the registered Horizon apps. If a different URL
structure is desired it can be constructed by hand.

Templates

Pre-built template tags generate navigation. In your nav.html template you might have the following

{% load horizon %}

<div class='nav'>
{% horizon_main_nav %}

</div>

And in your sidebar.html you might have

{% load horizon %}

<div class='sidebar'>
{% horizon_dashboard_nav %}

</div>

These template tags are aware of the current active dashboard and panel via template context variables
and will render accordingly.

Application Design

Structure

An application would have the following structure (well use project as an example)

project/
|---__init__.py
|---dashboard.py <-----Registers the app with Horizon and sets dashboard
↪→properties
|---overview/
|---images/

|-- images
|-- __init__.py
|---panel.py <-----Registers the panel in the app and defines panel

↪→properties
|-- snapshots/
|-- templates/
|-- tests.py
|-- urls.py
|-- views.py
...

...

3.1. Contributor Documentation 145

Horizon Documentation, Release 18.6.5.dev13

Dashboard Classes

Inside of dashboard.py you would have a class definition and the registration process

import horizon

....
ObjectStorePanels is an example for a PanelGroup
for panel classes in general, see below
class ObjectStorePanels(horizon.PanelGroup):

slug = "object_store"
name = _("Object Store")
panels = ('containers',)

class Project(horizon.Dashboard):
name = _("Project") # Appears in navigation
slug = "project" # Appears in URL
panels may be strings or refer to classes, such as
ObjectStorePanels
panels = (BasePanels, NetworkPanels, ObjectStorePanels)
default_panel = 'overview'
...

horizon.register(Project)

Panel Classes

To connect a Panel with a Dashboard class you register it in a panel.py file

import horizon

from openstack_dashboard.dashboards.project import dashboard

class Images(horizon.Panel):
name = "Images"
slug = 'images'
permissions = ('openstack.roles.admin', 'openstack.service.image')
policy_rules = (('endpoint', 'endpoint:rule'),)

You could also register your panel with another application's dashboard
dashboard.Project.register(Images)

By default a Panel class looks for a urls.py file in the same directory as panel.py to include
in the rollup of url patterns from panels to dashboards to Horizon, resulting in a wholly extensible,
configurable URL structure.

Policy rules are defined in horizon/openstack_dashboard/conf/. Permissions are inherited
from Keystone and take either the form openstack.roles.role_name or openstack.services.service_name
for the users roles in keystone and the services in their service catalog.

146 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

3.1.5 Horizons tests and you

How to run the tests

Because Horizon is composed of both the horizon app and the openstack_dashboard reference
project, there are in fact two sets of unit tests. While they can be run individually without problem, there
is an easier way:

Included at the root of the repository is the tox.ini config which invokes both sets of tests, and
optionally generates analyses on both components in the process. tox is what Jenkins uses to verify
the stability of the project, so you should make sure you run it and it passes before you submit any pull
requests/patches.

To run all tests:

$ tox

Its also possible to run a subset of the tests. Open tox.ini in the Horizon root directory to see a list
of test environments. You can read more about tox in general at https://tox.readthedocs.io/en/latest/.

By default running the Selenium tests will open your Firefox browser (you have to install it first, else an
error is raised), and you will be able to see the tests actions:

$ tox -e selenium

If you want to run the suite headless, without being able to see them (as they are ran on Jenkins), you
can run the tests:

$ tox -e selenium-headless

Selenium will use a virtual display in this case, instead of your own. In order to run the tests this way
you have to install the dependency xvfb, like this:

$ sudo apt-get install xvfb

for a Debian OS flavour, or for Fedora/Red Hat flavours:

$ sudo yum install xorg-x11-server-Xvfb

If you cant run a virtual display, or would prefer not to, you can use the PhantomJS web driver instead:

$ tox -e selenium-phantomjs

If you need to install PhantomJS, you may do so with npm like this:

$ npm -g install phantomjs

Alternatively, many distributions have system packages for PhantomJS, or it can be downloaded from
http://phantomjs.org/download.html.

To run integration tests you should use integration tox environment:

$ tox -e integration

These tests requires geckodriver installed. It could be downloaded from https://github.com/mozilla/
geckodriver/releases.

3.1. Contributor Documentation 147

https://tox.readthedocs.io/en/latest/
http://phantomjs.org/download.html
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

Horizon Documentation, Release 18.6.5.dev13

tox Test Environments

This is a list of test environments available to be executed by tox -e <name>.

pep8

Runs pep8, which is a tool that checks Python code style. You can read more about pep8 at https:
//www.python.org/dev/peps/pep-0008/

py37

Runs the Python unit tests against the current default version of Django with Python 3.7 environment.
Check requirements.txt in horizon repository to know which version of Django is actually used.

All other dependencies are as defined by the upper-constraints file at https://opendev.org/openstack/
requirements/raw/branch/master/upper-constraints.txt

You can run a subset of the tests by passing the test path as an argument to tox:

$ tox -e py37 -- openstack_dashboard/dashboards/identity/users/tests.py

The following is more example to run a specific test class and a specific test:

$ tox -e py37 -- openstack_dashboard/dashboards/identity/users/tests.
↪→py::UsersViewTests
$ tox -e py37 -- openstack_dashboard/dashboards/identity/users/tests.
↪→py::UsersViewTests::test_index

The detail way to specify tests is found at pytest documentation.

You can also pass other arguments. For example, to drop into a live debugger when a test fails you can
use:

$ tox -e py37 -- --pdb

py3-dj111, py3-dj21, py3-dj22

Runs the Python unit tests against Django 1.11, Django 2.1 and Django 2.2 respectively

py36

Runs the Python unit tests with a Python 3.6 environment.

148 Chapter 3. Contributor Docs

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://docs.pytest.org/en/latest/usage.html#specifying-tests-selecting-tests

Horizon Documentation, Release 18.6.5.dev13

releasenotes

Outputs Horizons release notes as HTML to releasenotes/build/html.

Also takes an alternative builder as an optional argument, such as tox -e docs -- <builder>,
which will output to releasenotes/build/<builder>. Available builders are listed at http:
//www.sphinx-doc.org/en/latest/builders.html

This environment also runs the documentation style checker doc8 against RST and YAML files under
releasenotes/source to keep the documentation style consistent. If you would like to run doc8
manually, see docs environment below.

npm

Installs the npm dependencies listed in package.json and runs the JavaScript tests. Can also take
optional arguments, which will be executed as an npm script following the dependency install, instead
of test.

Example:

$ tox -e npm -- lintq

docs

Outputs Horizons documentation as HTML to doc/build/html.

Also takes an alternative builder as an optional argument, such as tox -e docs -- <builder>,
which will output to doc/build/<builder>. Available builders are listed at http://www.
sphinx-doc.org/en/latest/builders.html

Example:

$ tox -e docs -- latexpdf

This environment also runs the documentation style checker doc8 against RST files under doc/
source to keep the documentation style consistent. If you would like to run doc8 manually, run:

Activate virtualenv
$. .tox/docs/bin/activate
$ doc8 doc/source

Writing tests

Horizon uses Djangos unit test machinery (which extends Pythons unittest2 library) as the core of
its test suite. As such, all tests for the Python code should be written as unit tests. No doctests please.

In general new code without unit tests will not be accepted, and every bugfix must include a regression
test.

For a much more in-depth discussion of testing, see the testing topic guide.

3.1. Contributor Documentation 149

http://www.sphinx-doc.org/en/latest/builders.html
http://www.sphinx-doc.org/en/latest/builders.html
http://www.sphinx-doc.org/en/latest/builders.html
http://www.sphinx-doc.org/en/latest/builders.html

Horizon Documentation, Release 18.6.5.dev13

3.1.6 Tutorials

Detailed tutorials to help you get started.

Tutorial: Creating an Horizon Plugin

Why should I package my code as a plugin?

We highly encourage that you write and maintain your code using our plugin architecture. A plugin by
definition means the ability to be connected. In practical terms, plugins are a way to extend and add to
the functionality that already exists. You can control its content and progress at a rate independent of
Horizon. If you write and package your code as a plugin, it will continue to work in future releases.

Writing your code as a plugin also modularizes your code making it easier to translate and test. This
also makes it easier for deployers to consume your code allowing selective enablement of features. We
are currently using this pattern internally for our dashboards.

Creating the Plugin

This tutorial assumes you have a basic understanding of Python, HTML, JavaScript. Knowledge of
AngularJS is optional but recommended if you are attempting to create an Angular plugin.

Name of your repository

Needless to say, it is important to choose a meaningful repository name.

In addition, if you plan to support translation on your dashboard plugin, it is recommended to choose
a name like xxxx-dashboard (or xxxx-ui. xxxx-horizon). The OpenStack CI infra script
considers a repository with these suffixes as Django project.

Types of Plugins that add content

The file structure for your plugin type will be different depending on your needs. Your plugin can be
categorized into two types:

• Plugins that create new panels or dashboards

• Plugins that modify existing workflows, actions, etc (Angular only)

We will cover the basics of working with panels for both Python and Angular. If you are interested in
creating a new panel, follow the steps below.

Note: This tutorial shows you how to create a new panel. If you are interested in creating a new
dashboard plugin, use the file structure from Tutorial: Building a Dashboard using Horizon instead.

150 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

File Structure

Below is a skeleton of what your plugin should look like.:

myplugin

myplugin
__init__.py

enabled
_31000_myplugin.py

api
__init__.py
my_rest_api.py
myservice.py

content
__init__.py
mypanel

__init__.py
panel.py
tests.py
urls.py
views.py
templates

mypanel
index.html

static
| dashboard
| identity
| myplugin
| mypanel
| mypanel.html
| mypanel.js
| mypanel.scss

locale
<lang>

LC_MESSAGES
django.po
djangojs.po

setup.py
setup.cfg
LICENSE
MANIFEST.in
README.rst
babel-django.cfg
babel-djangojs.cfg

If you are creating a Python plugin, you may ignore the static folder. Most of the classes you need
are provided for in Python. If you intend on adding custom front-end logic, you will need to include
additional JavaScript here.

An AngularJS plugin is a collection of JavaScript files or static resources. Because it runs entirely in

3.1. Contributor Documentation 151

Horizon Documentation, Release 18.6.5.dev13

your browser, we need to place all of our static resources inside the static folder. This ensures that
the Django static collector picks it up and distributes it to the browser correctly.

The Enabled File

The enabled folder contains the configuration file(s) that registers your plugin with Horizon. The file is
prefixed with an alpha-numeric string that determines the load order of your plugin. For more informa-
tion on what you can include in this file, see pluggable settings in Settings Reference.

_31000_myplugin.py:

The name of the panel to be added to HORIZON_CONFIG. Required.
PANEL = 'mypanel'

The name of the dashboard the PANEL associated with. Required.
PANEL_DASHBOARD = 'identity'

Python panel class of the PANEL to be added.
ADD_PANEL = 'myplugin.content.mypanel.panel.MyPanel'

A list of applications to be prepended to INSTALLED_APPS
ADD_INSTALLED_APPS = ['myplugin']

A list of AngularJS modules to be loaded when Angular bootstraps.
ADD_ANGULAR_MODULES = ['horizon.dashboard.identity.myplugin.mypanel']

Automatically discover static resources in installed apps
AUTO_DISCOVER_STATIC_FILES = True

A list of js files to be included in the compressed set of files
ADD_JS_FILES = []

A list of scss files to be included in the compressed set of files
ADD_SCSS_FILES = ['dashboard/identity/myplugin/mypanel/mypanel.scss']

A list of template-based views to be added to the header
ADD_HEADER_SECTIONS = ['myplugin.content.mypanel.views.HeaderView',]

Note: Currently, AUTO_DISCOVER_STATIC_FILES = True will only discover JavaScript files,
not SCSS files.

my_rest_api.py

This file will likely be necessary if creating a plugin using Angular. Your plugin will need to commu-
nicate with a new service or require new interactions with a service already supported by Horizon. In
this particular example, the plugin will augment the support for the already supported Identity service,
Keystone. This file serves to define new REST interfaces for the plugins client-side to communicate
with Horizon. Typically, the REST interfaces here make calls into myservice.py.

This file is unnecessary in a purely Django based plugin, or if your Angular based plugin is relying on
CORS support in the desired service. For more information on CORS, see https://docs.openstack.org/
oslo.middleware/latest/admin/cross-project-cors.html

152 Chapter 3. Contributor Docs

https://docs.openstack.org/oslo.middleware/latest/admin/cross-project-cors.html
https://docs.openstack.org/oslo.middleware/latest/admin/cross-project-cors.html

Horizon Documentation, Release 18.6.5.dev13

myservice.py

This file will likely be necessary if creating a Django or Angular driven plugin. This file is intended
to act as a convenient location for interacting with the new service this plugin is supporting. While
interactions with the service can be handled in the views.py, isolating the logic is an established
pattern in Horizon.

panel.py

We define a panel where our plugins content will reside in. This is currently a necessity even for Angular
plugins. The slug is the panels unique identifier and is often use as part of the URL. Make sure that it
matches what you have in your enabled file.:

from django.utils.translation import ugettext_lazy as _
import horizon

class MyPanel(horizon.Panel):
name = _("My Panel")
slug = "mypanel"

tests.py

Write some tests for the Django portion of your plugin and place them here.

urls.py

Now that we have a panel, we need to provide a URL so that users can visit our new panel! This URL
generally will point to a view.:

from django.conf.urls import url

from myplugin.content.mypanel import views

urlpatterns = [
url(r'^$', views.IndexView.as_view(), name='index'),

]

views.py

Because rendering is done client-side, all our view needs is to reference some HTML page. If you
are writing a Python plugin, this view can be much more complex. Refer to the topic guides for more
details.:

from django.views import generic

class IndexView(generic.TemplateView):
template_name = 'identity/mypanel/index.html'

3.1. Contributor Documentation 153

Horizon Documentation, Release 18.6.5.dev13

index.html

The index HTML is where rendering occurs. In this example, we are only using Django. If you are
interested in using Angular directives instead, read the AngularJS section below.:

{% extends 'base.html' %}
{% load i18n %}
{% block title %}{% trans "My plugin" %}{% endblock %}

{% block page_header %}
{% include "horizon/common/_domain_page_header.html" with title=_("My

↪→Panel") %}
{% endblock page_header %}

{% block main %}
Hello world!

{% endblock %}

At this point, you have a very basic plugin. Note that new templates are required to extend base.html.
Including base.html is important for a number of reasons. It is the template that contains all of your static
resources along with any functionality external to your panel (things like navigation, context selection,
etc). As of this moment, this is also true for Angular plugins.

MANIFEST.in

This file is responsible for listing the paths you want included in your tar.:

include setup.py

recursive-include myplugin *.js *.html *.scss

setup.py

THIS FILE IS MANAGED BY THE GLOBAL REQUIREMENTS REPO - DO NOT EDIT
import setuptools

In python < 2.7.4, a lazy loading of package `pbr` will break
setuptools if some other modules registered functions in `atexit`.
solution from: http://bugs.python.org/issue15881#msg170215
try:

import multiprocessing # noqa
except ImportError:

pass

setuptools.setup(
setup_requires=['pbr>=1.8'],
pbr=True)

154 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

setup.cfg

[metadata]
name = myplugin
summary = A panel plugin for OpenStack Dashboard
description-file =

README.rst
author = myname
author_email = myemail
home-page = https://docs.openstack.org/horizon/latest/
classifier =

Environment :: OpenStack
Framework :: Django
Intended Audience :: Developers
Intended Audience :: System Administrators
License :: OSI Approved :: Apache Software License
Operating System :: POSIX :: Linux
Programming Language :: Python
Programming Language :: Python :: 2
Programming Language :: Python :: 2.7
Programming Language :: Python :: 3
Programming Language :: Python :: 3.5

[files]
packages =

myplugin

AngularJS Plugin

If you have no plans to add AngularJS to your plugin, you may skip this section. In the tutorial below,
we will show you how to customize your panel using Angular.

index.html

The index HTML is where rendering occurs and serves as an entry point for Angular. This is where we
start to diverge from the traditional Python plugin. In this example, we use a Django template as the glue
to our Angular template. Why are we going through a Django template for an Angular plugin? Long
story short, base.html contains the navigation piece that we still need for each panel.

{% extends 'base.html' %}
{% load i18n %}
{% block title %}{% trans "My panel" %}{% endblock %}

{% block page_header %}
<hz-page-header

header="{$ 'My panel' | translate $}"
description="{$ 'My custom panel!' | translate $}">

</hz-page-header>
{% endblock page_header %}

{% block main %}
<ng-include src="'{{ STATIC_URL }}dashboard/identity/myplugin/mypanel/

↪→mypanel.html'">
(continues on next page)

3.1. Contributor Documentation 155

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

</ng-include>
{% endblock %}

This template contains both Django and AngularJS code. Angular is denoted by {$..$} while Django
is denoted by {{..}} and {%..%}. This template gets processed twice, once by Django on the server-
side and once more by Angular on the client-side. This means that the expressions in {{..}} and
{%..%} are substituted with values by the time it reaches your Angular template.

What you chose to include in block main is entirely up to you. Since you are creating an Angular
plugin, we recommend that you keep everything in this section Angular. Do not mix Python code in
here! If you find yourself passing in Python data, do it via our REST services instead.

Remember to always use STATIC_URL when referencing your static resources. This ensures that
changes to the static path in settings will continue to serve your static resources properly.

Note: Angulars directives are prefixed with ng. Similarly, Horizons directives are prefixed with hz.
You can think of them as namespaces.

mypanel.js

Your controller is the glue between the model and the view. In this example, we are going to give it
some fake data to render. To load more complex data, consider using the $http service.

(function() {
'use strict';

angular
.module('horizon.dashboard.identity.myplugin.mypanel', [])
.controller('horizon.dashboard.identity.myPluginController',

myPluginController);

myPluginController.$inject = ['$http'];

function myPluginController($http) {
var ctrl = this;
ctrl.items = [

{ name: 'abc', id: 123 },
{ name: 'efg', id: 345 },
{ name: 'hij', id: 678 }

];
}

})();

This is a basic example where we mocked the data. For exercise, load your data using the $http
service.

156 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

mypanel.html

This is our view. In this example, we are looping through the list of items provided by the controller
and displaying the name and id. The important thing to note is the reference to our controller using the
ng-controller directive.

<div ng-controller="horizon.dashboard.identity.myPluginController as ctrl">
<div>Loading data from your controller:</div>

<li ng-repeat="item in ctrl.items">
{$ item.name $}
{$ item.id $}

</div>

mypanel.scss

You can choose to customize your panel by providing your own scss. Be sure to include it in your
enabled file via the ADD_SCSS_FILES setting.

Translation Support

A general instruction on how to enable translation support is described in the Infrastructure User Man-
ual1.

This section describes topics specific to Horizon plugins.

ADD_INSTALLED_APPS

Be sure to include <modulename> (myplugin in this example) in ADD_INSTALLED_APPS in the
corresponding enabled file.

• If you are preparing a new plugin, you will use <modulename> as INSTALLED_APPS in most
cases as suggested in this tutorial. This is good and there is nothing more to do.

• If for some reason your plugin needs to register other python modules to
ADD_INSTALLED_APPS, ensure that you include its <modulename> additionally.

This comes from the combination of the following two reasons.

• Django looks for translation message catalogs from each path specified in INSTALLED_APPS2.

• OpenStack infra scripts assumes translation message catalogs are placed under
<modulename>/locale (for example myplugin/locale).

1 https://docs.openstack.org/infra/manual/creators.html#enabling-translation-infrastructure
2 https://docs.djangoproject.com/es/1.9/topics/i18n/translation/#how-django-discovers-translations

3.1. Contributor Documentation 157

https://docs.openstack.org/infra/manual/creators.html#enabling-translation-infrastructure
https://docs.djangoproject.com/es/1.9/topics/i18n/translation/#how-django-discovers-translations

Horizon Documentation, Release 18.6.5.dev13

myplugin/locale

Translated message catalog files (PO files) are placed under this directory.

babel-django.cfg, babel-djangojs.cfg

These files are used to extract messages by pybabel: babel-django.cfg for python code and
template files, and babel-djangojs.cfg for JavaScript files.

They are required to enable translation support by OpenStack CI infra. If they do not exist, the translation
jobs will skip processing for your project.

Installing Your Plugin

Now that you have a complete plugin, it is time to install and test it. The instructions below assume that
you have a working plugin.

• plugin is the location of your plugin

• horizon is the location of horizon

• package is the complete name of your packaged plugin

1. Run cd plugin & python setup.py sdist

2. Run cp -rv enabled horizon/openstack_dashboard/local/

3. Run horizon/tools/with_venv.sh pip install dist/package.tar.gz

4. Restart Apache or your Django test server

Note: Step 3 installs your package into the Horizons virtual environment. You can install your
plugin without using with_venv.sh and pip. The package would simply be installed in the
PYTHON_PATH of the system instead.

If you are able to hit the URL pattern in urls.py in your browser, you have successfully deployed
your plugin! For plugins that do not have a URL, check that your static resources are loaded using the
browser inspector.

Assuming you implemented my_rest_api.py, you can use a REST client to hit the url directly and
test it. There should be many REST clients available on your web browser.

Note that you may need to rebuild your virtual environment if your plugin is not showing up properly.
If your plugin does not show up properly, check your .tox folder to make sure the plugins content is
as you expect.

Note: To uninstall, use pip uninstall. You will also need to remove the enabled file from the
local/enabled folder.

158 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Tutorial: Building a Dashboard using Horizon

This tutorial covers how to use the various components in horizon to build an example dashboard and a
panel with a tab which has a table containing data from the back end.

As an example, well create a new My Dashboard dashboard with a My Panel panel that has an
Instances Tab tab. The tab has a table which contains the data pulled by the Nova instances API.

Note: This tutorial assumes you have either a devstack or openstack environment up and running.
There are a variety of other resources which may be helpful to read first. For example, you may want to
start with the Quickstart or the Django tutorial.

Creating a dashboard

The quick version

Horizon provides a custom management command to create a typical base dashboard structure for you.
Run the following commands in your Horizon root directory. It generates most of the boilerplate code
you need:

$ mkdir openstack_dashboard/dashboards/mydashboard

$ tox -e manage -- startdash mydashboard \
--target openstack_dashboard/dashboards/mydashboard

$ mkdir openstack_dashboard/dashboards/mydashboard/mypanel

$ tox -e manage -- startpanel mypanel \
--dashboard=openstack_dashboard.dashboards.mydashboard \
--target=openstack_dashboard/dashboards/mydashboard/mypanel

You will notice that the directory mydashboard gets automatically populated with the files related to
a dashboard and the mypanel directory gets automatically populated with the files related to a panel.

Structure

If you use the tree mydashboard command to list the mydashboard directory in
openstack_dashboard/dashboards , you will see a directory structure that looks like the fol-
lowing:

mydashboard
dashboard.py
__init__.py
mypanel

ăă __init__.py
ăă panel.py
ăă templates
ăă ăă mypanel
ăă ăă index.html
ăă tests.py

(continues on next page)

3.1. Contributor Documentation 159

https://docs.djangoproject.com/en/dev/intro/tutorial01/

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

ăă urls.py
ăă views.py
static

ăă mydashboard
ăă scss
ăă ăă mydashboard.scss
ăă js
ăă mydashboard.js
templates

mydashboard
base.html

For this tutorial, we will not deal with the static directory, or the tests.py file. Leave them as they
are.

With the rest of the files and directories in place, we can move on to add our own dashboard.

Defining a dashboard

Open the dashboard.py file. You will notice the following code has been automatically generated:

from django.utils.translation import ugettext_lazy as _

import horizon

class Mydashboard(horizon.Dashboard):
name = _("Mydashboard")
slug = "mydashboard"
panels = () # Add your panels here.
default_panel = '' # Specify the slug of the dashboard's default

↪→panel.

horizon.register(Mydashboard)

If you want the dashboard name to be something else, you can change the name attribute in the
dashboard.py file . For example, you can change it to be My Dashboard

name = _("My Dashboard")

A dashboard class will usually contain a name attribute (the display name of the dashboard), a slug
attribute (the internal name that could be referenced by other components), a list of panels, default panel,
etc. We will cover how to add a panel in the next section.

160 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Creating a panel

Well create a panel and call it My Panel.

Structure

As described above, the mypanel directory under openstack_dashboard/dashboards/
mydashboard should look like the following:

mypanel
__init__.py
panel.py
templates
ăă mypanel
ăă ă index.html
tests.py
urls.py
views.py

Defining a panel

The panel.py file referenced above has a special meaning. Within a dashboard, any module name
listed in the panels attribute on the dashboard class will be auto-discovered by looking for the panel.
py file in a corresponding directory (the details are a bit magical, but have been thoroughly vetted in
Djangos admin codebase).

Open the panel.py file, you will have the following auto-generated code:

from django.utils.translation import ugettext_lazy as _

import horizon

from openstack_dashboard.dashboards.mydashboard import dashboard

class Mypanel(horizon.Panel):
name = _("Mypanel")
slug = "mypanel"

dashboard.Mydashboard.register(Mypanel)

If you want the panel name to be something else, you can change the name attribute in the panel.py
file . For example, you can change it to be My Panel:

name = _("My Panel")

Open the dashboard.py file again, insert the following code above the Mydashboard class. This
code defines the Mygroup class and adds a panel called mypanel:

class Mygroup(horizon.PanelGroup):
slug = "mygroup"

(continues on next page)

3.1. Contributor Documentation 161

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

name = _("My Group")
panels = ('mypanel',)

Modify the Mydashboard class to include Mygroup and add mypanel as the default panel:

class Mydashboard(horizon.Dashboard):
name = _("My Dashboard")
slug = "mydashboard"
panels = (Mygroup,) # Add your panels here.
default_panel = 'mypanel' # Specify the slug of the default panel.

The completed dashboard.py file should look like the following:

from django.utils.translation import ugettext_lazy as _

import horizon

class Mygroup(horizon.PanelGroup):
slug = "mygroup"
name = _("My Group")
panels = ('mypanel',)

class Mydashboard(horizon.Dashboard):
name = _("My Dashboard")
slug = "mydashboard"
panels = (Mygroup,) # Add your panels here.
default_panel = 'mypanel' # Specify the slug of the default panel.

horizon.register(Mydashboard)

Tables, Tabs, and Views

Well start with the table, combine that with the tabs, and then build our view from the pieces.

Defining a table

Horizon provides a SelfHandlingForm DataTable class which simplifies the vast majority of
displaying data to an end-user. Were just going to skim the surface here, but it has a tremendous number
of capabilities. Create a tables.py file under the mypanel directory and add the following code:

from django.utils.translation import ugettext_lazy as _

from horizon import tables

class InstancesTable(tables.DataTable):
name = tables.Column("name", verbose_name=_("Name"))
status = tables.Column("status", verbose_name=_("Status"))
zone = tables.Column('availability_zone',

(continues on next page)

162 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

verbose_name=_("Availability Zone"))
image_name = tables.Column('image_name', verbose_name=_("Image Name"))

class Meta(object):
name = "instances"
verbose_name = _("Instances")

There are several things going on here we created a table subclass, and defined four columns that we
want to retrieve data and display. Each of those columns defines what attribute it accesses on the instance
object as the first argument, and since we like to make everything translatable, we give each column a
verbose_name thats marked for translation.

Lastly, we added a Meta class which indicates the meta object that describes the instances table.

Note: This is a slight simplification from the reality of how the instance object is actually structured.
In reality, accessing other attributes requires an additional step.

Adding actions to a table

Horizon provides three types of basic action classes which can be taken on a tables data:

• Action

• LinkAction

• FilterAction

There are also additional actions which are extensions of the basic Action classes:

• BatchAction

• DeleteAction

• FixedFilterAction

Now lets create and add a filter action to the table. To do so, we will need to edit the tables.py file
used above. To add a filter action which will only show rows which contain the string entered in the
filter field, we must first define the action:

class MyFilterAction(tables.FilterAction):
name = "myfilter"

Note: The action specified above will default the filter_type to be "query". This means that
the filter will use the client side table sorter.

Then, we add that action to the table actions for our table.:

class InstancesTable:
class Meta(object):

table_actions = (MyFilterAction,)

The completed tables.py file should look like the following:

3.1. Contributor Documentation 163

Horizon Documentation, Release 18.6.5.dev13

from django.utils.translation import ugettext_lazy as _

from horizon import tables

class MyFilterAction(tables.FilterAction):
name = "myfilter"

class InstancesTable(tables.DataTable):
name = tables.Column('name', \

verbose_name=_("Name"))
status = tables.Column('status', \

verbose_name=_("Status"))
zone = tables.Column('availability_zone', \

verbose_name=_("Availability Zone"))
image_name = tables.Column('image_name', \

verbose_name=_("Image Name"))

class Meta(object):
name = "instances"
verbose_name = _("Instances")
table_actions = (MyFilterAction,)

Defining tabs

So we have a table, ready to receive our data. We could go straight to a view from here, but in this case
were also going to use horizons TabGroup class.

Create a tabs.py file under the mypanel directory. Lets make a tab group which has one tab. The
completed code should look like the following:

from django.utils.translation import ugettext_lazy as _

from horizon import exceptions
from horizon import tabs

from openstack_dashboard import api
from openstack_dashboard.dashboards.mydashboard.mypanel import tables

class InstanceTab(tabs.TableTab):
name = _("Instances Tab")
slug = "instances_tab"
table_classes = (tables.InstancesTable,)
template_name = ("horizon/common/_detail_table.html")
preload = False

def has_more_data(self, table):
return self._has_more

def get_instances_data(self):
try:

marker = self.request.GET.get(
tables.InstancesTable._meta.pagination_param, None)

(continues on next page)

164 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

instances, self._has_more = api.nova.server_list(
self.request,
search_opts={'marker': marker, 'paginate': True})

return instances
except Exception:

self._has_more = False
error_message = _('Unable to get instances')
exceptions.handle(self.request, error_message)

return []

class MypanelTabs(tabs.TabGroup):
slug = "mypanel_tabs"
tabs = (InstanceTab,)
sticky = True

This tab gets a little more complicated. The tab handles data tables (and all their associated features),
and it also uses the preload attribute to specify that this tab shouldnt be loaded by default. It will
instead be loaded via AJAX when someone clicks on it, saving us on API calls in the vast majority of
cases.

Additionally, the displaying of the table is handled by a reusable template, horizon/common/
_detail_table.html. Some simple pagination code was added to handle large instance lists.

Lastly, this code introduces the concept of error handling in horizon. The horizon.exceptions.
handle() function is a centralized error handling mechanism that takes all the guess-work and incon-
sistency out of dealing with exceptions from the API. Use it everywhere.

Tying it together in a view

There are lots of pre-built class-based views in horizon. We try to provide the starting points for all the
common combinations of components.

Open the views.py file, the auto-generated code is like the following:

from horizon import views

class IndexView(views.APIView):
A very simple class-based view...
template_name = 'mydashboard/mypanel/index.html'

def get_data(self, request, context, *args, **kwargs):
Add data to the context here...
return context

In this case we want a starting view type that works with both tabs and tables thatd be the
TabbedTableView class. It takes the best of the dynamic delayed-loading capabilities tab groups
provide and mixes in the actions and AJAX-updating that tables are capable of with almost no work on
the users end. Change views.APIView to be tabs.TabbedTableView and add MypanelTabs
as the tab group class in the IndexView class:

3.1. Contributor Documentation 165

Horizon Documentation, Release 18.6.5.dev13

class IndexView(tabs.TabbedTableView):
tab_group_class = mydashboard_tabs.MypanelTabs

After importing the proper package, the completed views.py file now looks like the following:

from horizon import tabs

from openstack_dashboard.dashboards.mydashboard.mypanel \
import tabs as mydashboard_tabs

class IndexView(tabs.TabbedTableView):
tab_group_class = mydashboard_tabs.MypanelTabs
template_name = 'mydashboard/mypanel/index.html'

def get_data(self, request, context, *args, **kwargs):
Add data to the context here...
return context

URLs

The auto-generated urls.py file is like:

from django.conf.urls import url

from openstack_dashboard.dashboards.mydashboard.mypanel import views

urlpatterns = [
url(r'^$', views.IndexView.as_view(), name='index'),

]

The template

Open the index.html file in the mydashboard/mypanel/templates/mypanel directory,
the auto-generated code is like the following:

{% extends 'base.html' %}
{% load i18n %}
{% block title %}{% trans "Mypanel" %}{% endblock %}

{% block page_header %}
{% include "horizon/common/_page_header.html" with title=_("Mypanel")

↪→%}
{% endblock page_header %}

{% block main %}
{% endblock %}

The main block must be modified to insert the following code:

166 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

<div class="row">
<div class="col-sm-12">
{{ tab_group.render }}
</div>

</div>

If you want to change the title of the index.html file to be something else, you can change it. For
example, change it to be My Panel in the block title section. If you want the title in the
block page_header section to be something else, you can change it. For example, change it to be
My Panel. The updated code could be like:

{% extends 'base.html' %}
{% load i18n %}
{% block title %}{% trans "My Panel" %}{% endblock %}

{% block page_header %}
{% include "horizon/common/_page_header.html" with title=_("My Panel")

↪→%}
{% endblock page_header %}

{% block main %}
<div class="row">

<div class="col-sm-12">
{{ tab_group.render }}
</div>

</div>
{% endblock %}

This gives us a custom page title, a header, and renders our tab group provided by the view.

With all our code in place, the only thing left to do is to integrate it into our OpenStack Dashboard site.

Note: For more information about Django views, URLs and templates, please refer to the Django
documentation.

Enable and show the dashboard

In order to make My Dashboard show up along with the existing dashboards like Project
or Admin on horizon, you need to create a file called _50_mydashboard.py under
openstack_dashboard/enabled and add the following:

The name of the dashboard to be added to HORIZON['dashboards']. Required.
DASHBOARD = 'mydashboard'

If set to True, this dashboard will not be added to the settings.
DISABLED = False

A list of applications to be added to INSTALLED_APPS.
ADD_INSTALLED_APPS = [

'openstack_dashboard.dashboards.mydashboard',
]

3.1. Contributor Documentation 167

https://docs.djangoproject.com/en/dev/
https://docs.djangoproject.com/en/dev/

Horizon Documentation, Release 18.6.5.dev13

Run and check the dashboard

Everything is in place, now run Horizon on the different port:

$ tox -e runserver -- 0:9000

Go to http://<your server>:9000 using a browser. After login as an admin you should be
able see My Dashboard shows up at the left side on horizon. Click it, My Group will expand with
My Panel. Click on My Panel, the right side panel will display an Instances Tab which has an
Instances table.

If you dont see any instance data, you havent created any instances yet. Go to dashboard Project
-> Images, select a small image, for example, cirros-0.3.1-x86_64-uec , click Launch and
enter an Instance Name, click the button Launch. It should create an instance if the OpenStack
or devstack is correctly set up. Once the creation of an instance is successful, go to My Dashboard
again to check the data.

Adding a complex action to a table

For a more detailed look into adding a table action, one that requires forms for gathering data, you can
walk through Tutorial: Adding a complex action to a table tutorial.

Conclusion

What youve learned here is the fundamentals of how to write interfaces for your own project based on
the components horizon provides.

If you have feedback on how this tutorial could be improved, please feel free to submit a bug against
Horizon in launchpad.

Tutorial: Adding a complex action to a table

This tutorial covers how to add a more complex action to a table, one that requires an action and form
definitions, as well as changes to the view, urls, and table.

This tutorial assumes you have already completed Tutorial: Building a Dashboard using Horizon. If
not, please do so now as we will be modifying the files created there.

This action will create a snapshot of the instance. When the action is taken, it will display a form that
will allow the user to enter a snapshot name, and will create that snapshot when the form is closed using
the Create snapshot button.

168 Chapter 3. Contributor Docs

https://bugs.launchpad.net/horizon

Horizon Documentation, Release 18.6.5.dev13

Defining the view

To define the view, we must create a view class, along with the template (HTML) file and the form class
for that view.

The template file

The template file contains the HTML that will be used to show the view.

Create a create_snapshot.html file under the mypanel/templates/mypanel directory
and add the following code:

{% extends 'base.html' %}
{% load i18n %}
{% block title %}{% trans "Create Snapshot" %}{% endblock %}

{% block page_header %}
{% include "horizon/common/_page_header.html" with title=_("Create a

↪→Snapshot") %}
{% endblock page_header %}

{% block main %}
{% include 'mydashboard/mypanel/_create_snapshot.html' %}

{% endblock %}

As you can see, the main body will be defined in _create_snapshot.html, so we must also create
that file under the mypanel/templates/mypanel directory. It should contain the following code:

{% extends "horizon/common/_modal_form.html" %}
{% load i18n %}

{% block modal-body-right %}
<h3>{% trans "Description:" %}</h3>
<p>{% trans "Snapshots preserve the disk state of a running instance."

↪→%}</p>
{% endblock %}

The form

Horizon provides a SelfHandlingForm class which simplifies some of the details involved in creat-
ing a form. Our form will derive from this class, adding a character field to allow the user to specify a
name for the snapshot, and handling the successful closure of the form by calling the nova api to create
the snapshot.

Create the forms.py file under the mypanel directory and add the following:

from django.urls import reverse
from django.utils.translation import ugettext_lazy as _

from horizon import exceptions
from horizon import forms

from openstack_dashboard import api

(continues on next page)

3.1. Contributor Documentation 169

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

class CreateSnapshot(forms.SelfHandlingForm):
instance_id = forms.CharField(label=_("Instance ID"),

widget=forms.HiddenInput(),
required=False)

name = forms.CharField(max_length=255, label=_("Snapshot Name"))

def handle(self, request, data):
try:

snapshot = api.nova.snapshot_create(request,
data['instance_id'],
data['name'])

return snapshot
except Exception:

exceptions.handle(request,
_('Unable to create snapshot.'))

The view

Now, the view will tie together the template and the form. Horizon provides a ModalFormView class
which simplifies the creation of a view that will contain a modal form.

Open the views.py file under the mypanel directory and add the code for the CreateSnapshotView
and the necessary imports. The complete file should now look something like this:

from django.urls import reverse
from django.urls import reverse_lazy
from django.utils.translation import ugettext_lazy as _

from horizon import tabs
from horizon import exceptions
from horizon import forms

from horizon.utils import memoized

from openstack_dashboard import api

from openstack_dashboard.dashboards.mydashboard.mypanel \
import forms as project_forms

from openstack_dashboard.dashboards.mydashboard.mypanel \
import tabs as mydashboard_tabs

class IndexView(tabs.TabbedTableView):
tab_group_class = mydashboard_tabs.MypanelTabs
A very simple class-based view...
template_name = 'mydashboard/mypanel/index.html'

def get_data(self, request, context, *args, **kwargs):
Add data to the context here...
return context

(continues on next page)

170 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

class CreateSnapshotView(forms.ModalFormView):
form_class = project_forms.CreateSnapshot
template_name = 'mydashboard/mypanel/create_snapshot.html'
success_url = reverse_lazy("horizon:project:images:index")
modal_id = "create_snapshot_modal"
modal_header = _("Create Snapshot")
submit_label = _("Create Snapshot")
submit_url = "horizon:mydashboard:mypanel:create_snapshot"

@memoized.memoized_method
def get_object(self):

try:
return api.nova.server_get(self.request,

self.kwargs["instance_id"])
except Exception:

exceptions.handle(self.request,
_("Unable to retrieve instance."))

def get_initial(self):
return {"instance_id": self.kwargs["instance_id"]}

def get_context_data(self, **kwargs):
context = super(CreateSnapshotView, self).get_context_

↪→data(**kwargs)
instance_id = self.kwargs['instance_id']
context['instance_id'] = instance_id
context['instance'] = self.get_object()
context['submit_url'] = reverse(self.submit_url, args=[instance_

↪→id])
return context

Adding the url

We must add the url for our new view. Open the urls.py file under the mypanel directory and add
the following as a new url pattern:

url(r'^(?P<instance_id>[^/]+)/create_snapshot/$',
views.CreateSnapshotView.as_view(),
name='create_snapshot'),

The complete urls.py file should look like this:

from django.conf.urls import url

from openstack_dashboard.dashboards.mydashboard.mypanel import views

urlpatterns = [
url(r'^$',

views.IndexView.as_view(), name='index'),
url(r'^(?P<instance_id>[^/]+)/create_snapshot/$',

views.CreateSnapshotView.as_view(),

(continues on next page)

3.1. Contributor Documentation 171

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

name='create_snapshot'),
]

Define the action

Horizon provides a LinkAction class which simplifies adding an action which can be used to display
another view.

We will add a link action to the table that will be accessible from each row in the table. The action will
use the view defined above to create a snapshot of the instance represented by the row in the table.

To do this, we must edit the tables.py file under the mypanel directory and add the following:

def is_deleting(instance):
task_state = getattr(instance, "OS-EXT-STS:task_state", None)
if not task_state:

return False
return task_state.lower() == "deleting"

class CreateSnapshotAction(tables.LinkAction):
name = "snapshot"
verbose_name = _("Create Snapshot")
url = "horizon:mydashboard:mypanel:create_snapshot"
classes = ("ajax-modal",)
icon = "camera"

This action should be disabled if the instance
is not active, or the instance is being deleted
def allowed(self, request, instance=None):

return instance.status in ("ACTIVE") \
and not is_deleting(instance)

We must also add our new action as a row action for the table:

row_actions = (CreateSnapshotAction,)

The complete tables.py file should look like this:

from django.utils.translation import ugettext_lazy as _

from horizon import tables

def is_deleting(instance):
task_state = getattr(instance, "OS-EXT-STS:task_state", None)
if not task_state:

return False
return task_state.lower() == "deleting"

class CreateSnapshotAction(tables.LinkAction):
name = "snapshot"
verbose_name = _("Create Snapshot")

(continues on next page)

172 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

url = "horizon:mydashboard:mypanel:create_snapshot"
classes = ("ajax-modal",)
icon = "camera"

def allowed(self, request, instance=None):
return instance.status in ("ACTIVE") \

and not is_deleting(instance)

class MyFilterAction(tables.FilterAction):
name = "myfilter"

class InstancesTable(tables.DataTable):
name = tables.Column("name", verbose_name=_("Name"))
status = tables.Column("status", verbose_name=_("Status"))
zone = tables.Column('availability_zone', verbose_name=_("Availability

↪→Zone"))
image_name = tables.Column('image_name', verbose_name=_("Image Name"))

class Meta(object):
name = "instances"
verbose_name = _("Instances")
table_actions = (MyFilterAction,)
row_actions = (CreateSnapshotAction,)

Run and check the dashboard

We must once again run horizon to verify our dashboard is working:

$ tox -e runserver -- 0:9000

Go to http://<your server>:9000 using a browser. After login as an admin, display My
Panel to see the Instances table. For every ACTIVE instance in the table, there will be a Create
Snapshot action on the row. Click on Create Snapshot, enter a snapshot name in the form that
is shown, then click to close the form. The Project Images view should be shown with the new
snapshot added to the table.

Conclusion

What youve learned here is the fundamentals of how to add a table action that requires a form for data
entry. This can easily be expanded from creating a snapshot to other API calls that require more complex
forms to gather the necessary information.

If you have feedback on how this tutorial could be improved, please feel free to submit a bug against
Horizon in launchpad.

3.1. Contributor Documentation 173

https://bugs.launchpad.net/horizon

Horizon Documentation, Release 18.6.5.dev13

Extending an AngularJS Workflow

A workflow extends the extensibleService. This means that all workflows inherit properties and
methods provided by the extensibleService. Extending a workflow allows you to add your own
steps, remove existing steps, and inject custom data handling logic. Refer to inline documentation on
what those properties and methods are.

We highly recommend that you complete the Tutorial: Creating an Horizon Plugin if you have not done
so already. If you do not know how to package and install a plugin, the rest of this tutorial will not make
sense! In this tutorial, we will examine an existing workflow and how we can extend it as a plugin.

Note: Although this tutorial focuses on extending a workflow, the steps here can easily be adapted
to extend any service that inherited the extensibleService. Examples of other extensible points
include table columns and table actions.

File Structure

Remember that the goal of this tutorial is to inject our custom step into an existing workflow. All of the
files we are interested in reside in the static folder.

myplugin

enabled
_31000_myplugin.py

static
horizon

app
core

images
plugins

myplugin.module.js

steps
mystep

mystep.controller.js
mystep.help.html
mystep.html

myplugin.module.js

This is the entry point into our plugin. We hook into an existing module via the run block which is
executed after the module has been initialized. All we need to do is inject it as a dependency and then
use the methods provided in the extensible service to override or modify steps. In this example, we are
going to prepend our custom step so that it will show up as the first step in the wizard.

(function () {
'use strict';

angular

(continues on next page)

174 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

.module('horizon.app.core.images')

.run(myPlugin);

myPlugin.$inject = [
'horizon.app.core.images.basePath',
'horizon.app.core.images.workflows.create-volume.service'

];

function myPlugin(basePath, workflow) {
var customStep = {

id: 'mypluginstep',
title: gettext('My Step'),
templateUrl: basePath + 'steps/mystep/mystep.html',
helpUrl: basePath + 'steps/mystep/mystep.help.html',
formName: 'myStepForm'

};
workflow.prepend(customStep);

}

})();

Note: Replace horizon.app.core.images.workflows.create-volume.service with
the workflow you intend to augment.

mystep.controller.js

It is important to note that the scope is the glue between our controllers, this is how we are propagating
events from one controller to another. We can propagate events upward using the $emit method and
propagate events downward using the $broadcast method.

Using the $on method, we can listen to events generated within the scope. In this manner, actions we
completed in the wizard are visually reflected in the table even though they are two completely different
widgets. Similarly, you can share data between steps in your workflow as long as they share the same
parent scope.

In this example, we are listening for events generated by the wizard and the user panel. We also emit a
custom event that other controllers can register to when favorite color changes.

(function() {
'use strict';

angular
.module('horizon.app.core.images')
.controller('horizon.app.core.images.steps.myStepController',

myStepController);

myStepController.$inject = [
'$scope',
'horizon.framework.widgets.wizard.events',
'horizon.app.core.images.events'

];

(continues on next page)

3.1. Contributor Documentation 175

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

function myStepController($scope, wizardEvents, imageEvents) {

var ctrl = this;
ctrl.favoriteColor = 'red';

///////////////////////////

$scope.$on(wizardEvents.ON_SWITCH, function(e, args) {
console.info('Wizard is switching step!');
console.info(args);

});

$scope.$on(wizardEvents.BEFORE_SUBMIT, function() {
console.info('About to submit!');

});

$scope.$on(imageEvents.VOLUME_CHANGED, function(event, newVolume) {
console.info(newVolume);

});

///////////////////////////

$scope.$watchCollection(getFavoriteColor, watchFavoriteColor);

function getFavoriteColor() {
return ctrl.favoriteColor;

}

function watchFavoriteColor(newColor, oldColor) {
if (newColor != oldColor) {

$scope.$emit('mystep.favoriteColor', newColor);
}

}
}

})();

mystep.help.html

In this tutorial, we will leave this file blank. Include additional information here if your step requires it.
Otherwise, remove the file and the helpUrl property from your step.

mystep.html

This file contains contents you want to display to the user. We will provide a simple example of a step
that asks for your favorite color. The most important thing to note here is the reference to our controller
via the ng-controller directive. This is essentially the link to our controller.

<div ng-controller="horizon.app.core.images.steps.myStepController as ctrl
↪→">
<h1 translate>Blue Plugin</h1>
<div class="content">

(continues on next page)

176 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

<div class="subtitle" translate>My custom step</div>
<div translate style="margin-bottom:1em;">

Place your custom content here!
</div>
<div class="selected-source clearfix">

<div class="row">
<div class="col-xs-12 col-sm-8">

<div class="form-group required">
<label class="control-label" translate>Favorite color</label>
<input type="text" class="form-control"

ng-model="ctrl.favoriteColor"
placeholder="{$ 'Enter your favorite color'|translate $}">

</div>
</div>

</div><!-- row -->
</div><!-- clearfix -->

</div><!-- content -->
</div><!-- controller -->

Testing

Now that we have completed our plugin, lets package it and test that it works. If you need a refresher,
take a look at the installation section in Tutorial: Creating an Horizon Plugin.

3.1.7 Topic Guides

Information on how to work with specific areas of Horizon can be found in the following topic guides.

Code Style

As a project, Horizon adheres to code quality standards.

Python

We follow PEP8 for all our Python code, and use pep8.py (available via the shortcut tox -e pep8)
to validate that our code meets proper Python style guidelines.

Django

Additionally, we follow Djangos style guide for templates, views, and other miscellany.

3.1. Contributor Documentation 177

https://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/

Horizon Documentation, Release 18.6.5.dev13

JavaScript

The following standards are divided into required and recommended sections. Our main goal in estab-
lishing these best practices is to have code that is reliable, readable, and maintainable.

Required

Reliable

• The code has to work on the stable and latest versions of Firefox, Chrome, Safari, and Opera web
browsers, and on Microsoft Internet Explorer 11 and later.

• If you turned compression off during development via COMPRESS_ENABLED = False in lo-
cal_settings.py, re-enable compression and test your code before submitting.

• Use === as opposed to == for equality checks. The == will do a type cast before comparing,
which can lead to unwanted results.

Note: If typecasting is desired, explicit casting is preferred to keep the meaning of your code
clear.

• Keep document reflows to a minimum. DOM manipulation is expensive, and can become a perfor-
mance issue. If you are accessing the DOM, make sure that you are doing it in the most optimized
way. One example is to build up a document fragment and then append the fragment to the DOM
in one pass instead of doing multiple smaller DOM updates.

• Use strict, enclosing each JavaScript file inside a self-executing function. The self-executing
function keeps the strict scoped to the file, so its variables and methods are not exposed to other
JavaScript files in the product.

Note: Using strict will throw exceptions for common coding errors, like accessing global vars,
that normally are not flagged.

Example:

(function(){
'use strict';
// code...

})();

• Use forEach | each when looping whenever possible. AngularJS and jQuery both provide for
each loops that provide both iteration and scope.

AngularJS:

angular.forEach(objectToIterateOver, function(value, key) {
// loop logic

});

jQuery:

178 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

$.each(objectToIterateOver, function(key, value) {
// loop logic

});

• Do not put variables or functions in the global namespace. There are several reasons why globals
are bad, one being that all JavaScript included in an application runs in the same scope. The issue
with that is if another script has the same method or variable names they overwrite each other.

• Always put var in front of your variables. Not putting var in front of a variable puts that variable
into the global space, see above.

• Do not use eval(). The eval (expression) evaluates the expression passed to it. This can open
up your code to security vulnerabilities and other issues.

• Do not use with object {code}. The with statement is used to access properties of an object.
The issue with with is that its execution is not consistent, so by reading the statement in the code
it is not always clear how it is being used.

Readable & Maintainable

• Give meaningful names to methods and variables.

• Avoid excessive nesting.

• Avoid HTML and CSS in JS code. HTML and CSS belong in templates and stylesheets respec-
tively. For example:

– In our HTML files, we should focus on layout.

1. Reduce the small/random <script> and <style> elements in HTML.

2. Avoid in-lining styles into element in HTML. Use attributes and classes instead.

– In our JS files, we should focus on logic rather than attempting to manipulate/style elements.

1. Avoid statements such as element.css({property1,property2...}) they
belong in a CSS class.

2. Avoid statements such as $("<div>abc</div>") they belong
in a HTML template file. Use show | hide | clone elements if dynamic content is
required.

3. Avoid using classes for detection purposes only, instead, defer to attributes. For example
to find a div:

<div class="something"></div>
$(".something").html("Don't find me this way!");

is better found like:

<div data-something></div>
$("div[data-something]").html("You found me correctly!");

• Avoid commented-out code.

• Avoid dead code.

Performance

• Avoid creating instances of the same object repeatedly within the same scope. Instead, assign the
object to a variable and re-use the existing object. For example:

3.1. Contributor Documentation 179

Horizon Documentation, Release 18.6.5.dev13

$(document).on('click', function() { /* do something. */ });
$(document).on('mouseover', function() { /* do something. */ });

A better approach:

var $document = $(document);
$document.on('click', function() { /* do something. */ });
$document.on('mouseover', function() { /* do something. */ });

In the first approach a jQuery object for document is created each time. The second approach
creates only one jQuery object and reuses it. Each object needs to be created, uses memory, and
needs to be garbage collected.

Recommended

Readable & Maintainable

• Put a comment at the top of every file explaining what the purpose of this file is when the naming
is not obvious. This guideline also applies to methods and variables.

• Source-code formatting (or beautification) is recommended but should be used with caution.
Keep in mind that if you reformat an entire file that was not previously formatted the same way,
it will mess up the diff during the code review. It is best to use a formatter when you are working
on a new file by yourself, or with others who are using the same formatter. You can also choose
to format a selected portion of a file only. Instructions for setting up ESLint for Eclipse, Sublime
Text, Notepad++ and WebStorm/PyCharm are provided.

• Use 2 spaces for code indentation.

• Use { } for if, for, while statements, and dont combine them on one line.

// Do this //Not this // Not this
if(x) { if(x) if(x) y =x;
y=x; y=x;

}

• Use ESLint in your development environment.

AngularJS

Note: This section is intended as a quick intro to contributing with AngularJS. For more detailed
information, check the AngularJS Topic Guide.

180 Chapter 3. Contributor Docs

https://wiki.openstack.org/wiki/Horizon/Javascript/EditorConfig

Horizon Documentation, Release 18.6.5.dev13

John Papa Style Guide

The John Papa Style Guide is the primary point of reference for Angular code style. This style guide has
been endorsed by the AngularJS team:

"The most current and detailed Angular Style Guide is the
community-driven effort led by John Papa and Todd Motto."

- http://angularjs.blogspot.com/2014/02/an-angularjs-style-guide-and-best.
↪→html

The style guide is found at the below location:

https://github.com/johnpapa/angular-styleguide

When reviewing / writing, please refer to the sections of this guide. If an issue is encountered, note
it with a comment and provide a link back to the specific issue. For example, code should use named
functions. A review noting this should provide the following link in the comments:

https://github.com/johnpapa/angular-styleguide#style-y024

In addition to John Papa, the following guidelines are divided into required and recommended sections.

Required

• Scope is not the model (model is your JavaScript Objects). The scope references the model. Use
isolate scopes wherever possible.

– https://github.com/angular/angular.js/wiki/Understanding-Scopes

– Read-only in templates.

– Write-only in controllers.

• Since Django already uses {{ }}, use {$ $} or {% verbatim %} instead.

ESLint

ESLint is a great tool to be used during your code editing to improve JavaScript quality by checking
your code against a configurable list of checks. Therefore, JavaScript developers should configure their
editors to use ESLint to warn them of any such errors so they can be addressed. Since ESLint has a
ton of configuration options to choose from, links are provided below to the options Horizon wants
enforced along with the instructions for setting up ESLint for Eclipse, Sublime Text, Notepad++ and
WebStorm/PyCharm.

Instructions for setting up ESLint: ESLint setup instructions

Note: ESLint is part of the automated unit tests performed by Jenkins. The automated test use the
default configurations, which are less strict than the configurations we recommended to run in your
local development environment.

3.1. Contributor Documentation 181

https://github.com/johnpapa/angular-styleguide
https://github.com/johnpapa/angular-styleguide#style-y024
https://github.com/angular/angular.js/wiki/Understanding-Scopes
https://wiki.openstack.org/wiki/Horizon/Javascript/EditorConfig

Horizon Documentation, Release 18.6.5.dev13

CSS

Style guidelines for CSS are currently quite minimal. Do your best to make the code readable and
well-organized. Two spaces are preferred for indentation so as to match both the JavaScript and HTML
files.

JavaScript and CSS libraries using xstatic

We do not bundle third-party code in Horizons source tree. Instead, we package the required files as
xstatic Python packages and add them as dependencies to Horizon.

To create a new xstatic package:

1. Check if the library is already packaged as xstatic on PyPi, by searching for the library name. If
it already is, go to step 5. If it is, but not in the right version, contact the original packager to have
them update it.

2. Package the library as an xstatic package by following the instructions in xstatic documentation.
Install the xstatic-release script and follow the instructions that come with it.

3. Create a new repository under OpenStack. Use xstatic-core and xstatic-ptl groups for the ACLs.
Make sure to include the -pypi-wheel-upload job in the project config.

4. Set up PyPi to allow OpenStack (the openstackci user) to publish your package.

5. Add the new package to global-requirements.

To make a new release of the package, you need to:

1. Ensure the version information in the xstatic/pkg/<package name>/__init__.py file is up to date,
especially the BUILD.

2. Push your updated package up for review in gerrit.

3. Once the review is approved and the change merged, request a release by updating or creating the
appropriate file for the xstatic package in the releases repository under deliverables/_independent.
That will cause it to be automatically packaged and released to PyPi.

Warning: Note that once a package is released, you can not un-release it. You should never attempt
to modify, delete or rename a released package without a lot of careful planning and feedback from
all projects that use it.

For the purpose of fixing packaging mistakes, xstatic has the build number mechanism. Simply fix
the error, increment the build number and release the newer package.

182 Chapter 3. Contributor Docs

https://xstatic.readthedocs.io/en/latest/packaging.html
https://pypi.org/project/xstatic-release/
https://docs.openstack.org/infra/manual/creators.html
https://docs.openstack.org/infra/manual/creators.html#give-openstack-permission-to-publish-releases
https://github.com/openstack/requirements/blob/master/global-requirements.txt
https://opendev.org/openstack/releases/src/branch/master/README.rst
https://opendev.org/openstack/releases

Horizon Documentation, Release 18.6.5.dev13

Integrating a new xstatic package into Horizon

Having done a release of an xstatic package:

1. Look for the upper-constraints.txt edit related to the xstatic release that was just performed.
One will be created automatically by the release process in the openstack/requirements
project with the topic new-release. You should -1 that patch until you are confident Horizon does
not break (or you have generated a patch to fix Horizon for that release.) If no upper-constraints.txt
patch is automatically generated, ensure the releases yaml file created in the releases repository
has the include-pypi-link: yes setting.

2. Pull that patch down so you have the edited upper-constraints.txt file locally.

3. Set the environment variable UPPER_CONSTRAINTS_FILE to the edited upper-constraints.txt
file name and run tests or local development server through tox. This will pull in the precise
version of the xstatic package that you need.

4. Move on to releasing once youre happy the Horizon changes are stable.

Releasing a new compatible version of Horizon to address issues in the new xstatic release:

1. Continue to -1 the upper-constraints.txt patch above until this process is complete. A +1 from a
Horizon developer will indicate to the requirements team that the upper-constraints.txt patch is
OK to merge.

2. When submitting your changes to Horizon to address issues around the new xstatic release, use a
Depends-On: referencing the upper-constraints.txt review. This will cause the OpenStack testing
infrastructure to pull in your updated xstatic package as well.

3. Merge the upper-constraints.txt patch and the Horizon patch noting that Horizons gate may be
broken in the interim between these steps, so try to minimise any delay there. With the Depends-
On its actually safe to +W the Horizon patch, which will be held up until the related upper-
constraints.txt patch merges.

4. Once the upper-constraints.txt patch merges, you should propose a patch to global-requirements
which bumps the minimum version of the package up to the upper-constraints version so that
deployers / packagers who dont honor upper-constraints still get compatible versions of the pack-
ages.

HTML

Again, readability is paramount; however be conscientious of how the browser will handle whitespace
when rendering the output. Two spaces is the preferred indentation style to match all front-end code.

Exception Handling

Avoid propogating direct exception messages thrown by OpenStack APIs to the UI. It is a precaution
against giving obscure or possibly sensitive data to a user. These error messages from the API are
also not translatable. Until there is a standard error handling framework implemented by the services
which presents clean and translated messages, horizon catches all the exceptions thrown by the API and
normalizes them in horizon.exceptions.handle().

3.1. Contributor Documentation 183

https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://review.opendev.org/#/q/status:open+project:openstack/requirements+branch:master+topic:new-release
https://opendev.org/openstack/releases

Horizon Documentation, Release 18.6.5.dev13

Documentation

Horizons documentation is written in reStructuredText (reST) and uses Sphinx for additional parsing
and functionality, and should follow standard practices for writing reST. This includes:

• Flow paragraphs such that lines wrap at 80 characters or less.

• Use proper grammar, spelling, capitalization and punctuation at all times.

• Make use of Sphinxs autodoc feature to document modules, classes and functions. This keeps the
docs close to the source.

• Where possible, use Sphinxs cross-reference syntax (e.g. :class:`~horizon.foo.Bar)
when referring to other Horizon components. The better-linked our docs are, the easier they are
to use.

Be sure to generate the documentation before submitting a patch for review. Unexpected warnings
often appear when building the documentation, and slight reST syntax errors frequently cause links or
cross-references not to work correctly.

Documentation is generated with Sphinx using the tox command. To create HTML docs and man pages:

$ tox -e docs

The results are in the doc/build/html and doc/build/man directories respectively.

Conventions

Simply by convention, we have a few rules about naming:

• The term project is used in place of Keystones tenant terminology in all user-facing text. The term
tenant is still used in API code to make things more obvious for developers.

• The term dashboard refers to a top-level dashboard class, and panel to the sub-items within a
dashboard. Referring to a panel as a dashboard is both confusing and incorrect.

Workflows Topic Guide

One of the most challenging aspects of building a compelling user experience is crafting complex multi-
part workflows. Horizons workflows module aims to bring that capability within everyday reach.

See also:

For detailed API information refer to the Horizon Workflows.

184 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Workflows

Workflows are complex forms with tabs, each workflow must consist of classes extending the
Workflow , Step and Action

Complex example of a workflow

The following is a complex example of how data is exchanged between urls, views, workflows and
templates:

1. In urls.py, we have the named parameter. E.g. resource_class_id.

RESOURCE_CLASS = r'^(?P<resource_class_id>[^/]+)/%s$'

urlpatterns = [
url(RESOURCE_CLASS % 'update', UpdateView.as_view(), name='update

↪→')
]

2. In views.py, we pass data to the template and to the action(form) (action can also pass data to
the get_context_data method and to the template).

class UpdateView(workflows.WorkflowView):
workflow_class = UpdateResourceClass

def get_context_data(self, **kwargs):
context = super(UpdateView, self).get_context_data(**kwargs)
Data from URL are always in self.kwargs, here we pass the

↪→data
to the template.
context["resource_class_id"] = self.kwargs['resource_class_id

↪→']
Data contributed by Workflow's Steps are in the
context['workflow'].context list. We can use that in the
template too.
return context

def _get_object(self, *args, **kwargs):
Data from URL are always in self.kwargs, we can use them

↪→here
to load our object of interest.
resource_class_id = self.kwargs['resource_class_id']
Code omitted, this method should return some object obtained
from API.

def get_initial(self):
resource_class = self._get_object()
This data will be available in the Action's methods and
Workflow's handle method.
But only if the steps will depend on them.
return {'resource_class_id': resource_class.id,

'name': resource_class.name,
'service_type': resource_class.service_type}

3. In workflows.py we process the data, it is just more complex django form.

3.1. Contributor Documentation 185

Horizon Documentation, Release 18.6.5.dev13

class ResourcesAction(workflows.Action):
The name field will be automatically available in all action's
methods.
If we want this field to be used in the another Step or

↪→Workflow,
it has to be contributed by this step, then depend on in another
step.
name = forms.CharField(max_length=255,

label=_("Testing Name"),
help_text="")

def handle(self, request, data):
pass
If we want to use some data from the URL, the Action's step
has to depend on them. It's then available in
self.initial['resource_class_id'] or data['resource_class_id

↪→'].
In other words, resource_class_id has to be passed by view's
get_initial and listed in step's depends_on list.

We can also use here the data from the other steps. If we
↪→want

the data from the other step, the step needs to contribute
↪→the

data and the steps needs to be ordered properly.

class UpdateResources(workflows.Step):
action_class = ResourcesAction
This passes data from Workflow context to action methods
(handle, clean). Workflow context consists of URL data and data
contributed by other steps.
depends_on = ("resource_class_id",)

By contributing, the data on these indexes will become
↪→available to

Workflow and to other Steps (if they will depend on them).
↪→Notice,

that the resources_object_ids key has to be manually added in
contribute method first.
contributes = ("resources_object_ids", "name")

def contribute(self, data, context):
We can obtain the http request from workflow.
request = self.workflow.request
if data:

Only fields defined in Action are automatically
available for contribution. If we want to contribute
something else, We need to override the contribute

↪→method
and manually add it to the dictionary.
context["resources_object_ids"] =\

request.POST.getlist("resources_object_ids")

We have to merge new context with the passed data or let
the superclass do this.
context.update(data)
return context

(continues on next page)

186 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

class UpdateResourceClass(workflows.Workflow):
default_steps = (UpdateResources,)

def handle(self, request, data):
pass
This method is called as last (after all Action's handle
methods). All data that are listed in step's 'contributes='
and 'depends_on=' are available here.
It can be easier to have the saving logic only here if steps
are heavily connected or complex.

data["resources_object_ids"], data["name"] and
data["resources_class_id"] are available here.

DataTables Topic Guide

Horizon provides the horizon.tables module to provide a convenient, reusable API for build-
ing data-driven displays and interfaces. The core components of this API fall into three categories:
DataTables, Actions, and Class-based Views.

See also:

For a detailed API information check out the Horizon DataTables.

Tables

The majority of interface in a dashboard-style interface ends up being tabular displays of the various
resources the dashboard interacts with. The DataTable class exists so you dont have to reinvent the
wheel each time.

Creating your own tables

Creating a table is fairly simple:

1. Create a subclass of DataTable.

2. Define columns on it using Column.

3. Create an inner Meta class to contain the special options for this table.

4. Define any actions for the table, and add them to table_actions or row_actions.

Examples of this can be found in any of the tables.py modules included in the reference modules
under horizon.dashboards.

3.1. Contributor Documentation 187

Horizon Documentation, Release 18.6.5.dev13

Connecting a table to a view

Once youve got your table set up the way you like it, the next step is to wire it up to a view. To make this
as easy as possible Horizon provides the DataTableView class-based view which can be subclassed
to display your table with just a couple lines of code. At its simplest, it looks like this:

from horizon import tables
from .tables import MyTable

class MyTableView(tables.DataTableView):
table_class = MyTable
template_name = "my_app/my_table_view.html"

def get_data(self):
return my_api.objects.list()

In the template you would just need to include the following to render the table:

{{ table.render }}

Thats it! Easy, right?

Actions

Actions comprise any manipulations that might happen on the data in the table or the table itself. For
example, this may be the standard object CRUD, linking to related views based on the objects id, filtering
the data in the table, or fetching updated data when appropriate.

When actions get run

There are two points in the request-response cycle in which actions can take place; prior to data being
loaded into the table, and after the data is loaded. When youre using one of the pre-built class-based
views for working with your tables the pseudo-workflow looks like this:

1. The request enters view.

2. The table class is instantiated without data.

3. Any preemptive actions are checked to see if they should run.

4. Data is fetched and loaded into the table.

5. All other actions are checked to see if they should run.

6. If none of the actions have caused an early exit from the view, the standard response from the view
is returned (usually the rendered table).

The benefit of the multi-step table instantiation is that you can use preemptive actions which dont need
access to the entire collection of data to save yourself on processing overhead, API calls, etc.

188 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Basic actions

At their simplest, there are three types of actions: actions which act on the data in the table, actions
which link to related resources, and actions that alter which data is displayed. These correspond to
Action, LinkAction, and FilterAction.

Writing your own actions generally starts with subclassing one of those action classes and customizing
the designated attributes and methods.

Shortcut actions

There are several common tasks for which Horizon provides pre-built shortcut classes. These include
BatchAction, and DeleteAction. Each of these abstracts away nearly all of the boilerplate asso-
ciated with writing these types of actions and provides consistent error handling, logging, and user-facing
interaction.

It is worth noting that BatchAction and DeleteAction are extensions of the standard Action
class. Some BatchAction or DeleteAction classes may cause some unrecoverable results, like
deleted images or unrecoverable instances. It may be helpful to specify specific help_text to explain the
concern to the user, such as Deleted images are not recoverable.

Preemptive actions

Action classes which have their preempt attribute set to True will be evaluated before any data
is loaded into the table. As such, you must be careful not to rely on any table methods that require
data, such as get_object_display() or get_object_by_id(). The advantage of preemptive
actions is that you can avoid having to do all the processing, API calls, etc. associated with loading data
into the table for actions which dont require access to that information.

Policy checks on actions

The policy_rules attribute, when set, will validate access to the action using the policy rules speci-
fied. The attribute is a list of scope/rule pairs. Where the scope is the service type defining the rule and
the rule is a rule from the corresponding service policy.json file. The format of horizon.tables.
Action.policy_rules looks like:

(("identity", "identity:get_user"),)

Multiple checks can be made for the same action by merely adding more tuples to the list.
The policy check will use information stored in the session about the user and the result of
get_policy_target() (which can be overridden in the derived action class) to determine if the
user can execute the action. If the user does not have access to the action, the action is not added to the
table.

If policy_rules is not set, no policy checks will be made to determine if the action should be visible
and will be displayed solely based on the result of allowed().

For more information on policy based Role Based Access Control see Horizon Policy Enforcement
(RBAC: Role Based Access Control).

3.1. Contributor Documentation 189

Horizon Documentation, Release 18.6.5.dev13

Table Cell filters (decorators)

DataTable displays lists of objects in rows and object attributes in cell. How should we proceed, if we
want to decorate some column, e.g. if we have column memory which returns a number e.g. 1024, and
we want to show something like 1024.00 GB inside table?

Decorator pattern

The clear anti-pattern is defining the new attributes on object like ram_float_format_2_gb or to
tweak a DataTable in any way for displaying purposes.

The cleanest way is to use filters. Filters are decorators, following GOF Decorator pattern.
This way DataTable logic and displayed object logic are correctly separated from
presentation logic of the object inside of the various tables. And therefore the filters are
reusable in all tables.

Filter function

Horizon DatablesTable takes a tuple of pointers to filter functions or anonymous lambda functions.
When displaying a Cell, DataTable takes Column filter functions from left to right, using the
returned value of the previous function as a parameter of the following function. Then displaying the
returned value of the last filter function.

A valid filter function takes one parameter and returns the decorated value. So e.g. these are valid filter
functions

Filter function.
def add_unit(v):

return str(v) + " GB"

Or filter lambda function.
lambda v: str(v) + " GB"

This is also a valid definition of course, although for the change of the
unit parameter, function has to be wrapped by lambda
(e.g. floatformat function example below).
def add_unit(v, unit="GB"):

return str(v) + " " + unit

Using filters in DataTable column

DataTable takes tuple of filter functions, so e.g. this is valid decorating of a value with float format and
with unit

ram = tables.Column(
"ram",
verbose_name=_('Memory'),
filters=(lambda v: floatformat(v, 2),

add_unit))

It always takes tuple, so using only one filter would look like this

190 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

filters=(lambda v: floatformat(v, 2),)

The decorated parameter doesnt have to be only a string or number, it can be anything e.g. list or an
object. So decorating of object, that has attributes value and unit would look like this

ram = tables.Column(
"ram",
verbose_name=_('Memory'),
filters=(lambda x: getattr(x, 'value', '') +

" " + getattr(x, 'unit', ''),))

Available filters

There are a load of filters, that can be used, defined in django already: https://github.com/django/django/
blob/master/django/template/defaultfilters.py

So its enough to just import and use them, e.g.

from django.template import defaultfilters as filters

code omitted
filters=(filters.yesno, filters.capfirst)

from django.template.defaultfilters import timesince
from django.template.defaultfilters import title

code omitted
filters=(parse_isotime, timesince)

Inline editing

Table cells can be easily upgraded with in-line editing. With use of django.form.Field, we are able to
run validations of the field and correctly parse the data. The updating process is fully encapsulated into
table functionality, communication with the server goes through AJAX in JSON format. The javascript
wrapper for inline editing allows each table cell that has in-line editing available to:

1. Refresh itself with new data from the server.

2. Display in edit mode.

3. Send changed data to server.

4. Display validation errors.

There are basically 3 things that need to be defined in the table in order to enable in-line editing.

3.1. Contributor Documentation 191

https://github.com/django/django/blob/master/django/template/defaultfilters.py
https://github.com/django/django/blob/master/django/template/defaultfilters.py

Horizon Documentation, Release 18.6.5.dev13

Fetching the row data

Defining an get_data method in a class inherited from tables.Row. This method takes care of
fetching the row data. This class has to be then defined in the table Meta class as row_class =
UpdateRow.

Example:

class UpdateRow(tables.Row):
this method is also used for automatic update of the row
ajax = True

def get_data(self, request, project_id):
getting all data of all row cells
project_info = api.keystone.tenant_get(request, project_id,

admin=True)
return project_info

Defining a form_field for each Column that we want to be in-line edited.

Form field should be django.form.Field instance, so we can use django validations and parsing of
the values sent by POST (in example validation required=True and correct parsing of the checkbox
value from the POST data).

Form field can be also django.form.Widget class, if we need to just display the form widget in the
table and we dont need Field functionality.

Then connecting UpdateRow and UpdateCell classes to the table.

Example:

class TenantsTable(tables.DataTable):
Adding html text input for inline editing, with required validation.
HTML form input will have a class attribute tenant-name-input, we
can define here any HTML attribute we need.
name = tables.Column('name', verbose_name=_('Name'),

form_field=forms.CharField(),
form_field_attributes={'class':'tenant-name-input

↪→'},
update_action=UpdateCell)

Adding html textarea without required validation.
description = tables.Column(lambda obj: getattr(obj, 'description',

↪→None),
verbose_name=_('Description'),
form_field=forms.CharField(

widget=forms.Textarea(),
required=False),

update_action=UpdateCell)

Id will not be inline edited.
id = tables.Column('id', verbose_name=_('Project ID'))

Adding html checkbox, that will be shown inside of the table cell
↪→with

(continues on next page)

192 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

label
enabled = tables.Column('enabled', verbose_name=_('Enabled'),

↪→status=True,
form_field=forms.BooleanField(

label=_('Enabled'),
required=False),

update_action=UpdateCell)

class Meta(object):
name = "tenants"
verbose_name = _("Projects")
Connection to UpdateRow, so table can fetch row data based on
their primary key.
row_class = UpdateRow

Horizon Policy Enforcement (RBAC: Role Based Access Control)

Introduction

Horizons policy enforcement builds on the oslo_policy engine. The basis of which is
openstack_auth/policy.py. Services in OpenStack use the oslo policy engine to define pol-
icy rules to limit access to APIs based primarily on role grants and resource ownership.

The implementation in Horizon is based on copies of policy files found in the services source code.

The service rules files are loaded into the policy engine to determine access rights to actions and service
APIs.

Horizon Settings

There are a few settings that must be in place for the Horizon policy engine to work.

• POLICY_CHECK_FUNCTION

• POLICY_DIRS

• POLICY_FILES_PATH

• POLICY_FILES

For more detail, see Settings Reference.

How users roles are determined

Each policy check uses information about the user stored on the request to determine the users roles.
This information was extracted from the scoped token received from Keystone when authenticating.

Entity ownership is also a valid role. To verify access to specific entities like a project, the target must
be specified. See the section rule targets later in this document.

3.1. Contributor Documentation 193

Horizon Documentation, Release 18.6.5.dev13

How to Utilize RBAC

Django: Table action

The primary way to add role based access control checks to panels is in the definition of table ac-
tions. When implementing a derived action class, setting the policy_rules attribute to valid pol-
icy rules will force a policy check before the horizon.tables.Action.allowed() method is
called on the action. These rules are defined in the policy files pointed to by POLICY_PATH and
POLICY_FILES. The rules are role based, where entity owner is also a role. The format for the
policy_rules is a list of two item tuples. The first component of the tuple is the scope of the policy
rule, this is the service type. This informs the policy engine which policy file to reference. The second
component is the rule to enforce from the policy file specified by the scope. An example tuple is:

("identity", "identity:get_user")

x tuples can be added to enforce x rules.

Note: If a rule specified is not found in the policy file, the policy check will return False and the action
will not be allowed.

Django: policy check function

The secondary way to add a role based check is to directly use the check() method. The method
takes a list of actions, same format as the policy_rules attribute detailed above; the current request
object; and a dictionary of action targets. This is the method that horizon.tables.Action class
utilizes. Examples look like:

from openstack_dashboard import policy

allowed = policy.check((("identity", "identity:get_user"),
("identity", "identity:get_project"),), request)

can_see = policy.check((("identity", "identity:get_user"),), request,
target={"domain_id": domainId})

Note: Any time multiple rules are specified in a single policy.check method call, the result is the logical
and of each rule check. So, if any rule fails verification, the result is False.

194 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Angular: ifAllowed method

The third way to add a role based check is in javascript files. Use the method ifAllowed() in file open-
stack_dashboard.static.app.core.policy.service.js. The method takes a list of actions, similar format with
the policy_rules attribute detailed above. An Example looks like:

angular
.module('horizon.dashboard.identity.users')
.controller('identityUsersTableController', identityUsersTableController);

identityUsersTableController.$inject = [
'horizon.app.core.openstack-service-api.policy',

];

function identityUsersTableController(toast, gettext, policy, keystone) {
var rules = [['identity', 'identity:list_users']];
policy.ifAllowed({ rules: rules }).then(policySuccess, policyFailed);

}

Angular: hz-if-policies

The fourth way to add a role based check is in html files. Use angular directive hz-if-policies in file
openstack_dashboard/static/app/core/cloud-services/hz-if-policies.directive.js. Assume you have the
following policy defined in your angular controller:

ctrl.policy = { rules: [["identity", "identity:update_user"]] }

Then in your HTML, use it like so:

<div hz-if-policies='ctrl.policy'>
I am visible if the policy is allowed!

</div>

Rule Targets

Some rules allow access if the user owns the entity. Policy check targets specify particular entities to
check for user ownership. The target parameter to the check() method is a simple dictionary. For
instance, the target for checking access a project looks like:

{"project_id": "0905760626534a74979afd3f4a9d67f1"}

If the value matches the project_id to which the users token is scoped, then access is allowed.

When deriving the horizon.tables.Action class for use in a table, if a policy check is de-
sired for a particular target, the implementer should override the horizon.tables.Action.
get_policy_target() method. This allows a programmatic way to specify the target based on
the current datum. The value returned should be the target dictionary.

3.1. Contributor Documentation 195

Horizon Documentation, Release 18.6.5.dev13

Policy file maintenance

The policy implementation uses the copies of policies defined in back-end services.

As of Queens, the OpenStack community are in the process of policy-in-code. Some projects already
define their policies in the code, and some still have their policies in policy.json files.

For project with the legacy policy.json files, what we need to do is just to copy policy.json
into the horizon tree.

For projects with policy-in-code, all policies are defined as python codes, so we first need to generate
policy files with its default rules. To do this, run the following command after install a corresponding
project.

oslopolicy-sample-generator --namespace $PROJECT --format json \
--output-file $HORIZON_REPO/openstack_dashboard/conf/$PROJECT_policy.

↪→json

After syncing policies from back-end services, you need to check what are changed. If a policy referred
by horizon has been changed, you need to check and modify the horizon code base accordingly. To
summarize which policies are removed or added, a convenient tool is provided:

$ cd openstack_dashboard/conf/
$ python ../../tools/policy-diff.py --help
usage: policy-diff.py [-h] --old OLD --new NEW [--mode {add,remove}]

optional arguments:
-h, --help show this help message and exit
--old OLD Current policy file
--new NEW New policy file
--mode {add,remove} Diffs to be shown

Show removed policies
The default is "--mode remove". You can omit --mode option.
$ python ../../tools/policy-diff.py \

--old keystone_policy.json --new keystone_policy.json.new --mode remove
default
identity:change_password
identity:get_identity_provider

Horizon Microversion Support

Introduction

Several services use API microversions, which allows consumers of that API to specify an exact version
when making a request. This can be useful in ensuring a feature continues to work as expected across
many service releases.

196 Chapter 3. Contributor Docs

https://governance.openstack.org/tc/goals/queens/policy-in-code.html

Horizon Documentation, Release 18.6.5.dev13

Adding a feature that was introduced in a microversion

1. Add the feature to the MICROVERSION_FEATURES dict in openstack_dashboard/api/
microversions.py under the appropriate service name. The feature should have at least two
versions listed; the minimum version (i.e. the version that introduced the feature) and the current
working version. Providing multiple versions reduces project maintenance overheads and helps
Horizon work with older service deployments.

2. Use the is_feature_available function for your service to show or hide the function.:

from openstack_dashboard.api import service

...

def allowed(self, request):
return service.is_feature_available('feature')

3. Send the correct microversion with get_microversion function in the API layer.:

def resource_list(request):
try:

microversion = get_microversion(request, 'feature')
client = serviceclient(request, microversion)
return client.resource_list()

Microversion references

Nova https://docs.openstack.org/nova/latest/reference/api-microversion-history.html

Cinder https://docs.openstack.org/cinder/latest/contributor/api_microversion_history.html

API-WG https://specs.openstack.org/openstack/api-wg/guidelines/microversion_
specification.html

AngularJS Topic Guide

Note: This guide is a work in progress. It has been uploaded to encourage faster reviewing and code
development in Angular, and to help the community standardize on a set of guidelines. There are notes
inline on sections that are likely to change soon, and the docs will be updated promptly after any changes.

Getting Started

The tooling for AngularJS testing and code linting relies on npm, the node package manager, and thus
relies on Node.js. While it is not a prerequisite to developing with Horizon, it is advisable to install
Node.js, either through downloading or via a package manager.

Once you have npm available on your system, run npm install from the horizon root directory.

3.1. Contributor Documentation 197

https://docs.openstack.org/nova/latest/reference/api-microversion-history.html
https://docs.openstack.org/cinder/latest/contributor/api_microversion_history.html
https://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html
https://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html
https://nodejs.org/download/
https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager

Horizon Documentation, Release 18.6.5.dev13

Code Style

We currently use the Angular Style Guide by John Papa as reference material. When reviewing
AngularJS code, it is helpful to link directly to the style guide to reinforce a point, e.g. https:
//github.com/johnpapa/angular-styleguide#style-y024

ESLint

ESLint is a tool for identifying and reporting on patterns in your JS code, and is part of the automated
tests run by Jenkins. You can run ESLint from the horizon root directory with tox -e npm --
lint, or alternatively on a specific directory or file with eslint file.js.

Horizon includes a .eslintrc in its root directory, that is used by the local tests. An explanation of the
options, and details of others you may want to use, can be found in the ESLint user guide.

Application Structure

OpenStack Dashboard is an example of a Horizon-based Angular application. Other applications built
on the Horizon framework can follow a similar structure. It is composed of two key Angular modules:

app.module.js - The root of the application. Defines the modules required by the application, and
includes modules from its pluggable dashboards.

framework.module.js - Reusable Horizon components. It is one of the application dependencies.

File Structure

Horizon has three kinds of angular code:

1. Specific to one dashboard in the OpenStack Dashboard application

2. Specific to the OpenStack Dashboard application, but reusable by multiple dashboards

3. Reusable by any application based on the Horizon framework

When adding code to horizon, consider whether it is dashboard-specific or should be broken out as a
reusable utility or widget.

Code specific to one dashboard

Code that isnt shared beyond a single dashboard is placed in openstack_dashboard/
dashboards/mydashboard/static. Entire dashboards may be enabled or disabled using Hori-
zons plugin mechanism. Therefore no dashboards other than mydashboard can safely use this code.

The openstack_dashboard/dashboards/mydashboard/static directory structure deter-
mines how the code is deployed and matches the module structure. For example:

openstack_dashboard/dashboards/identity/static/dashboard/identity/
identity.module.js
identity.module.spec.js
identity.scss

198 Chapter 3. Contributor Docs

https://github.com/johnpapa/angular-styleguide
https://github.com/johnpapa/angular-styleguide#style-y024
https://github.com/johnpapa/angular-styleguide#style-y024
https://eslint.org/docs/user-guide/configuring

Horizon Documentation, Release 18.6.5.dev13

Because the code is in openstack_dashboard/dashboards/identity we know it is specific
to just the identity dashboard and not used by any others.

Code shared by multiple dashboards

Views or utilities needed by multiple dashboards are placed in openstack_dashboard/static/
app. For example:

openstack_dashboard/static/app/core/cloud-services/
cloud-services.module.js
cloud-services.spec.js
hz-if-settings.directive.js
hz-if-settings.directive.spec.js

The cloud-services module is used by panels in multiple dashboards. It cannot be placed within
openstack_dashboard/dashboards/mydashboard because disabling that one dashboard
would break others. Therefore, it is included as part of the application core module. Code in app/ is
guaranteed to always be present, even if all other dashboards are disabled.

Reusable components

Finally, components that are easily reused by any application are placed in horizon/static/
framework/. These do not contain URLs or business logic that is specific to any application (even
the OpenStack Dashboard application).

The modal directive horizon/static/framework/widgets/modal/ is a good example of a
reusable component.

One folder per component

Each component should have its own folder, with the code broken up into one JS component per file.
(See Single Responsibility in the style guide). Each folder may include styling (*.scss), as well
as templates (*.html) and tests (*.spec.js). You may also include examples, by appending .
example.

For larger components, such as workflows with multiple steps, consider breaking the code
down further. For example, the Launch Instance workflow, has one directory per step. See
openstack_dashboard/dashboards/project/static/dashboard/project/
workflow/launch-instance/

SCSS files

The top-level SCSS file in openstack_dashboard/static/app/_app.scss. It includes any
styling that is part of the application core and may be reused by multiple dashboards. SCSS files that
are specific to a particular dashboard are linked to the application by adding them in that dashboards
enabled file. For example, _1920_project_containers_panel.py is the enabled file for the Project
dashboards Container panel and includes:

3.1. Contributor Documentation 199

https://github.com/johnpapa/angular-styleguide#single-responsibility

Horizon Documentation, Release 18.6.5.dev13

ADD_SCSS_FILES = [
'dashboard/project/containers/_containers.scss',

]

Styling files are hierarchical, and include any direct child SCSS files. For example, project.scss
would includes the workflow SCSS file, which in turn includes any launch instance styling:

@import "workflow/workflow";

This allows the application to easily include all needed styling, simply by including a dashboards top-
level SCSS file.

Module Structure

Horizon Angular modules use names that map to the source code directory structure. This provides
namespace isolation for modules and services, which makes dependency injection clearer. It also reduces
code conflicts where two different modules define a module, service or constant of the same name. For
example:

openstack_dashboard/dashboards/identity/static/dashboard/identity/
identity.module.js

The preferred Angular module name in this example is horizon.dashboard.identity. The
horizon part of the module name maps to the static directory and indicates this is a horizon
based application. dashboard.identity maps to folders that are created within static. This
allows a direct mapping between the angular module name of horizon.dashboard.identity
and the source code directory of static\dashboard\identity.

Services and constants within these modules should all start with their module name to avoid dependency
injection collisions. For example:

$provide.constant('horizon.dashboard.identity.basePath', path);

Directives do not require the module name but are encouraged to begin with the hz prefix. For example:

.directive('hzMagicSearchBar', hzMagicSearchBar);

Finally, each module lists its child modules as a dependency. This allows the root module to be included
by an application, which will automatically define all child modules. For example:

.module('horizon.framework', [
'horizon.framework.conf',
'horizon.framework.util',
'horizon.framework.widgets'

])

horizon.framework declares a dependency on horizon.framework.widgets, which de-
clares dependencies on each individual widget. This allows the application to access any widget, simply
by depending on the top-level horizon.framework module.

200 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Testing

1. Open <dev_server_ip:port>/jasmine in a browser. The development server can be run with tox
-e runserver from the horizon root directory; by default, this will run the development server
at http://localhost:8000.

2. tox -e npm from the horizon root directory.

The code linting job can be run with tox -e npm -- lint. If there are many warnings, you can
also use tox -e npm -- lintq to see only errors and ignore warnings.

For more detailed information, see JavaScript Testing.

Translation (Internationalization and Localization)

See Making strings translatable for information on the translation architecture and how to ensure your
code is translatable.

Creating your own panel

Note: This section will be extended as standard practices are adopted upstream. Currently, it may
be useful to look at the Project Images Panel as a complete reference. Since Newton, it is Angular by
default (set to True in the ANGULAR_FEATURES dict in settings.py). You may track all the
changes made to the Image Panel here

Note: Currently, Angular module names must still be manually declared with
ADD_ANGULAR_MODULES, even when using automatic file discovery.

This section serves as a basic introduction to writing your own panel for horizon, using AngularJS. A
panel may be included with the plugin system, or it may be part of the upstream horizon project.

Upstream

JavaScript files can be discovered automatically, handled manually, or a mix of the two. Where possible,
use the automated mechanism. To use the automatic functionality, add:

AUTO_DISCOVER_STATIC_FILES = True

to your enabled file (enabled/<plugin_name>.py). To make this possible, you need to follow
some structural conventions:

• Static files should be put in a static/ folder, which should be found directly under the folder
for the dashboard/panel/panel groups Python package.

• JS code that defines an Angular module should be in a file with extension of .module.js.

• JS code for testing should be named with extension of .mock.js and of .spec.js.

• Angular templates should have extension of .html.

3.1. Contributor Documentation 201

https://github.com/openstack/horizon/commits/master/openstack_dashboard/static/app/core/images

Horizon Documentation, Release 18.6.5.dev13

You can read more about the functionality in the AUTO_DISCOVER_STATIC_FILES section of the
settings documentation.

To manually add files, add the following arrays and file paths to the enabled file:

ADD_JS_FILES = [
...
'path-to/my-angular-code.js',
...

]

ADD_JS_SPEC_FILES = [
...
'path-to/my-angular-code.spec.js',
...

]

ADD_ANGULAR_MODULES = [
...
'my.angular.code',
...

]

Plugins

Add a new panel/ panel group/ dashboard (See Tutorial: Building a Dashboard using Horizon).
JavaScript file inclusion is the same as the Upstream process.

To include external stylesheets, you must ensure that ADD_SCSS_FILES is defined in your enabled
file, and add the relevant filepath, as below:

ADD_SCSS_FILES = [
...
'path-to/my-styles.scss',
...

]

Note: We highly recommend using a single SCSS file for your plugin. SCSS supports nesting with
@import, so if you have multiple files (i.e. per panel styling) it is best to import them all into one, and
include that single file. You can read more in the SASS documentation.

Schema Forms

JSON schemas are used to define model layout and then angular-schema-form is used to create forms
from that schema. Horizon adds some functionality on top of that to make things even easier through
ModalFormService which will open a modal with the form inside.

A very simple example:

var schema = {
type: "object",

(continues on next page)

202 Chapter 3. Contributor Docs

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#import
http://json-schema.org/
https://github.com/json-schema-form/angular-schema-form/blob/master/docs/index.md

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

properties: {
name: { type: "string", minLength: 2, title: "Name", description:

↪→"Name or alias" },
title: {

type: "string",
enum: ['dr','jr','sir','mrs','mr','NaN','dj']

}
}

};
var model = {name: '', title: ''};
var config = {

title: gettext('Create Container'),
schema: schema,
form: ['*'],
model: model

};
ModalFormService.open(config).then(submit); // returns a promise

function submit() {
// do something with model.name and model.title

}

Testing Overview

Having good tests in place is absolutely critical for ensuring a stable, maintainable codebase. Hopefully
that doesnt need any more explanation.

However, what defines a good test is not always obvious, and there are a lot of common pitfalls that can
easily shoot your test suite in the foot.

If you already know everything about testing but are fed up with trying to debug why a specific test
failed, you can skip the intro and jump straight to Debugging Unit Tests.

JavaScript Testing

There are multiple components in our JavaScript testing framework:

• Jasmine is our testing framework, so this defines the syntax and file structure we use to test our
JavaScript.

• Karma is our test runner. Amongst other things, this lets us run the tests against multiple browsers
and generate test coverage reports. Alternatively, tests can be run inside the browser with the
Jasmine spec runner.

• PhantomJS provides a headless WebKit (the browser engine). This gives us native support for
many web features without relying on specific browsers being installed.

• ESLint is a pluggable code linting utility. This will catch small errors and inconsistencies in your
JS, which may lead to bigger issues later on. See Code Style for more detail.

Jasmine uses specs (.spec.js) which are kept with the JavaScript files that they are testing. See the
File Structure section or the Examples below for more detail on this.

3.1. Contributor Documentation 203

https://jasmine.github.io/2.3/introduction.html
https://karma-runner.github.io/
http://phantomjs.org/
https://eslint.org/

Horizon Documentation, Release 18.6.5.dev13

Running Tests

Tests can be run in two ways:

1. Open <dev_server_ip:port>/jasmine in a browser. The development server can be run with tox
-e runserver from the horizon root directory.

2. tox -e npm from the horizon root directory. This runs Karma, so it will run all the tests against
PhantomJS and generate coverage reports.

The code linting job can be run with tox -e npm -- lint, or tox -e npm -- lintq to show
errors, but not warnings.

To decipher where tests are failing it may be useful to use Jasmine in the browser to run individual tests
to see where the tests are specifically breaking. To do this, navigate to your local horizon in the browser
and add /jasmine to the end of the url. e.g: http://localhost:8000/jasmine. Once you have the jasmine
report you may click on the title of an individual test to re-run just that test. From here, you can also
use chrome dev tools or similar to set breakpoints in the code by accessing the Sources tab and clicking
on lines of code where you wish to break the code. This will then show you the exact places where the
code breaks.

Coverage Reports

Our Karma setup includes a plugin to generate test coverage reports. When developing, be sure to check
the coverage reports on the master branch and compare your development branch; this will help identify
missing tests.

To generate coverage reports, run tox -e npm. The coverage reports can be found at cover/
horizon/ (framework tests) and cover/openstack_dashboard/ (dashboard tests). Load
<browser>/index.html in a browser to view the reports.

Writing Tests

Jasmine uses suites and specs:

• Suites begin with a call to describe, which takes two parameters; a string and a function. The
string is a name or title for the spec suite, whilst the function is a block that implements the suite.

• Specs begin with a call to it, which also takes a string and a function as parameters. The string
is a name or title, whilst the function is a block with one or more expectations (expect) that test
the state of the code. An expectation in Jasmine is an assertion that is either true or false; every
expectation in a spec must be true for the spec to pass.

.spec.js files can be handled manually or automatically. To use the automatic file discovery add:

AUTO_DISCOVER_STATIC_FILES = True

to your enabled file. JS code for testing should use the extensions .mock.js and .spec.js.

You can read more about the functionality in the AUTO_DISCOVER_STATIC_FILES section of the
settings documentation.

To manually add specs, add the following array and relevant file paths to your enabled file:

204 Chapter 3. Contributor Docs

http://localhost:8000/jasmine

Horizon Documentation, Release 18.6.5.dev13

ADD_JS_SPEC_FILES = [
...
'path_to/my_angular_code.spec.js',
...

]

Examples

Note: The code below is just for example purposes, and may not be current in horizon. Ellipses () are
used to represent code that has been removed for the sake of brevity.

Example 1 - A reusable component in the horizon directory

File tree:

horizon/static/framework/widgets/modal
modal.controller.js
modal.module.js
modal.service.js
modal.spec.js

Lines added to horizon/test/jasmine/jasmine_tests.py:

class ServicesTests(test.JasmineTests):
sources = [

...
'framework/widgets/modal/modal.module.js',
'framework/widgets/modal/modal.controller.js',
'framework/widgets/modal/modal.service.js',
...

]

specs = [
...
'framework/widgets/modal/modal.spec.js',
...

]

modal.spec.js:

...

(function() {
"use strict";

describe('horizon.framework.widgets.modal module', function() {

beforeEach(module('horizon.framework'));

describe('simpleModalCtrl', function() {

(continues on next page)

3.1. Contributor Documentation 205

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

var scope;
var modalInstance;
var context;
var ctrl;

beforeEach(inject(function($controller) {
scope = {};
modalInstance = {

close: function() {},
dismiss: function() {}

};
context = { what: 'is it' };
ctrl = $controller('simpleModalCtrl', {

$scope: scope,
$modalInstance: modalInstance,
context: context

});
}));

it('establishes a controller', function() {
expect(ctrl).toBeDefined();

});

it('sets context on the scope', function() {
expect(scope.context).toBeDefined();
expect(scope.context).toEqual({ what: 'is it' });

});

it('sets action functions', function() {
expect(scope.submit).toBeDefined();
expect(scope.cancel).toBeDefined();

});

it('makes submit close the modal instance', function() {
expect(scope.submit).toBeDefined();
spyOn(modalInstance, 'close');
scope.submit();
expect(modalInstance.close.calls.count()).toBe(1);

});

it('makes cancel close the modal instance', function() {
expect(scope.cancel).toBeDefined();
spyOn(modalInstance, 'dismiss');
scope.cancel();
expect(modalInstance.dismiss).toHaveBeenCalledWith('cancel');

});
});

...

});
})();

206 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Example 2 - Panel-specific code in the openstack_dashboard directory

File tree:

openstack_dashboard/static/dashboard/launch-instance/network/
network.help.html
network.html
network.js
network.scss
network.spec.js

Lines added to openstack_dashboard/enabled/_10_project.py:

LAUNCH_INST = 'dashboard/launch-instance/'

ADD_JS_FILES = [
...
LAUNCH_INST + 'network/network.js',
...

]

ADD_JS_SPEC_FILES = [
...
LAUNCH_INST + 'network/network.spec.js',
...

]

network.spec.js:

...

(function(){
'use strict';

describe('Launch Instance Network Step', function() {

describe('LaunchInstanceNetworkCtrl', function() {
var scope;
var ctrl;

beforeEach(module('horizon.dashboard.project.workflow.launch-instance
↪→'));

beforeEach(inject(function($controller) {
scope = {

model: {
newInstanceSpec: {networks: ['net-a']},
networks: ['net-a', 'net-b']

}
};
ctrl = $controller('LaunchInstanceNetworkCtrl', {$scope:scope});

}));

it('has correct network statuses', function() {
expect(ctrl.networkStatuses).toBeDefined();
expect(ctrl.networkStatuses.ACTIVE).toBeDefined();

(continues on next page)

3.1. Contributor Documentation 207

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

expect(ctrl.networkStatuses.DOWN).toBeDefined();
expect(Object.keys(ctrl.networkStatuses).length).toBe(2);

});

it('has correct network admin states', function() {
expect(ctrl.networkAdminStates).toBeDefined();
expect(ctrl.networkAdminStates.UP).toBeDefined();
expect(ctrl.networkAdminStates.DOWN).toBeDefined();
expect(Object.keys(ctrl.networkStatuses).length).toBe(2);

});

it('defines a multiple-allocation table', function() {
expect(ctrl.tableLimits).toBeDefined();
expect(ctrl.tableLimits.maxAllocation).toBe(-1);

});

it('contains its own labels', function() {
expect(ctrl.label).toBeDefined();
expect(Object.keys(ctrl.label).length).toBeGreaterThan(0);

});

it('contains help text for the table', function() {
expect(ctrl.tableHelpText).toBeDefined();
expect(ctrl.tableHelpText.allocHelpText).toBeDefined();
expect(ctrl.tableHelpText.availHelpText).toBeDefined();

});

it('uses scope to set table data', function() {
expect(ctrl.tableDataMulti).toBeDefined();
expect(ctrl.tableDataMulti.available).toEqual(['net-a', 'net-b']);
expect(ctrl.tableDataMulti.allocated).toEqual(['net-a']);
expect(ctrl.tableDataMulti.displayedAllocated).toEqual([]);
expect(ctrl.tableDataMulti.displayedAvailable).toEqual([]);

});
});

...

});
})();

An overview of testing

There are three main types of tests, each with their associated pros and cons:

208 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Unit tests

These are isolated, stand-alone tests with no external dependencies. They are written from the perspec-
tive of knowing the code, and test the assumptions of the codebase and the developer.

Pros:

• Generally lightweight and fast.

• Can be run anywhere, anytime since they have no external dependencies.

Cons:

• Easy to be lax in writing them, or lazy in constructing them.

• Cant test interactions with live external services.

Functional tests

These are generally also isolated tests, though sometimes they may interact with other services running
locally. The key difference between functional tests and unit tests, however, is that functional tests are
written from the perspective of the user (who knows nothing about the code) and only knows what they
put in and what they get back. Essentially this is a higher-level testing of does the result match the spec?.

Pros:

• Ensures that your code always meets the stated functional requirements.

• Verifies things from an end user perspective, which helps to ensure a high-quality experience.

• Designing your code with a functional testing perspective in mind helps keep a higher-level view-
point in mind.

Cons:

• Requires an additional layer of thinking to define functional requirements in terms of inputs and
outputs.

• Often requires writing a separate set of tests and/or using a different testing framework from your
unit tests.

• Doesnt offer any insight into the quality or status of the underlying code, only verifies that it works
or it doesnt.

Integration Tests

This layer of testing involves testing all of the components that your codebase interacts with or relies on
in conjunction. This is equivalent to live testing, but in a repeatable manner.

Pros:

• Catches many bugs that unit and functional tests will not.

• Doesnt rely on assumptions about the inputs and outputs.

• Will warn you when changes in external components break your code.

• Will take screenshot of the current page on test fail for easy debug

3.1. Contributor Documentation 209

Horizon Documentation, Release 18.6.5.dev13

Cons:

• Difficult and time-consuming to create a repeatable test environment.

• Did I mention that setting it up is a pain?

Screenshot directory could be set through horizon.conf file, default value: ./
integration_tests_screenshots

So what should I write?

A few simple guidelines:

1. Every bug fix should have a regression test. Period.

2. When writing a new feature, think about writing unit tests to verify the behavior step-by-step as
you write the feature. Every time youd go to run your code by hand and verify it manually, think
could I write a test to do this instead?. That way when the feature is done and youre ready to
commit it youve already got a whole set of tests that are more thorough than anything youd write
after the fact.

3. Write tests that hit every view in your application. Even if they dont assert a single thing about
the code, it tells you that your users arent getting fatal errors just by interacting with your code.

What makes a good unit test?

Limiting our focus just to unit tests, there are a number of things you can do to make your unit tests as
useful, maintainable, and unburdensome as possible.

Test data

Use a single, consistent set of test data. Grow it over time, but do everything you can not to fragment it.
It quickly becomes unmaintainable and perniciously out-of-sync with reality.

Make your test data as accurate to reality as possible. Supply all the attributes of an object, provide
objects in all the various states you may want to test.

If you do the first suggestion above first it makes the second one far less painful. Write once, use
everywhere.

To make your life even easier, if your codebase doesnt have a built-in ORM-like function to manage
your test data you can consider building (or borrowing) one yourself. Being able to do simple retrieval
queries on your test data is incredibly valuable.

210 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Mocking

Mocking is the practice of providing stand-ins for objects or pieces of code you dont need to test. While
convenient, they should be used with extreme caution.

Why? Because overuse of mocks can rapidly land you in a situation where youre not testing any real
code. All youve done is verified that your mocking framework returns what you tell it to. This problem
can be very tricky to recognize, since you may be mocking things in setUp methods, other modules,
etc.

A good rule of thumb is to mock as close to the source as possible. If you have a function call that calls
an external API in a view , mock out the external API, not the whole function. If you mock the whole
function youve suddenly lost test coverage for an entire chunk of code inside your codebase. Cut the
ties cleanly right where your system ends and the external world begins.

Similarly, dont mock return values when you could construct a real return value of the correct type with
the correct attributes. Youre just adding another point of potential failure by exercising your mocking
framework instead of real code. Following the suggestions for testing above will make this a lot less
burdensome.

Assertions and verification

Think long and hard about what you really want to verify in your unit test. In particular, think about
what custom logic your code executes.

A common pitfall is to take a known test object, pass it through your code, and then verify the properties
of that object on the output. This is all well and good, except if youre verifying properties that were
untouched by your code. What you want to check are the pieces that were changed, added, or removed.
Dont check the objects id attribute unless you have reason to suspect its not the object you started with.
But if you added a new attribute to it, be damn sure you verify that came out right.

Its also very common to avoid testing things you really care about because its more difficult. Verifying
that the proper messages were displayed to the user after an action, testing for form errors, making sure
exception handling is tested these types of things arent always easy, but theyre extremely necessary.

To that end, Horizon includes several custom assertions to make these tasks easier.
assertNoFormErrors(), assertMessageCount(), and assertNoMessages() all
exist for exactly these purposes. Moreover, they provide useful output when things go wrong so youre
not left scratching your head wondering why your view test didnt redirect as expected when you posted
a form.

Debugging Unit Tests

Tips and tricks

1. Use assertNoFormErrors() immediately after your client.post call for tests that han-
dle form views. This will immediately fail if your form POST failed due to a validation error and
tell you what the error was.

2. Use assertMessageCount() and assertNoMessages() when a piece of code is failing
inexplicably. Since the core error handlers attach user-facing error messages (and since the core

3.1. Contributor Documentation 211

Horizon Documentation, Release 18.6.5.dev13

logging is silenced during test runs) these methods give you the dual benefit of verifying the output
you expect while clearly showing you the problematic error message if they fail.

3. Use Pythons pdb module liberally. Many people dont realize it works just as well in a test case as
it does in a live view. Simply inserting import pdb; pdb.set_trace() anywhere in your
codebase will drop the interpreter into an interactive shell so you can explore your test environment
and see which of your assumptions about the code isnt, in fact, flawlessly correct.

4. If the error is in the Selenium test suite, youre likely getting very little information about the
error. To increase the information provided to you, edit horizon/test/settings.py to set
DEBUG = True and set the logging level to DEBUG for the default test logger. Also, add a
logger config for Django:

},
'loggers': {

+ 'django': {
+ 'handlers': ['test'],
+ 'propagate': False,
+ },

'django.db.backends': {

Testing with different Django versions

Horizon supports multiple Django versions and our CI tests proposed patches with various supported
Django versions. The corresponding job names are like horizon-tox-python3-django111.

You can know which tox env and django version are used by checking tox_envlist and
django_version of the corresponding job definition in .zuul.yaml.

To test it locally, you need some extra steps. Here is an example where tox_envlist is py36 and
django_version is >=1.11,<2.0.

$ tox -e py36 --notest -r
$.tox/py36/bin/python -m pip install 'django>=1.11,<2.0'
$ tox -e py36

Note:

• -r in the first command recreates the tox environment. Omit it if you know what happens.

• We usually need to quote the django version in the pip command-line in most shells to escape
interpretations by the shell.

To check the django version installed in your tox env, run:

$.tox/py36/bin/python -m pip freeze | grep Django
Django==1.11.27

To reset the tox env used for testing with different Django version to the regular tox env, run tox
command with -r to recreate it.

$ tox -e py36 -r

212 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Coverage reports

It is possible for tests to fail on your patch due to the npm-run-test not passing the minimum threshold.
This is not necessarily related directly to the functions in the patch that have failed, but more that there
are not enough tests across horizon that are related to your patch.

The coverage reports may be found in the cover directory. Theres a subdirectory for horizon and open-
stack_dashboard, and then under a directory for the browser used to run the tests you should find an
index.html. This can then be viewed to see the coverage details.

In this scenario you may need to submit a secondary patch to address test coverage for another function
within horizon to ensure tests rise above the coverage threshold and your original patch can pass the
necessary tests.

Common pitfalls

There are a number of typical (and non-obvious) ways to break the unit tests. Some common things to
look for:

1. Make sure you stub out the method exactly as its called in the code being tested. For exam-
ple, if your real code calls api.keystone.tenant_get, stubbing out api.tenant_get
(available for legacy reasons) will fail.

2. When defining the expected input to a stubbed call, make sure the arguments are identical, this
includes str vs. int differences.

3. Make sure your test data are completely in line with the expected inputs. Again, str vs. int or
missing properties on test objects will kill your tests.

4. Make sure theres nothing amiss in your templates (particularly the {% url %} tag and its argu-
ments). This often comes up when refactoring views or renaming context variables. It can easily
result in errors that you might not stumble across while clicking around the development server.

5. Make sure youre not redirecting to views that no longer exist, e.g. the index view for a panel
that got combined (such as instances & volumes).

6. Make sure you repeat any stubbed out method calls that happen more than once. They dont
automatically repeat, you have to explicitly define them. While this is a nuisance, it makes you
acutely aware of how many API calls are involved in a particular function.

Styling in Horizon (SCSS)

Horizon uses SCSS (not to be confused with Sass) to style its HTML. This guide is targeted at devel-
opers adding code to upstream Horizon. For information on creating your own branding/theming, see
Customizing Horizon.

3.1. Contributor Documentation 213

http://sass-lang.com/guide

Horizon Documentation, Release 18.6.5.dev13

Code Layout

The base SCSS can be found at openstack_dashboard/static/dashboard/scss/. This
directory should only contain the minimal styling for functionality code that isnt configurable by themes.
horizon.scss is a top level file that imports from the components/ directory, as well as other base
styling files; potentially some basic page layout rules that Horizon relies on to function.

Note: Currently, a great deal of theming is also kept in the horizon.scss file in this directory, but
that will be reduced as we proceed with the new code design.

Horizons default theme stylesheets can be found at openstack_dashboard/themes/
default/.

_styles.scss
_variables.scss
bootstrap/

...
horizon/

...

The top level _styles.scss and _variables.scss contain imports from the bootstrap and
horizon directories.

The bootstrap directory

This directory contains overrides and customization of Bootstrap variables, and markup used by Boot-
strap components. This should only override existing Bootstrap content. For examples of these compo-
nents, see the Theme Preview Panel.

bootstrap/
_styles.scss
_variables.scss
components/

_component_0.scss
_component_1.scss
...

• _styles.scss imports the SCSS defined for each component.

• _variables.scss contains the definitions for every Bootstrap variable. These variables can
be altered to affect the look and feel of Horizons default theme.

• The components directory contains overrides for Bootstrap components, such as tables or
navbars.

214 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

The horizon directory

This directory contains SCSS that is absolutely specific to Horizon; code here should not override
existing Bootstrap content, such as variables and rules.

horizon/
_styles.scss
_variables.scss
components/

_component_0.scss
_component_1.scss
...

• _styles.scss imports the SCSS defined for each component. It may also contain some minor
styling overrides.

• _variables.scss contains variable definitions that are specific to the horizon theme. This
should not override any bootstrap variables, only define new ones. You can however, inherit
bootstrap variables for reuse (and are encouraged to do so where possible).

• The components directory contains styling for each individual component defined by Horizon,
such as the sidebar or pie charts.

Adding new SCSS

To keep Horizon easily themable, there are several code design guidelines that should be adhered to:

• Reuse Bootstrap variables where possible. This allows themes to influence styling by simply
overriding a few existing variables, instead of rewriting large chunks of the SCSS files.

• If you are unable to use existing variables - such as for very specific functionality - keep the new
rules as specific as possible to your component so they do not cause issues in unexpected places.

• Check if existing components suit your use case. There may be existing components defined by
Bootstrap or Horizon that can be reused, rather than writing new ones.

Theme Preview Panel

The Bootstrap Theme Preview panel contains examples of all stock Bootstrap markup with the currently
applied theme, as well as source code for replicating them; click the </> symbol when hovering over a
component.

To enable the Developer dashboard with the Theme Preview panel:

1. Set DEBUG setting to True.

2. Copy _9001_developer.py and _9010_preview.py from
openstack_dashboard/contrib/developer/enabled/ to
openstack_dashboard/local/enabled/.

3. Restart the web server.

3.1. Contributor Documentation 215

Horizon Documentation, Release 18.6.5.dev13

Alternate Theme

A second theme is provided by default at openstack_dashboard/themes/material/. When
adding new SCSS to horizon, you should check that it does not interfere with the Material theme. Images
of how the Material theme should look can be found at https://bootswatch.com/3/paper/. This theme is
now configured to run as the alternate theme within Horizon.

Release Notes

Release notes for a patch should be included in the patch with the associated changes whenever possible.
This allow for simpler tracking. It also enables a single cherry pick to be done if the change is backported
to a previous release. In some cases, such as a feature that is provided via multiple patches, release notes
can be done in a follow-on review.

If the following applies to the patch, a release note is required:

• The deployer needs to take an action when upgrading

• A new feature is implemented

• Function was removed (hopefully it was deprecated)

• Current behavior is changed

• A new config option is added that the deployer should consider changing from the default

• A security bug is fixed

Note:

• A release note is suggested if a long-standing or important bug is fixed. Otherwise, a release note
is not required.

• It is not recommended that individual release notes use prelude section as it is for release high-
lights.

Warning: Avoid modifying an existing release note file even though it is related to your change. If
you modify a release note file of a past release, the whole content will be shown in a latest release.
The only allowed case is to update a release note in a same release.

If you need to update a release note of a past release, edit a corresponding release note file in a stable
branch directly.

Horizon uses reno to generate release notes. Please read the docs for details. In summary, use

$ tox -e venv -- reno new <bug-,bp-,whatever>

Then edit the sample file that was created and push it with your change.

To see the results:

$ git commit # Commit the change because reno scans git log.

$ tox -e releasenotes

216 Chapter 3. Contributor Docs

https://bootswatch.com/3/paper/
https://docs.openstack.org/reno/latest/user/usage.html

Horizon Documentation, Release 18.6.5.dev13

Then look at the generated release notes files in releasenotes/build/html in your favorite browser.

Translation in Horizon

What is the point of translating my code?

You introduced an awesome piece of code and revel in your glorious accomplishment. Suddenly your
world comes crashing down when a core hands you a -1 because your code is not translated. What
gives?

If you are writing software for a global audience, you must ensure that it is translated so that other people
around the world are able to use it. Adding translation to your code is not that hard and a requirement
for horizon.

If you are interested in contributing translations, you may want to investigate Zanata and the upstream
translations. You can visit the internationalization project IRC channel #openstack-i18n, if you need
further assistance.

Overview and Architecture

You can skip this section if you are only interested in learning how to use translation. This section
explains the two main components to translation: message extraction and message substitution. We will
briefly go over what each one does for translation as a whole.

Message Extraction

Message extraction is the process of collecting translatable strings from the code. The diagram above
shows the flow of how messages are extracted and then translated. Lets break this up into steps we can
follow:

1. The first step is to mark untranslated strings so that the extractor is able to locate them. Refer to
the guide below on how to use translation and what these markers look like.

2. Once marked, we can then run tox -e manage -- extract_messages, which searches
the codebase for these markers and extracts them into a Portable Object Template (POT) file. In
horizon, we extract from both the horizon folder and the openstack_dashboard folder.
We use the AngularJS extractor for JavaScript and HTML files and the Django extractor for Python
and Django templates; both extractors are Babel plugins.

3. To update the .po files, you can run tox -e manage -- update_catalog to update the
.po file for every language, or you can specify a specific language to update like this: tox -e
manage -- update_catalog de. This is useful if you want to add a few extra translata-
bale strings for a downstream customisation.

Note: When pushing code upstream, the only requirement is to mark the strings correctly. All creation
of POT and PO files is handled by a daily upstream job. Further information can be found in the
translation infrastructure documentation.

3.1. Contributor Documentation 217

https://translate.openstack.org
https://docs.openstack.org/i18n/latest/
https://docs.openstack.org/i18n/latest/
https://docs.openstack.org/i18n/latest/infra.html

Horizon Documentation, Release 18.6.5.dev13

218 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Message Substitution

Message substitution is not the reverse process of message extraction. The process is entirely different.
Lets walk through this process.

• Remember those markers we talked about earlier? Most of them are functions like gettext or one
of its variants. This allows the function to serve a dual purpose - acting as a marker and also as a
replacer.

• In order for translation to work properly, we need to know the users locale. In horizon, the
user can specify the locale using the Settings panel. Once we know the locale, we know which
Portable Object (PO) file to use. The PO file is the file we received from translators in the message
extraction process. The gettext functions that we wrapped our code around are then able to replace
the untranslated strings with the translated one by using the untranslated string as the message id.

• For client-side translation, Django embeds a corresponding Django message catalog. Javascript
code on the client can use this catalog to do string replacement similar to how server-side transla-
tion works.

If you are setting up a project and need to know how to make it translatable, please refer to this guide.

3.1. Contributor Documentation 219

https://docs.openstack.org/infra/manual/creators.html#enabling-translation-infrastructure

Horizon Documentation, Release 18.6.5.dev13

Making strings translatable

To make your strings translatable, you need to mark it so that horizon can locate and extract it into a POT
file. When a user from another locale visits your page, your string is replaced with the correct translated
version.

In Django

To translate a string, simply wrap one of the gettext variants around the string. The examples below show
you how to do translation for various scenarios, such as interpolation, contextual markers and translation
comments.

from django.utils.translation import pgettext
from django.utils.translation import ugettext as _
from django.utils.translation import ungettext

class IndexView(request):

Single example
_("Images")

Plural example
ungettext(

"there is %(count)d object",
"there are %(count)d objects",
count) % { "count": count }

Interpolated example
mood = "wonderful"
output = _("Today is %(mood)s.") % mood

Contextual markers
pgettext("the month name", "May")

Translators: This message appears as a comment for translators!
ugettext("Welcome translators.")

Note: In the example above, we imported ugettext as _. This is a common alias for gettext or any
of its variants.

In Django templates

To use translation in your template, make sure you load the i18n module. To translate a line of text, use
the trans template tag. If you need to translate a block of text, use the blocktrans template tag.

Sometimes, it is helpful to provide some context via the comment template tag. There a number of other
tags and filters at your disposal should you need to use them. For more information, see the Django docs

{% extends 'base.html' %}
{% load i18n %}

(continues on next page)

220 Chapter 3. Contributor Docs

https://docs.djangoproject.com/en/1.8/topics/i18n/translation/

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

{% block title %}
{% trans "Images" %}

{% endblock %}

{% block main %}
{% comment %}Translators: Images is an OpenStack resource{% endcomment %}
{% blocktrans with amount=images.length %}

There are {{ amount }} images available for display.
{% endblocktrans %}

{% endblock %}

In JavaScript

The Django message catalog is injected into the front-end. The gettext function is available as a global
function so you can just use it directly. If you are writing AngularJS code, we prefer that you use the
gettext service, which is essentially a wrapper around the gettext function.

Angular
.module(myModule)
.controller(myCtrl);

myCtrl.$inject = [
"horizon.framework.util.i18n.gettext"

];

function myCtrl(gettext) {
var translated = gettext("Images");

}

Warning: For localization in AngularJS files, use the AngularJS service horizon.
framework.util.i18n.gettext. Ensure that the injected dependency is named gettext
or nggettext. If you do not do this, message extraction will not work properly!

In AngularJS templates

To use translation in your AngularJS template, use the translate tag or the translate filter. Note that we
are using angular-gettext for message substitution but not for message extraction.

<translate>Directive example</translate>
<div translate>Attribute example</div>
<div translate>Interpolated {{example}}</div>
{$ 'Filter example'| translate $}

This is a bad example
because it contains HTML and makes it harder to translate.
However, it will still translate.

3.1. Contributor Documentation 221

https://angular-gettext.rocketeer.be/

Horizon Documentation, Release 18.6.5.dev13

Note: The annotations in the example above are guaranteed to work. However, not all of the angular-
gettext annotations are supported because we wrote our own custom babel extractor. If you need support
for the annotations, ask on IRC in the #openstack-horizon room or report a bug. Also note that you
should avoid embedding HTML fragments in your texts because it makes it harder to translate. Use your
best judgement if you absolutely need to include HTML.

Pseudo translation tool

The pseudo translation tool can be used to verify that code is ready to be translated. The pseudo tool
replaces a languages translation with a complete, fake translation. Then you can verify that your code
properly displays fake translations to validate that your code is ready for translation.

Running the pseudo translation tool

1. Make sure your .pot files are up to date

$ tox -e manage -- extract_messages

2. Run the pseudo tool to create pseudo translations. This example replaces the German translation
with a pseudo translation

$ tox -e manage -- update_catalog de --pseudo

3. Compile the catalog

$ tox -e manage -- compilemessages

4. Run your development server.

$ tox -e runserver

5. Log in and change to the language you pseudo translated.

It should look weird. More specifically, the translatable segments are going to start and end with a
bracket and they are going to have some added characters. For example, Log In will become [~Log
In~ç] This is useful because you can inspect for the following, and consider if your code is working like
it should:

• If you see a string in English its not translatable. Should it be?

• If you see brackets next to each other that might be concatenation. Concatenation can make
quality translations difficult or impossible. See Use string formatting variables, never perform
string concatenation for additional information.

• If there is unexpected wrapping/truncation there might not be enough space for translations.

• If you see a string in the proper translated language, it comes from an external source. (Thats not
bad, just sometimes useful to know)

• If you get new crashes, there is probably a bug.

Dont forget to remove any pseudo translated .pot or .po files. Those should not be submitted for
review.

222 Chapter 3. Contributor Docs

https://wiki.openstack.org/wiki/I18n/TranslatableStrings#Use_string_formating_variables.2C_never_perform_string_concatenation
https://wiki.openstack.org/wiki/I18n/TranslatableStrings#Use_string_formating_variables.2C_never_perform_string_concatenation

Horizon Documentation, Release 18.6.5.dev13

Profiling Pages

In the Ocata release of Horizon a new OpenStack Profiler panel was introduced. Once it is enabled
and all prerequisites are set up, you can see which API calls Horizon actually makes when rendering
a specific page. To re-render the page while profiling it, youll need to use the Profile dropdown menu
located in the top right corner of the screen. In order to be able to use Profile menu, the following steps
need to be completed:

1. Enable the Developer dashboard by copying _9001_developer.py
from openstack_dashboard/contrib/developer/enabled/ to
openstack_dashboard/local/enabled/.

2. Copy openstack_dashboard/local/local_settings.d/
_9030_profiler_settings.py.example to openstack_dashboard/local/
local_settings.d/_9030_profiler_settings.py

3. Copy openstack_dashboard/contrib/developer/enabled/
_9030_profiler.py to openstack_dashboard/local/enabled/
_9030_profiler.py.

4. To support storing profiler data on server-side, MongoDB cluster needs to be installed on your
Devstack host (default configuration), see Installing MongoDB. Then, change the bindIp key in
/etc/mongod.conf to 0.0.0.0 and invoke sudo service mongod restart.

5. Collect and compress static assets with python manage.py collectstatic -c and
python manage.py compress.

6. Restart the web server.

7. The Profile drop-down menu should appear in the top-right corner, you are ready to profile your
pages!

Defining default settings in code

Note: This page tries to explain the plan to define default values of horizon/openstack_dashboard
settings in code. This includes a blueprint ini-based-configuration. This page will be updated once the
effort is completed.

Planned Steps

1. Define the default values of existing settings

2. Revisit HORIZON_CONFIG

3. Introduce oslo.config

3.1. Contributor Documentation 223

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/#install-mongodb-community-edition
https://blueprints.launchpad.net/horizon/+spec/ini-based-configuration

Horizon Documentation, Release 18.6.5.dev13

Define default values of existing settings

Currently all default values are defined in codes where they are consumed. This leads to the situation
that it is not easy to know what are the default values and in a worse case default values defined in our
codebase can have different default values.

As the first step toward ini-based-configuration, I propose to define all default values of existing settings
in a single place per module. More specifically, the following modules are used:

• openstack_dashboard.defaults for openstack_dashboard

• horizon.defaults for horizon

• openstack_auth.defaults for openstack_auth

horizon.defaults load openstack_auth.defaults and overrides openstack_auth settings
if necessary. Similarly, openstack_dashboard.defaults loads horizon.defaults and
overrides horizon (and openstack_auth) settings if necessary.

The current style of getattr(settings, <foo>, <default value>) will be removed at
the same time.

Note that HORIZON_CONFIG is not touched in this step. It will be covered in the next step.

Handling Django settings

Django provides a lot of settings and it is not practical to cover all in horizon. Only Django settings
which horizon explicitly set will be defined in a dedicated python module.

The open question is how to maintain Django related settings in openstack_dashboard and horizon. How
can we make them common? The following files are related:

• openstack_dashboard.settings (and local_settings.py)

• openstack_dashboard.test.settings

• horizon.test.settings

This will be considered as the final step of the ini-based-configuration effort after horizon and open-
stack_dashboard settings succeed to be migrated to oslo.config explained below.

Revisit HORIZON_CONFIG

HORIZON_CONFIG is an internal interface now and most/some(?) of them should not be exposed as
config options. For example, the horizon plugin mechanism touches HORIZON_CONFIG to register
horizon plugins.

It is better to expose only HORIZON_CONFIG settings which can be really exposed to operators. For
such settings, we should define new settings in openstack_dashboard and can populate them into HORI-
ZON_CONFIG in settings.py.

For example, ajax_poll_interval in HORIZON_CONFIG can be exposed to operators. In
such case, we can define a new settings AJAX_POLL_INTERVAL in openstack_dashboard/
defaults.py (or horizon/defaults.py).

Investigation is being summarized in an etherpad page.

224 Chapter 3. Contributor Docs

https://etherpad.openstack.org/p/horizon-config-rethink

Horizon Documentation, Release 18.6.5.dev13

Introduce oslo.config

local_settings.py will have a priority over oslo.config. This means settings values from oslo.config
will be loaded first and then local_settings.py and local_settings.d will be loaded in
settings.py.

Basic strategy of mapping

• The current naming convention is random, so it sounds less reasonable to use the same name
for oslo.config. oslo.config and python ini-based configuration mechanism provide a concept of
category and there is no reason to use it. As category name, the categories of Settings Reference
(like keystone, glance) will be honored.

For example, some keystone settings have a prefix OPENSTACK_KEYSTONE_
like OPENSTACK_KEYSTONE_DEFAULT_ROLE. Some use KEYSTONE_ like
KEYSTONE_IDP_PROVIDER_ID. Some do not (like ENFORCE_PASSWORD_CHECK).
In the oslo.config options, all prefixes will be dropped. The mapping will be:

– OPENSTACK_KEYSTONE_DEFAULT_ROLE <-> [keystone] default_role

– KEYSTONE_IDP_PROVIDER_ID <-> [keystone] idp_provider_id

– ENFORCE_PASSWORD_CHECK <-> [keystone] enforce_password_check

• [default] section is not used as much as possible. It will be used only for limited number of
well-known options. Perhaps some common Django settings like DEBUG, LOGGING will match
this category.

• Opt classes defined in oslo.config are used as much as possible.

– StrOpt, IntOpt

– ListOpt

– MultiStrOpt

– DictOpt

• A dictionary settings will be broken down into separate options. Good examples are
OPENSTACK_KEYSTONE_BACKEND and OPENSTACK_NEUTRON_NETWORK.

– OPENSTACK_KEYSTONE_BACKEND['name'] <-> [keystone] backend_name

– OPENSTACK_KEYSTONE_BACKEND['can_edit_user'] <-> [keystone]
backend_can_edit_user

– OPENSTACK_KEYSTONE_BACKEND['can_edit_group'] <-> [keystone]
backend_can_edit_group

– OPENSTACK_NEUTRON_NETWORK['enable_router'] <-> [neutron]
enable_router

– OPENSTACK_NEUTRON_NETWORK['enable_ipv6'] <-> [neutron]
enable_ipv6

3.1. Contributor Documentation 225

Horizon Documentation, Release 18.6.5.dev13

Automatic Mapping

The straight-forward approach is to have a dictionary from setting names to oslo.config options like:

{
'OPENSTACK_KEYSTONE_DEFAULT_ROLE': ('keystone', 'default_role'),
'OPENSTACK_NEUTRON_NETWORK': {

'enable_router': ('neutron', 'enable_router'),
'enable_ipv6': ('neutron', 'enable_ipv6'),

...
}

A key of the top-level dict is a name of Django settings. A corresponding value specifies oslo.config
name by a list or a tuple where the first and second elements specify a section and a option name
respectively.

When a value is a dict, this means a corresponding Django dict setting
is broken down into several oslo.config options. In the above example,
OPENSTACK_NEUTRON_NETWORK['enable_router'] is mapped to [neutron]
enable_router.

Another idea is to introduce a new field to oslo.config classes. oslo-sample-generator might need to be
updated. If this approach is really attractive, we can try this approach in future. The above dictionary-
based approach will be used in the initial effort.

cfg.StrOpt(
'default_role',
default='_member_',
django-setting='OPENSTACK_KEYSTONE_DEFAULT_ROLE',
help=...

)

cfg.BoolOpt(
'enable_router',
default=True,
django_setting=('OPENSTACK_NEUTRON_NETWORK', 'enable_router'),
help=....)

)

Special Considerations

LOGGING

LOGGING setting is long enough. Python now recommend to configure logging using python dict di-
rectly, but from operator/packager perspective the legacy style of using the ini format sounds reasonable.
The ini format is also used in other OpenStack projects too. In this effort, I propose to use the logging
configuration via the ini format file and specify the logging conf file in a oslo.config option

Adopting oslo.log might be a good candidate, but it is not covered by this effort. It can be explored as
future possible improvement.

226 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

SECURITY_GROUP_RULES

SECURITY_GROUP_RULES will be defined by YAML file. The YAML file can be validated by JSON
schema in future (out of the scope of this effort)

all_tcp, all_udp and all_icmp are the reserved keyword, so it looks better to split the first three
rules (all_tcp to all_icmp) and other remaining rules. The remaining rules will be loaded from a
YAML file. For the first three rules, a boolean option to control their visibility in the security group rule
form will be introduces in oslo.config. I am not sure this option is required or not, but as the first step of
the migration it is reasonable to provide all compatibilities.

Handling Django settings

Django (and django related packages) provide many settings. It is not a good idea to expose all of them
via oslo.config. What should we expose?

The proposal here is to expose only settings which openstack_dashboard expects to expose to deploy-
ers. Most Django settings are internally used in openstack_dashboard/settings.py. Settings
required for horizon plugins are already exposed via the plugin settings, so there is no need to expose
them. If deployers would like to customize Django basic settings, they can still configure them via
local_settings.py or local_settings.d.

Packaging Software

Software packages

This section describes some general things that a developer should know about packaging software. This
content is mostly derived from best practices.

A developer building a package is comparable to an engineer building a car with only a manual and very
few tools. If the engineer needs a specific tool to build the car, he must create the tool, too.

As a developer, if you are going to add a library named foo, the package must adhere to the following
standards:

• Be a free package created with free software.

• Include all tools that are required to build the package.

• Have an active and responsive upstream to maintain the package.

• Adhere to Filesystem Hierarchy Standards (FHS). A specific file system layout is not required.

Embedded copies not allowed

Imagine if all packages had a local copy of jQuery. If a security hole is discovered in jQuery, we must
write more than 90 patches in Debian, one for each package that includes a copy. This is simply not
practical. Therefore, it is unacceptable for Horizon to copy code from other repositories when creating
a package. Copying code from another repository tends to create a fork, diverging from the upstream
code. The fork includes code that is not being maintained, so if a bug is discovered in the original
upstream, it cannot easily be fixed by updating a single package.

3.1. Contributor Documentation 227

Horizon Documentation, Release 18.6.5.dev13

Another reason to avoid copying a library into Horizon source code is that it might create conflicting
licenses. Distributing sources with conflicting licenses in one tarball revokes rights in best case. In the
worst case, you could be held legally responsible.

Free software

Red Hat, Debian, and SUSE distributions are made only of free software (free as in Libre, or free
speech). The software that we include in our repository is free. The tools are also free, and available in
the distribution.

Because package maintainers care about the quality of the packages we upload, we run tests that are
available from upstream repositories. This also qualifies test requirements as build requirements. The
same rules apply for building the software as for the software itself. Special build requirements that are
not included in the overall distribution are not allowed.

An example of historically limiting, non-free software is Selenium. For a long time, Selenium was only
available from the non-free repositories of Debian. The reason was that upstream included some .xpi
binaries. These .xpi included some Windows .dll and Linux .so files. Because they could not be rebuilt
from the source, all of python-selenium was declared non-free. If we made Horizon build-depends on
python-selenium, this would mean Horizon wouldnt be in Debian main anymore (contrib and non-free
are not considered part of Debian). Recently, the package maintainer of python-selenium decided to
remove the .xpi files from python-selenium, and upload it to Debian Experimental (this time, in main,
not in non-free). If at some point it is possible for Horizon to use python-selenium (without the non-free
.xpi files), then we could run Selenium tests at package build time.

Running unit tests at build time

The build environment inside a distribution is not exactly the same as the one in the OpenStack gate. For
example, versions of a given library can be slightly different from the one in the gate. We want to detect
when problematic differences exist so that we can fix them. Whenever possible, try to make the lives of
the package maintainer easier, and allow them (or help them) to run unit tests.

228 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Minified JavaScript policy

In free software distributions that actively maintain OpenStack packages (such as RDO, Debian, and
Ubuntu), minified JavaScript is considered non-free. This means that minified JavaScript should not be
present in upstream source code. At the very least, a non-minified version should be present next to the
minified version. Also, be aware of potential security issues with minifiers. This blog post explains it
very well.

Component version

Be careful about the version of all the components you use in your application. Since it is not acceptable
to embed a given component within Horizon, we must use what is in the distribution, including all fonts,
JavaScript, etc. This is where it becomes a bit tricky.

In most distributions, it is not acceptable to have multiple versions of the same piece of software. In
Red Hat systems, it is technically possible to install 2 versions of one library at the same time, but a few
restrictions apply, especially for usage. However, package maintainers try to avoid multiple versions as
much as possible. For package dependency resolution, it might be necessary to provide packages for
depending packages as well. For example, if you had Django-1.4 and Django-1.8 in the same release,
you must provide Horizon built for Django-1.4 and another package providing Horizon built for Django-
1.8. This is a large effort and needs to be evaluated carefully.

In Debian, it is generally forbidden to have multiple versions of the same library in the same Debian
release. Very few exceptions exist.

Component versioning has consequences for an upstream author willing to integrate their software in a
downstream distribution. The best situation is when it is possible to support whatever version is currently
available in the target distributions, up to the latest version upstream. Declaring lower and upper bounds
within your requirements.txt does not solve the issue. It allows all the tests to pass on gate because they
are run against a narrow set of versions in requirements.txt. The downstream distribution might still
have some dependencies with versions outside of the range that is specified in requirements.txt. These
dependencies may lead to failures that are not caught in the OpenStack gate.

At times it might not be possible to support all versions of a library. It might be too much work, or
it might be very hard to test in the gate. In this case, it is best to use whatever is available inside the
target distributions. For example, Horizon currently supports jQuery >= 1.7.2, as this is what is currently
available in Debian Jessie and Ubuntu Trusty (the last LTS).

You can search in a distribution for a piece of software foo using a command like dnf search foo,
or zypper se -s foo. dnf info foo returns more detailed information about the package.

Filesystem Hierarchy Standards

Every distribution must comply with the Filesystem Hierarchy Standards (FHS). The FHS defines a set
of rules that we must follow as package maintainers. Some of the most important ones are:

• /usr is considered read only. Software must not write in /usr at runtime. However, it is fine
for a package post-installation script to write in /usr. When this rule was not followed, distribu-
tions had to write many tricks to convince Horizon to write in /var/lib only. For example,
distributions wrote symlinks to /var/lib/openstack-dashboard, or patched the default
local_settings.py to write the SECRET_KEY in /var.

3.1. Contributor Documentation 229

https://diracdeltas.github.io/blog/backdooring-js/

Horizon Documentation, Release 18.6.5.dev13

• Configuration must always be in /etc, no matter what. When this rule was not fol-
lowed, package maintainers had to place symlinks to /etc/openstack-dashboard/
local_settings in Red Hat based distributions instead of using directly /usr/share/
openstack-dashboard/openstack_dashboard/local/local_settings.
py which Horizon expects. In Debian,the configuration file is named /etc/
openstack-dashboard/local_settings.py.

Packaging Horizon

Why we use XStatic

XStatic provides the following features that are not currently available by default with systems like NPM
and Grunt:

• Dependency checks: XStatic checks that dependencies, such as fonts and JavaScript libs, are
available in downstream distributions.

• Reusable components across projects: The XStatic system ensures components are reusable by
other packages, like Fuel.

• System-wide registry of static content: XStatic brings a system-wide registry of components, so
that it is easy to check if one is missing. For example, it can detect if there is no egg-info, or a
broken package dependency exists.

• No embedded content: The XStatic system helps us avoid embedding files that are already avail-
able in the distribution, for example, libjs-* or fonts-* packages. It even provides a compatibility
layer for distributions. Not every distribution places static files in the same position in the file
system. If you are packaging an XStatic package for your distribution, make sure that you are
using the static files provided by that specific distribution. Having put together an XStatic pack-
age is no guarantee to get it into a distribution. XStatic provides only the abstraction layer to use
distribution provided static files.

• Package build systems are disconnected from the outside network (for several reasons). Other
packaging systems download dependencies directly from the internet without verifying that the
downloaded file is intact, matches a provided checksum, etc. With these other systems, there is
no way to provide a mirror, a proxy or a cache, making builds even more unstable when minor
networking issues are encountered.

The previous features are critical requirements of the Horizon packaging system. Any new system must
keep these features. Although XStatic may mean a few additional steps from individual developers,
those steps help maintain consistency and prevent errors across the project.

Packaging Horizon for distributions

Horizon is a Python module. Preferably, it is installed at the default location for python. In Fedora and
openSUSE, this is /usr/lib/python3.7/site-packages/horizon, and in Debian/Ubuntu
it is /usr/lib/python3.7/dist-packages/horizon.

Configuration files should reside under /etc/openstack-dashboard. Policy files should be cre-
ated and modified there as well.

230 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

It is expected that manage.py collectstatic will be run during package build. This is the rec-
ommended way for Django applications. Depending on configuration, it might be required to manage.
py compress during package build, too.

DevStack for Horizon

Place the following content into devstack/local.conf to start the services that Horizon supports
in DevStack when stack.sh is run. If you need to use this with a stable branch you need to add
stable/<branch name> to the end of each enable_plugin line (e.g. stable/mitaka).
You can also check out DevStack using a stable branch tag. For more information on DevStack, see
https://docs.openstack.org/devstack/latest/

[[local|localrc]]

ADMIN_PASSWORD="secretadmin"
DATABASE_PASSWORD="secretdatabase"
RABBIT_PASSWORD="secretrabbit"
SERVICE_PASSWORD="secretservice"

For DevStack configuration options, see:
https://docs.openstack.org/devstack/latest/configuration.html

Note: there are several network setting changes that may be
required to get networking properly configured in your environment.
This file is just using the defaults set up by devstack.
For a more detailed treatment of devstack network configuration
options, please see:
https://docs.openstack.org/devstack/latest/guides.html

Supported Services
The following panels and plugins are part of the Horizon tree
and currently supported by the Horizon maintainers

Enable Swift (Object Store) without replication
enable_service s-proxy s-object s-container s-account
SWIFT_HASH=66a3d6b56c1f479c8b4e70ab5c2000f5
SWIFT_REPLICAS=1
SWIFT_DATA_DIR=$DEST/data/swift

Enable Neutron
enable_plugin neutron https://opendev.org/openstack/neutron

Enable the Trunks extension for Neutron
enable_service q-trunk

Enable the QoS extension for Neutron
enable_service q-qos

Plugins
Horizon has a large number of plugins, documented at
https://docs.openstack.org/horizon/latest/install/plugin-registry.html
See the individual repos for information on installing them.

[[post-config|$GLANCE_API_CONF]]
[DEFAULT]
default_store=file

3.1. Contributor Documentation 231

https://docs.djangoproject.com/en/dev/howto/static-files/deployment/
https://docs.djangoproject.com/en/dev/howto/static-files/deployment/
https://docs.openstack.org/devstack/latest/

Horizon Documentation, Release 18.6.5.dev13

3.1.8 Module Reference

Horizon Framework

The Horizon Module

Horizon ships with a single point of contact for hooking into your project if you arent developing your
own Dashboard or Panel:

import horizon

From there you can access all the key methods you need.

Horizon

horizon.urls
The auto-generated URLconf for horizon. Usage:

url(r'', include(horizon.urls)),

horizon.register(dashboard)
Registers a Dashboard with Horizon.

horizon.unregister(dashboard)
Unregisters a Dashboard from Horizon.

horizon.get_absolute_url()
Returns the default URL for Horizons URLconf.

The default URL is determined by calling get_absolute_url() on the Dashboard in-
stance returned by get_default_dashboard().

horizon.get_user_home(user)
Returns the default URL for a particular user.

This method can be used to customize where a user is sent when they log in, etc. By default it
returns the value of get_absolute_url().

An alternative function can be supplied to customize this behavior by specifying a either a URL
or a function which returns a URL via the "user_home" key in HORIZON_CONFIG. Each of
these would be valid:

{"user_home": "/home",} # A URL
{"user_home": "my_module.get_user_home",} # Path to a function
{"user_home": lambda user: "/" + user.name,} # A function
{"user_home": None,} # Will always return the default dashboard

This can be useful if the default dashboard may not be accessible to all users. When user_home
is missing from HORIZON_CONFIG, it will default to the settings.LOGIN_REDIRECT_URL
value.

horizon.get_dashboard(dashboard)
Returns the specified Dashboard instance.

232 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

horizon.get_default_dashboard()
Returns the default Dashboard instance.

If "default_dashboard" is specified in HORIZON_CONFIG then that dashboard will be
returned. If not, the first dashboard returned by get_dashboards() will be returned.

horizon.get_dashboards()
Returns an ordered tuple of Dashboard modules.

Orders dashboards according to the "dashboards" key in HORIZON_CONFIG or else returns
all registered dashboards in alphabetical order.

Any remaining Dashboard classes registered with Horizon but not listed in
HORIZON_CONFIG['dashboards'] will be appended to the end of the list alphabeti-
cally.

Dashboard

class horizon.Dashboard(*args, **kwargs)
A base class for defining Horizon dashboards.

All Horizon dashboards should extend from this base class. It provides the appropriate hooks
for automatic discovery of Panel modules, automatically constructing URLconfs, and providing
permission-based access control.

name
The name of the dashboard. This will be displayed in the auto-generated navigation and
various other places. Default: ''.

slug
A unique short name for the dashboard. The slug is used as a component of the URL path
for the dashboard. Default: ''.

panels
The panels attribute can be either a flat list containing the name of each panel module
which should be loaded as part of this dashboard, or a list of PanelGroup classes which
define groups of panels as in the following example:

class SystemPanels(horizon.PanelGroup):
slug = "syspanel"
name = _("System")
panels = ('overview', 'instances', ...)

class Syspanel(horizon.Dashboard):
panels = (SystemPanels,)

Automatically generated navigation will use the order of the modules in this attribute.

Default: [].

Warning: The values for this attribute should not correspond to the name attributes
of the Panel classes. They should be the names of the Python modules in which the
panel.py files live. This is used for the automatic loading and registration of Panel
classes much like Djangos ModelAdmin machinery.

3.1. Contributor Documentation 233

Horizon Documentation, Release 18.6.5.dev13

Panel modules must be listed in panels in order to be discovered by the automatic
registration mechanism.

default_panel
The name of the panel which should be treated as the default panel for the dashboard, i.e.
when you visit the root URL for this dashboard, thats the panel that is displayed. Default:
None.

permissions
A list of permission names, all of which a user must possess in order to access any panel
registered with this dashboard. This attribute is combined cumulatively with any permissions
required on individual Panel classes.

urls
Optional path to a URLconf of additional views for this dashboard which are not connected
to specific panels. Default: None.

nav
The nav attribute can be either a boolean value or a callable which accepts a
RequestContext object as a single argument to control whether or not this dashboard
should appear in automatically-generated navigation. Default: True.

public
Boolean value to determine whether this dashboard can be viewed without being logged in.
Defaults to False.

allowed(context)
Checks for role based access for this dashboard.

Checks for access to any panels in the dashboard and of the dashboard itself.

This method should be overridden to return the result of any policy checks required for the
user to access this dashboard when more complex checks are required.

get_absolute_url()
Returns the default URL for this dashboard.

The default URL is defined as the URL pattern with name="index" in the URLconf for
the Panel specified by default_panel.

get_panel(panel)
Returns the Panel instance registered with this dashboard.

get_panel_group(slug)
Returns the specified :class:~horizon.PanelGroup.

Returns None if not registered.

get_panels()
Returns the Panel instances registered with this dashboard in order.

Panel grouping information is not included.

classmethod register(panel)
Registers a Panel with this dashboard.

classmethod unregister(panel)
Unregisters a Panel from this dashboard.

234 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Panel

class horizon.Panel
A base class for defining Horizon dashboard panels.

All Horizon dashboard panels should extend from this class. It provides the appropriate hooks for
automatically constructing URLconfs, and providing permission-based access control.

name
The name of the panel. This will be displayed in the auto-generated navigation and various
other places. Default: ''.

slug
A unique short name for the panel. The slug is used as a component of the URL path for the
panel. Default: ''.

permissions
A list of permission names, all of which a user must possess in order to access any view
associated with this panel. This attribute is combined cumulatively with any permissions
required on the Dashboard class with which it is registered.

urls
Path to a URLconf of views for this panel using dotted Python notation. If no value is
specified, a file called urls.py living in the same package as the panel.py file is used.
Default: None.

nav
The nav attribute can be either a boolean value or a callable which accepts a
RequestContext object as a single argument to control whether or not this panel should
appear in automatically-generated navigation. Default: True.

index_url_name
The name argument for the URL pattern which corresponds to the index view for this
Panel. This is the view that Panel.get_absolute_url() will attempt to reverse.

static can_register()
This optional static method can be used to specify conditions that need to be satisfied to load
this panel. Unlike permissions and allowed this method is intended to handle settings
based conditions rather than user based permission and policy checks. The return value is
boolean. If the method returns True, then the panel will be registered and available to user
(if permissions and allowed runtime checks are also satisfied). If the method returns
False, then the panel will not be registered and will not be available via normal navigation
or direct URL access.

get_absolute_url()
Returns the default URL for this panel.

The default URL is defined as the URL pattern with name="index" in the URLconf for
this panel.

3.1. Contributor Documentation 235

Horizon Documentation, Release 18.6.5.dev13

Panel Group

class horizon.PanelGroup(dashboard, slug=None, name=None, panels=None)
A container for a set of Panel classes.

When iterated, it will yield each of the Panel instances it contains.

slug
A unique string to identify this panel group. Required.

name
A user-friendly name which will be used as the group heading in places such as the naviga-
tion. Default: None.

panels
A list of panel module names which should be contained within this grouping.

Horizon Workflows

One of the most challenging aspects of building a compelling user experience is crafting complex multi-
part workflows. Horizons workflows module aims to bring that capability within everyday reach.

See also:

For usage information, tips & tricks and more examples check out the Workflows Topic Guide.

Workflows

class horizon.workflows.Workflow(request=None, context_seed=None, en-
try_point=None, *args, **kwargs)

A Workflow is a collection of Steps.

Its interface is very straightforward, but it is responsible for handling some very important tasks
such as:

• Handling the injection, removal, and ordering of arbitrary steps.

• Determining if the workflow can be completed by a given user at runtime based on all avail-
able information.

• Dispatching connections between steps to ensure that when context data changes all the
applicable callback functions are executed.

• Verifying/validating the overall data integrity and subsequently triggering the final method
to complete the workflow.

The Workflow class has the following attributes:

name
The verbose name for this workflow which will be displayed to the user. Defaults to the class
name.

slug
The unique slug for this workflow. Required.

steps
Read-only access to the final ordered set of step instances for this workflow.

236 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

default_steps
A list of Step classes which serve as the starting point for this workflows ordered steps.
Defaults to an empty list ([]).

finalize_button_name
The name which will appear on the submit button for the workflows form. Defaults to
"Save".

success_message
A string which will be displayed to the user upon successful completion of the workflow.
Defaults to "{{ workflow.name }} completed successfully."

failure_message
A string which will be displayed to the user upon failure to complete the workflow. Defaults
to "{{ workflow.name }} did not complete."

depends_on
A roll-up list of all the depends_on values compiled from the workflows steps.

contributions
A roll-up list of all the contributes values compiled from the workflows steps.

template_name
Path to the template which should be used to render this workflow. In general the default
common template should be used. Default: "horizon/common/_workflow.html".

entry_point
The slug of the step which should initially be active when the workflow is rendered. This
can be passed in upon initialization of the workflow, or set anytime after initialization but
before calling either get_entry_point or render.

redirect_param_name
The name of a parameter used for tracking the URL to redirect to upon completion of the
workflow. Defaults to "next".

object
The object (if any) which this workflow relates to. In the case of a workflow which creates
a new resource the object would be the created resource after the relevant creation steps
have been undertaken. In the case of a workflow which updates a resource it would be the
resource being updated after it has been retrieved.

wizard
Whether to present the workflow as a wizard, with prev and next buttons and validation after
every step.

add_error_to_step(message, slug)
Adds an error message to the workflows Step.

This is useful when you wish for API errors to appear as errors on the form rather than using
the messages framework.

The workflows Step is specified by its slug.

finalize()
Finalizes a workflow by running through all the actions.

It runs all the actions in order and calling their handle methods. Returns True on full
success, or False for a partial success, e.g. there were non-critical errors. (If it failed
completely the function wouldnt return.)

3.1. Contributor Documentation 237

Horizon Documentation, Release 18.6.5.dev13

format_status_message(message)
Hook to allow customization of the message returned to the user.

This is called upon both successful or unsuccessful completion of the workflow.

By default it simply inserts the workflows name into the message string.

get_absolute_url()
Returns the canonical URL for this workflow.

This is used for the POST action attribute on the form element wrapping the workflow.

For convenience it defaults to the value of request.get_full_path() with any query
string stripped off, e.g. the path at which the workflow was requested.

get_entry_point()
Returns the slug of the step which the workflow should begin on.

This method takes into account both already-available data and errors within the steps.

get_step(slug)
Returns the instantiated step matching the given slug.

get_success_url()
Returns a URL to redirect the user to upon completion.

By default it will attempt to parse a success_url attribute on the workflow, which can
take the form of a reversible URL pattern name, or a standard HTTP URL.

handle(request, context)
Handles any final processing for this workflow.

Should return a boolean value indicating success.

is_valid()
Verifies that all required data is present in the context.

It also calls the validate method to allow for finer-grained checks on the context data.

classmethod register(step_class)
Registers a Step with the workflow.

render()
Renders the workflow.

classmethod unregister(step_class)
Unregisters a Step from the workflow.

validate(context)
Hook for custom context data validation.

Should return a booleanvalue or raise WorkflowValidationError.

238 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Steps

class horizon.workflows.Step(workflow)
A wrapper around an action which defines its context in a workflow.

It knows about details such as:

• The workflows context data (data passed from step to step).

• The data which must be present in the context to begin this step (the steps dependencies).

• The keys which will be added to the context data upon completion of the step.

• The connections between this steps fields and changes in the context data (e.g. if that piece
of data changes, what needs to be updated in this step).

A Step class has the following attributes:

action_class
The Action class which this step wraps.

depends_on
A list of context data keys which this step requires in order to begin interaction.

contributes
A list of keys which this step will contribute to the workflows context data. Optional keys
should still be listed, even if their values may be set to None.

connections
A dictionary which maps context data key names to lists of callbacks. The callbacks may
be functions, dotted python paths to functions which may be imported, or dotted strings
beginning with "self" to indicate methods on the current Step instance.

before
Another Step class. This optional attribute is used to provide control over workflow order-
ing when steps are dynamically added to workflows. The workflow mechanism will attempt
to place the current step before the step specified in the attribute.

after
Another Step class. This attribute has the same purpose as before() except that it will
instead attempt to place the current step after the given step.

help_text
A string of simple help text which will be prepended to the Action class help text if desired.

template_name
A path to a template which will be used to render this step. In general the default common
template should be used. Default: "horizon/common/_workflow_step.html".

has_errors
A boolean value which indicates whether or not this step has any errors on the action within
it or in the scope of the workflow. This attribute will only accurately reflect this status after
validation has occurred.

slug
Inherited from the Action class.

name
Inherited from the Action class.

3.1. Contributor Documentation 239

Horizon Documentation, Release 18.6.5.dev13

permissions
Inherited from the Action class.

add_step_error(message)
Adds an error to the Step based on API issues.

allowed(request)
Determines whether or not the step is displayed.

Step instances can override this method to specify conditions under which this tab should
not be shown at all by returning False.

The default behavior is to return True for all cases.

contribute(data, context)
Adds the data listed in contributes to the workflows context.

By default, the context is simply updated with all the data returned by the action.

Note that even if the value of one of the contributes keys is not present (e.g. optional)
the key should still be added to the context with a value of None.

get_help_text()
Returns the help text for this step.

get_id()
Returns the ID for this step. Suitable for use in HTML markup.

has_required_fields()
Returns True if action contains any required fields.

prepare_action_context(request, context)
Hook to customize how the workflow context is passed to the action.

This is the reverse of what contribute does to make the action outputs sane for the workflow.
Changes to the context are not saved globally here. They are localized to the action.

Simply returns the unaltered context by default.

render()
Renders the step.

Actions

class horizon.workflows.Action(request, context, *args, **kwargs)
An Action represents an atomic logical interaction with the system.

This is easier to understand with a conceptual example: in the context of a launch instance work-
flow, actions would include naming the instance, selecting an image, and ultimately launching the
instance.

Because Actions are always interactive, they always provide form controls, and thus inherit
from Djangos Form class. However, they have some additional intelligence added to them:

• Actions are aware of the permissions required to complete them.

• Actions have a meta-level concept of help text which is meant to be displayed in such a
way as to give context to the action regardless of where the action is presented in a site or
workflow.

240 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

• Actions understand how to handle their inputs and produce outputs, much like
SelfHandlingForm does now.

Action classes may define the following attributes in a Meta class within them:

name
The verbose name for this action. Defaults to the name of the class.

slug
A semi-unique slug for this action. Defaults to the slugified name of the class.

permissions
A list of permission names which this action requires in order to be completed. Defaults to
an empty list ([]).

policy_rules
list of scope and rule tuples to do policy checks on, the composition of which is (scope, rule)

• scope: service type managing the policy for action

• rule: string representing the action to be checked

for a policy that requires a single rule check:

policy_rules should look like
"(("compute", "compute:create_instance"),)"

for a policy that requires multiple rule checks:

rules should look like
"(("identity", "identity:list_users"),

("identity", "identity:list_roles"))"

where two service-rule clauses are OR-ed.

help_text
A string of simple help text to be displayed alongside the Actions fields.

help_text_template
A path to a template which contains more complex help text to be displayed alongside the
Actions fields. In conjunction with get_help_text() method you can customize your
help text template to display practically anything.

add_action_error(message)
Adds an error to the Actions Step based on API issues.

get_help_text(extra_context=None)
Returns the help text for this step.

handle(request, context)
Handles any requisite processing for this action.

The method should return either None or a dictionary of data to be passed to
contribute().

Returns None by default, effectively making it a no-op.

3.1. Contributor Documentation 241

Horizon Documentation, Release 18.6.5.dev13

WorkflowView

class horizon.workflows.WorkflowView
A generic view which handles the intricacies of workflow processing.

workflow_class
The Workflow class which this view handles. Required.

template_name
The template to use when rendering this view via standard HTTP requests. Required.

ajax_template_name
The template to use when rendering the workflow for AJAX requests. In general the de-
fault common template should be used. Defaults to "horizon/common/_workflow.
html".

context_object_name
The key which should be used for the workflow object in the template context. Defaults to
"workflow".

get(request, *args, **kwargs)
Handler for HTTP GET requests.

get_context_data(**kwargs)
Returns the template context, including the workflow class.

This method should be overridden in subclasses to provide additional context data to the
template.

get_initial()
Returns initial data for the workflow.

Defaults to using the GET parameters to allow pre-seeding of the workflow context values.

get_layout()
Returns classes for the workflow element in template.

The returned classes are determied based on the workflow characteristics.

get_template_names()
Returns the template name to use for this request.

get_workflow()
Returns the instantiated workflow class.

post(request, *args, **kwargs)
Handler for HTTP POST requests.

validate_steps(request, workflow, start, end)
Validates the workflow steps from start to end, inclusive.

Returns a dict describing the validation state of the workflow.

242 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Horizon DataTables

Horizon includes a componentized API for programmatically creating tables in the UI. Why would you
want this? It means that every table renders correctly and consistently, table-level and row-level actions
all have a consistent API and appearance, and generally you dont have to reinvent the wheel or copy-
and-paste every time you need a new table!

See also:

For usage information, tips & tricks and more examples check out the DataTables Topic Guide.

DataTable

The core class which defines the high-level structure of the table being represented. Example:

class MyTable(DataTable):
name = Column('name')
email = Column('email')

class Meta(object):
name = "my_table"
table_actions = (MyAction, MyOtherAction)
row_actions = (MyAction)

A full reference is included below:

class horizon.tables.DataTable(request, data=None, needs_form_wrapper=None,
**kwargs)

A class which defines a table with all data and associated actions.

name
String. Read-only access to the name specified in the tables Meta options.

multi_select
Boolean. Read-only access to whether or not this table should display a column for multi-
select checkboxes.

data
Read-only access to the data this table represents.

filtered_data
Read-only access to the data this table represents, filtered by the filter() method of the
tables FilterAction class (if one is provided) using the current requests query parame-
ters.

calculate_row_status(statuses)
Returns a boolean value determining the overall row status.

It is detremined based on the dictionary of column name to status mappings passed in.

By default, it uses the following logic:

1. If any statuses are False, return False.

2. If no statuses are False but any or None, return None.

3. If all statuses are True, return True.

3.1. Contributor Documentation 243

Horizon Documentation, Release 18.6.5.dev13

This provides the greatest protection against false positives without weighting any particular
columns.

The statuses parameter is passed in as a dictionary mapping column names to their
statuses in order to allow this function to be overridden in such a way as to weight one
columns status over another should that behavior be desired.

classmethod check_handler(request)
Determine whether the request should be handled by this table.

css_classes()
Returns the additional CSS class to be added to <table> tag.

get_absolute_url()
Returns the canonical URL for this table.

This is used for the POST action attribute on the form element wrapping the table. In many
cases it is also useful for redirecting after a successful action on the table.

For convenience it defaults to the value of request.get_full_path() with any query
string stripped off, e.g. the path at which the table was requested.

get_columns()
Returns this tables columns including auto-generated ones.

get_empty_message()
Returns the message to be displayed when there is no data.

get_filter_field()
Get the filter field value used for server type filters.

This is the value from the filter actions list of filter choices.

get_filter_first_message()
Return the message to be displayed first in the filter.

when the user needs to provide a search criteria first before loading any data.

get_filter_string()
Get the filter string value.

For server type filters this is saved in the session so that it gets persisted across table loads.
For other filter types this is obtained from the POST dict.

get_full_url()
Returns the full URL path for this table.

This is used for the POST action attribute on the form element wrapping the table. We use
this method to persist the pagination marker.

get_marker()
Returns the identifier for the last object in the current data set.

The return value will be used as marker/limit-based paging in the API.

get_object_by_id(lookup)
Returns the data object whose ID matches loopup parameter.

The data object is looked up from the tables dataset and the data which matches the lookup
parameter specified. An error will be raised if the match is not a single data object.

We will convert the object id and lookup to unicode before comparison.

244 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Uses get_object_id() internally.

get_object_display(datum)
Returns a display name that identifies this object.

By default, this returns a name attribute from the given object, but this can be overridden to
return other values.

get_object_id(datum)
Returns the identifier for the object this row will represent.

By default this returns an id attribute on the given object, but this can be overridden to
return other values.

Warning: Make sure that the value returned is a unique value for the id otherwise
rendering issues can occur.

get_pagination_string()
Returns the query parameter string to paginate to the next page.

get_prev_marker()
Returns the identifier for the first object in the current data set.

The return value will be used as marker/limit-based paging in the API.

get_prev_pagination_string()
Returns the query parameter string to paginate to the prev page.

get_row_actions(datum)
Returns a list of the action instances for a specific row.

get_row_status_class(status)
Returns a css class name determined by the status value.

This class name is used to indicate the status of the rows in the table if any
status_columns have been specified.

get_rows()
Return the row data for this table broken out by columns.

get_table_actions()
Returns a list of the action instances for this table.

property has_actions
Indicates whether there are any available actions on this table.

Returns a boolean value.

has_more_data()
Returns a boolean value indicating whether there is more data.

Returns True if there is more data available to this table from the source (generally an API).

The method is largely meant for internal use, but if you want to override it to provide custom
behavior you can do so at your own risk.

has_prev_data()
Returns a boolean value indicating whether there is previous data.

3.1. Contributor Documentation 245

Horizon Documentation, Release 18.6.5.dev13

Returns True if there is previous data available to this table from the source (generally an
API).

The method is largely meant for internal use, but if you want to override it to provide custom
behavior you can do so at your own risk.

inline_edit_handle(request, table_name, action_name, obj_id, new_row)
Inline edit handler.

Showing form or handling update by POST of the cell.

inline_update_action(request, datum, cell, obj_id, cell_name)
Handling update by POST of the cell.

maybe_handle()
Handles table actions if needed.

It determines whether the request should be handled by any action on this table after data
has been loaded.

maybe_preempt()
Determine whether the request should be handled in earlier phase.

It determines the request should be handled by a preemptive action on this table or by an
AJAX row update before loading any data.

property needs_form_wrapper
Returns if this table should be rendered wrapped in a <form> tag.

Returns a boolean value.

static parse_action(action_string)
Parses the action_string parameter sent back with the POST data.

By default this parses a string formatted as {{ table_name }}__{{ action_name
}}__{{ row_id }} and returns each of the pieces. The row_id is optional.

render()
Renders the table using the template from the table options.

render_row_actions(datum, row=False)
Renders the actions specified in Meta.row_actions.

The actions are rendered using the current row data. If row is True, the actions are rendered
in a row of buttons. Otherwise they are rendered in a dropdown box.

render_table_actions()
Renders the actions specified in Meta.table_actions.

sanitize_id(obj_id)
Override to modify an incoming obj_id to match existing API.

It is used to modify an incoming obj_id (used in Horizon) to the data type or format expected
by the API.

set_multiselect_column_visibility(visible=True)
hide checkbox column if no current table action is allowed.

take_action(action_name, obj_id=None, obj_ids=None)
Locates the appropriate action and routes the object data to it.

246 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

The action should return an HTTP redirect if successful, or a value which evaluates to
False if unsuccessful.

DataTable Options

The following options can be defined in a Meta class inside a DataTable class. Example:

class MyTable(DataTable):
class Meta(object):

name = "my_table"
verbose_name = "My Table"

class horizon.tables.base.DataTableOptions(options)
Contains options for DataTable objects.

name
A short name or slug for the table.

verbose_name
A more verbose name for the table meant for display purposes.

columns
A list of column objects or column names. Controls ordering/display of the columns in the
table.

table_actions
A list of action classes derived from the Action class. These actions will handle tasks such
as bulk deletion, etc. for multiple objects at once.

table_actions_menu
A list of action classes similar to table_actions except these will be displayed in a menu
instead of as individual buttons. Actions from this list will take precedence over actions from
the table_actions list.

table_actions_menu_label
A label of a menu button for table_actions_menu. The default is Actions or More
Actions depending on table_actions.

row_actions
A list similar to table_actions except tailored to appear for each row. These actions
act on a single object at a time.

actions_column
Boolean value to control rendering of an additional column containing the various actions
for each row. Defaults to True if any actions are specified in the row_actions option.

multi_select
Boolean value to control rendering of an extra column with checkboxes for selecting multiple
objects in the table. Defaults to True if any actions are specified in the table_actions
option.

filter
Boolean value to control the display of the filter search box in the table actions. By default
it checks whether or not an instance of FilterAction is in table_actions.

3.1. Contributor Documentation 247

Horizon Documentation, Release 18.6.5.dev13

template
String containing the template which should be used to render the table. Defaults to
"horizon/common/_data_table.html".

row_actions_dropdown_template
String containing the template which should be used to render the row actions dropdown.
Defaults to "horizon/common/_data_table_row_actions_dropdown.
html".

row_actions_row_template
String containing the template which should be used to render the row actions. Defaults to
"horizon/common/_data_table_row_actions_row.html".

table_actions_template
String containing the template which should be used to render the table actions. Defaults to
"horizon/common/_data_table_table_actions.html".

context_var_name
The name of the context variable which will contain the table when it is rendered. Defaults
to "table".

prev_pagination_param
The name of the query string parameter which will be used when paginating backward in
this table. When using multiple tables in a single view this will need to be changed to
differentiate between the tables. Default: "prev_marker".

pagination_param
The name of the query string parameter which will be used when paginating forward in
this table. When using multiple tables in a single view this will need to be changed to
differentiate between the tables. Default: "marker".

status_columns
A list or tuple of column names which represents the state of the data object being repre-
sented.

If status_columns is set, when the rows are rendered the value of this column will be
used to add an extra class to the row in the form of "status_up" or "status_down"
for that rows data.

The row status is used by other Horizon components to trigger tasks such as dynamic AJAX
updating.

cell_class
The class which should be used for rendering the cells of this table. Optional. Default:
Cell.

row_class
The class which should be used for rendering the rows of this table. Optional. Default: Row .

column_class
The class which should be used for handling the columns of this table. Optional. Default:
Column.

css_classes
A custom CSS class or classes to add to the <table> tag of the rendered table, for when
the particular table requires special styling. Default: "".

248 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

mixed_data_type
A toggle to indicate if the table accepts two or more types of data. Optional. Default: False

data_types
A list of data types that this table would accept. Default to be an empty list, but if the attribute
mixed_data_type is set to True, then this list must have at least one element.

data_type_name
The name of an attribute to assign to data passed to the table when it accepts mix data.
Default: "_table_data_type"

footer
Boolean to control whether or not to show the tables footer. Default: True.

hidden_title
Boolean to control whether or not to show the tables title. Default: True.

permissions
A list of permission names which this table requires in order to be displayed. Defaults to an
empty list ([]).

FormsetDataTable

You can integrate the DataTable with a Django Formset using one of following classes:

class horizon.tables.formset.FormsetDataTableMixin(*args, **kwargs)
A mixin for DataTable to support Django Formsets.

This works the same as the FormsetDataTable below, but can be used to add to existing
DataTable subclasses.

get_empty_row()
Return a row with no data, for adding at the end of the table.

get_formset()
Provide the formset corresponding to this DataTable.

Use this to validate the formset and to get the submitted data back.

get_required_columns()
Lists names of columns that have required fields.

get_rows()
Return the row data for this table broken out by columns.

The row objects get an additional form parameter, with the formset form corresponding to
that row.

class horizon.tables.formset.FormsetDataTable(*args, **kwargs)
A DataTable with support for Django Formsets.

Note that horizon.tables.DataTableOptions.row_class and horizon.
tables.DataTaleOptions.cell_class are overwritten in this class, so setting them in
Meta has no effect.

formset_class
A class made with django.forms.formsets.formset_factory containing the
definition of the formset to use with this data table.

3.1. Contributor Documentation 249

Horizon Documentation, Release 18.6.5.dev13

The columns that are named the same as the formset fields will be replaced with form widgets
in the table. Any hidden fields from the formset will also be included. The fields that are not
hidden and dont correspond to any column will not be included in the form.

Table Components

class horizon.tables.Column(transform, verbose_name=None, sortable=True,
link=None, allowed_data_types=None, hidden=False,
attrs=None, status=False, status_choices=None, dis-
play_choices=None, empty_value=None, filters=None,
classes=None, summation=None, auto=None, trun-
cate=None, link_classes=None, wrap_list=False,
form_field=None, form_field_attributes=None,
update_action=None, link_attrs=None, pol-
icy_rules=None, cell_attributes_getter=None,
help_text=None)

A class which represents a single column in a DataTable.

transform
A string or callable. If transform is a string, it should be the name of the attribute on
the underlying data class which should be displayed in this column. If it is a callable, it will
be passed the current rows data at render-time and should return the contents of the cell.
Required.

verbose_name
The name for this column which should be used for display purposes. Defaults to the value of
transform with the first letter of each word capitalized if the transform is not callable,
otherwise it defaults to an empty string ("").

sortable
Boolean to determine whether this column should be sortable or not. Defaults to True.

hidden
Boolean to determine whether or not this column should be displayed when rendering the
table. Default: False.

link
A string or callable which returns a URL which will be wrapped around this columns text as
a link.

allowed_data_types
A list of data types for which the link should be created. Default is an empty list ([]).

When the list is empty and the link attribute is not None, all the rows under this column
will be links.

status
Boolean designating whether or not this column represents a status (i.e. enabled/disabled,
up/down, active/inactive). Default: False.

status_choices
A tuple of tuples representing the possible data values for the status column and their as-
sociated boolean equivalent. Positive states should equate to True, negative states should
equate to False, and indeterminate states should be None.

Values are compared in a case-insensitive manner.

250 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Example (these are also the default values):

status_choices = (
('enabled', True),
('true', True),
('up', True),
('active', True),
('yes', True),
('on', True),
('none', None),
('unknown', None),
('', None),
('disabled', False),
('down', False),
('false', False),
('inactive', False),
('no', False),
('off', False),

)

display_choices
A tuple of tuples representing the possible values to substitute the data when displayed in
the column cell.

empty_value
A string or callable to be used for cells which have no data. Defaults to the string "-".

summation
A string containing the name of a summation method to be used in the generation of a
summary row for this column. By default the options are "sum" or "average", which
behave as expected. Optional.

filters
A list of functions (often template filters) to be applied to the value of the data for this column
prior to output. This is effectively a shortcut for writing a custom transform function in
simple cases.

classes
An iterable of CSS classes which should be added to this column. Example:
classes=('foo', 'bar').

attrs
A dict of HTML attribute strings which should be added to this column. Example:
attrs={"data-foo": "bar"}.

cell_attributes_getter
A callable to get the HTML attributes of a column cell depending on the data. For example,
to add additional description or help information for data in a column cell (e.g. in Images
panel, for the column format):

helpText = {
'ARI':'Amazon Ramdisk Image',
'QCOW2':'QEMU' Emulator'
}

getHoverHelp(data):
text = helpText.get(data, None)

(continues on next page)

3.1. Contributor Documentation 251

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

if text:
return {'title': text}

else:
return {}

...

...
cell_attributes_getter = getHoverHelp

truncate
An integer for the maximum length of the string in this column. If the length of the data in
this column is larger than the supplied number, the data for this column will be truncated
and an ellipsis will be appended to the truncated data. Defaults to None.

link_classes
An iterable of CSS classes which will be added when the columns text is displayed as a link.
This is left for backward compatibility. Deprecated in favor of the link_attributes attribute.
Example: link_classes=('link-foo', 'link-bar'). Defaults to None.

wrap_list
Boolean value indicating whether the contents of this cell should be wrapped in a </
ul> tag. Useful in conjunction with Djangos unordered_list template filter. Defaults
to False.

form_field
A form field used for inline editing of the column. A django forms.Field can be used or
django form.Widget can be used.

Example: form_field=forms.CharField(). Defaults to None.

form_field_attributes
The additional html attributes that will be rendered to form_field. Example:
form_field_attributes={'class': 'bold_input_field'}. Defaults to
None.

update_action
The class that inherits from tables.actions.UpdateAction, update_cell method takes care of
saving inline edited data. The tables.base.Row get_data method needs to be connected to
table for obtaining the data. Example: update_action=UpdateCell. Defaults to
None.

link_attrs
A dict of HTML attribute strings which should be added when the columns
text is displayed as a link. Examples: link_attrs={"data-foo":
"bar"}. link_attrs={"target": "_blank", "class": "link-foo
link-bar"}. Defaults to None.

policy_rules
List of scope and rule tuples to do policy checks on, the composition of which is (scope,
rule)

• scope: service type managing the policy for action

• rule: string representing the action to be checked

for a policy that requires a single rule check, policy_rules should look like:

252 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

"(("compute", "compute:create_instance"),)"

for a policy that requires multiple rule checks, rules should look like:

"(("identity", "identity:list_users"),
("identity", "identity:list_roles"))"

help_text
A string of simple help text displayed in a tooltip when you hover over the help icon beside
the Column name. Defaults to None.

allowed(request)
Determine whether processing/displaying the column is allowed.

It is determined based on the current request.

get_data(datum)
Returns the final display data for this column from the given inputs.

The return value will be either the attribute specified for this column or the return value of
the attr:~horizon.tables.Column.transform method for this column.

get_link_url(datum)
Returns the final value for the columns link property.

If allowed_data_types of this column is not empty and the datum has an assigned
type, check if the datums type is in the allowed_data_types list. If not, the datum
wont be displayed as a link.

If link is a callable, it will be passed the current data object and should return a URL.
Otherwise get_link_url will attempt to call reverse on link with the objects id as
a parameter. Failing that, it will simply return the value of link.

get_raw_data(datum)
Returns the raw data for this column.

No filters or formatting are applied to the returned data. This is useful when doing calcula-
tions on data in the table.

get_summation()
Returns the summary value for the data in this column.

It returns the summary value if a valid summation method is specified for it. Otherwise
returns None.

class horizon.tables.Row(table, datum=None)
Represents a row in the table.

When iterated, the Row instance will yield each of its cells.

Rows are capable of AJAX updating, with a little added work:

The ajax property needs to be set to True, and subclasses need to define a get_data method
which returns a data object appropriate for consumption by the table (effectively the get lookup
versus the tables list lookup).

The automatic update interval is configurable by setting the key ajax_poll_interval in the
HORIZON_CONFIG dictionary. Default: 2500 (measured in milliseconds).

3.1. Contributor Documentation 253

Horizon Documentation, Release 18.6.5.dev13

table
The table which this row belongs to.

datum
The data object which this row represents.

id
A string uniquely representing this row composed of the table name and the row data objects
identifier.

cells
The cells belonging to this row stored in a OrderedDict object. This attribute is populated
during instantiation.

status
Boolean value representing the status of this row calculated from the values of the tables
status_columns if they are set.

status_class
Returns a css class for the status of the row based on status.

ajax
Boolean value to determine whether ajax updating for this row is enabled.

ajax_action_name
String that is used for the query parameter key to request AJAX updates. Generally you wont
need to change this value. Default: "row_update".

ajax_cell_action_name
String that is used for the query parameter key to request AJAX updates of cell. Generally
you wont need to change this value. It is also used for inline edit of the cell. Default:
"cell_update".

can_be_selected(datum)
Determines whether the row can be selected.

By default if multiselect enabled return True. You can remove the checkbox after an ajax
update here if required.

get_cells()
Returns the bound cells for this row in order.

get_data(request, obj_id)
Fetches the updated data for the row based on the given object ID.

Must be implemented by a subclass to allow AJAX updating.

load_cells(datum=None)
Load the rows data and initialize all the cells in the row.

It also set the appropriate row properties which require the rows data to be determined.

The rows data is provided either at initialization or as an argument to this function.

This function is called automatically by __init__() if the datum argument is provided.
However, by not providing the data during initialization this function allows for the possi-
bility of a two-step loading pattern when you need a row instance but dont yet have the data
available.

254 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Actions

class horizon.tables.Action(*args, **kwargs)
Represents an action which can be taken on this tables data.

name
Required. The short name or slug representing this action. This name should not be changed
at runtime.

verbose_name
A descriptive name used for display purposes. Defaults to the value of name with the first
letter of each word capitalized.

verbose_name_plural
Used like verbose_name in cases where handles_multiple is True. Defaults to
verbose_name with the letter s appended.

method
The HTTP method for this action. Defaults to POST. Other methods may or may not succeed
currently.

requires_input
Boolean value indicating whether or not this action can be taken without any additional input
(e.g. an object id). Defaults to True.

preempt
Boolean value indicating whether this action should be evaluated in the period after the table
is instantiated but before the data has been loaded.

This can allow actions which dont need access to the full table data to bypass any API calls
and processing which would otherwise be required to load the table.

allowed_data_types
A list that contains the allowed data types of the action. If the datums type is in this list, the
action will be shown on the row for the datum.

Default to be an empty list ([]). When set to empty, the action will accept any kind of data.

policy_rules
list of scope and rule tuples to do policy checks on, the composition of which is (scope, rule)

• scope: service type managing the policy for action

• rule: string representing the action to be checked

for a policy that requires a single rule check:
policy_rules should look like

"(("compute", "compute:create_instance"),)"
for a policy that requires multiple rule checks:

rules should look like
"(("identity", "identity:list_users"),

("identity", "identity:list_roles"))"

At least one of the following methods must be defined:

single(self, data_table, request, object_id)
Handler for a single-object action.

3.1. Contributor Documentation 255

Horizon Documentation, Release 18.6.5.dev13

multiple(self, data_table, request, object_ids)
Handler for multi-object actions.

handle(self, data_table, request, object_ids)
If a single function can work for both single-object and multi-object cases then simply pro-
viding a handle function will internally route both single and multiple requests to
handlewith the calls from single being transformed into a list containing only the single
object id.

get_param_name()
Returns the full POST parameter name for this action.

Defaults to {{ table.name }}__{{ action.name }}.

class horizon.tables.LinkAction(*args, **kwargs)
A table action which is simply a link rather than a form POST.

name
Required. The short name or slug representing this action. This name should not be changed
at runtime.

verbose_name
A string which will be rendered as the link text. (Required)

url
A string or a callable which resolves to a url to be used as the link target. You must either
define the url attribute or override the get_link_url method on the class.

allowed_data_types
A list that contains the allowed data types of the action. If the datums type is in this list, the
action will be shown on the row for the datum.

Defaults to be an empty list ([]). When set to empty, the action will accept any kind of data.

get_link_url(datum=None)
Returns the final URL based on the value of url.

If url is callable it will call the function. If not, it will then try to call reverse on url.
Failing that, it will simply return the value of url as-is.

When called for a row action, the current row data object will be passed as the first parameter.

class horizon.tables.FilterAction(*args, **kwargs)
A base class representing a filter action for a table.

name
The short name or slug representing this action. Defaults to "filter".

verbose_name
A descriptive name used for display purposes. Defaults to the value of name with the first
letter of each word capitalized.

param_name
A string representing the name of the request parameter used for the search term. Default:
"q".

filter_type
A string representing the type of this filter. If this is set to "server" then
filter_choices must also be provided. Default: "query".

256 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

filter_choices
Required for server type filters. A tuple of tuples representing the filter options. Tuple
composition should evaluate to (string, string, boolean, string, boolean), representing the
following:

• The first value is the filter parameter.

• The second value represents display value.

• The third optional value indicates whether or not it should be applied to the API request
as an API query attribute. API type filters do not need to be accounted for in the filter
method since the API will do the filtering. However, server type filters in general will
need to be performed in the filter method. By default this attribute is not provided
(False).

• The fourth optional value is used as help text if provided. The default is None which
means no help text.

• The fifth optional value determines whether or not the choice is displayed to users. It
defaults to True. This is useful when the choice needs to be displayed conditionally.

needs_preloading
If True, the filter function will be called for the initial GET request with an empty
filter_string, regardless of the value of method.

filter(table, data, filter_string)
Provides the actual filtering logic.

This method must be overridden by subclasses and return the filtered data.

get_param_name()
Returns the full query parameter name for this action.

Defaults to {{ table.name }}__{{ action.name }}__{{ action.
param_name }}.

get_select_options()
Provide the value, string, and help_text for the template to render.

help_text is returned if applicable.

is_api_filter(filter_field)
Determine if agiven filter field should be used as an API filter.

class horizon.tables.FixedFilterAction(*args, **kwargs)
A filter action with fixed buttons.

categorize(table, rows)
Override to separate rows into categories.

To have filtering working properly on the client, each row will need CSS class(es) beginning
with category-, followed by the value of the fixed button.

Return a dict with a key for the value of each fixed button, and a value that is a list of rows
in that category.

filter(table, images, filter_string)
Provides the actual filtering logic.

This method must be overridden by subclasses and return the filtered data.

3.1. Contributor Documentation 257

Horizon Documentation, Release 18.6.5.dev13

get_fixed_buttons()
Returns a list of dict describing fixed buttons used for filtering.

Each list item should be a dict with the following keys:

• text: Text to display on the button

• icon: Icon class for icon element (inserted before text).

• value: Value returned when the button is clicked. This value is passed to filter()
as filter_string.

class horizon.tables.BatchAction(*args, **kwargs)
A table action which takes batch action on one or more objects.

This action should not require user input on a per-object basis.

name
A short name or slug representing this action. Should be one word such as delete, add,
disable, etc.

action_present()
Method returning a present action name. This is used as an action label.

Method must accept an integer/long parameter and return the display forms of the name
properly pluralised (depending on the integer) and translated in a string or tuple/list.

The returned display form is highly recommended to be a complete action name with a form
of a transitive verb and an object noun. Each word is capitalized and the string should be
marked as translatable.

If tuple or list - then setting self.current_present_action = n will set the current active item
from the list(action_present[n])

action_past()
Method returning a past action name. This is usually used to display a message when the
action is completed.

Method must accept an integer/long parameter and return the display forms of the name
properly pluralised (depending on the integer) and translated in a string or tuple/list.

The detail is same as that of action_present.

success_url
Optional location to redirect after completion of the delete action. Defaults to the current
page.

help_text
Optional message for providing an appropriate help text for the horizon user.

action(request, datum_id)
Accepts a single object id and performs the specific action.

This method is required.

Return values are discarded, errors raised are caught and logged.

get_default_attrs()
Returns a list of the default HTML attributes for the action.

get_success_url(request=None)
Returns the URL to redirect to after a successful action.

258 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

update(request, datum)
Switches the action verbose name, if needed.

class horizon.tables.DeleteAction(*args, **kwargs)
A table action used to perform delete operations on table data.

name
A short name or slug representing this action. Defaults to delete

action_present()
Method returning a present action name. This is used as an action label.

Method must accept an integer/long parameter and return the display forms of the name
properly pluralised (depending on the integer) and translated in a string or tuple/list.

The returned display form is highly recommended to be a complete action name with a form
of a transitive verb and an object noun. Each word is capitalized and the string should be
marked as translatable.

If tuple or list - then setting self.current_present_action = n will set the current active item
from the list(action_present[n])

action_past()
Method returning a past action name. This is usually used to display a message when the
action is completed.

Method must accept an integer/long parameter and return the display forms of the name
properly pluralised (depending on the integer) and translated in a string or tuple/list.

The detail is same as that of action_present.

success_url
Optional location to redirect after completion of the delete action. Defaults to the current
page.

help_text
Optional message for providing an appropriate help text for the horizon user.

action(request, obj_id)
Action entry point. Overrides base class action method.

Accepts a single object id passing it over to the delete method responsible for the objects
destruction.

delete(request, obj_id)
Required. Deletes an object referenced by obj_id.

Override to provide delete functionality specific to your data.

3.1. Contributor Documentation 259

Horizon Documentation, Release 18.6.5.dev13

Class-Based Views

Several class-based views are provided to make working with DataTables easier in your UI.

class horizon.tables.DataTableView(*args, **kwargs)
A class-based generic view to handle basic DataTable processing.

Three steps are required to use this view: set the table_class attribute with the desired
DataTable class; define a get_data method which returns a set of data for the table; and
specify a template for the template_name attribute.

Optionally, you can override the has_more_data method to trigger pagination handling for
APIs that support it.

class horizon.tables.MultiTableView(*args, **kwargs)
Generic view to handle multiple DataTable classes in a single view.

Each DataTable class must be a DataTable class or its subclass.

Three steps are required to use this view: set the table_classes attribute with a tuple
of the desired DataTable classes; define a get_{{ table_name }}_data method for
each table class which returns a set of data for that table; and specify a template for the
template_name attribute.

Horizon Tabs and TabGroups

Horizon includes a set of reusable components for programmatically building tabbed interfaces with
fancy features like dynamic AJAX loading and nearly effortless templating and styling.

Tab Groups

For any tabbed interface, your fundamental element is the tab group which contains all your tabs. This
class provides a dead-simple API for building tab groups and encapsulates all the necessary logic behind
the scenes.

class horizon.tabs.TabGroup(request, **kwargs)
A container class which knows how to manage and render Tab objects.

slug
The URL slug and pseudo-unique identifier for this tab group.

tabs
A list of Tab classes. Tabs specified here are displayed in the order of the list.

template_name
The name of the template which will be used to render this tab group. Default: "horizon/
common/_tab_group.html"

sticky
Boolean to control whether the active tab state should be stored across requests for a given
user. (State storage is all done client-side.)

show_single_tab
Boolean to control whether the tab bar is shown when the tab group has only one tab. Default:
False

260 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

param_name
The name of the GET request parameter which will be used when requesting specific tab
data. Default: tab.

classes
A list of CSS classes which should be displayed on this tab group.

attrs
A dictionary of HTML attributes which should be rendered into the markup for this tab
group.

selected
Read-only property which is set to the instance of the currently-selected tab if there is one,
otherwise None.

active
Read-only property which is set to the value of the current active tab. This may not be the
same as the value of selected if no specific tab was requested via the GET parameter.

get_default_classes()
Returns a list of the default classes for the tab group.

Defaults to ["nav", "nav-tabs", "ajax-tabs"].

get_id()
Returns the id for this tab group.

Defaults to the value of the tab groups horizon.tabs.Tab.slug.

get_selected_tab()
Returns the tab specific by the GET request parameter.

In the event that there is no GET request parameter, the value of the query parameter is
invalid, or the tab is not allowed/enabled, the return value of this function is None.

get_tab(tab_name, allow_disabled=False)
Returns a specific tab from this tab group.

If the tab is not allowed or not enabled this method returns None.

If the tab is disabled but you wish to return it anyway, you can pass True to the al-
low_disabled argument.

get_tabs()
Returns a list of the allowed tabs for this tab group.

load_tab_data()
Preload all data that for the tabs that will be displayed.

render()
Renders the HTML output for this tab group.

tabs_not_available()
The fallback handler if no tabs are either allowed or enabled.

In the event that no tabs are either allowed or enabled, this method is the fallback handler.
By default its a no-op, but it exists to make redirecting or raising exceptions possible for
subclasses.

3.1. Contributor Documentation 261

Horizon Documentation, Release 18.6.5.dev13

Tabs

The tab itself is the discrete unit for a tab group, representing one view of data.

class horizon.tabs.Tab(tab_group, request=None)
A reusable interface for constructing a tab within a TabGroup.

name
The display name for the tab which will be rendered as the text for the tab element in the
HTML. Required.

slug
The URL slug and id attribute for the tab. This should be unique for a given tab group.
Required.

preload
Determines whether the contents of the tab should be rendered into the pages HTML when
the tab group is rendered, or whether it should be loaded dynamically when the tab is se-
lected. Default: True.

classes
A list of CSS classes which should be displayed on this tab.

attrs
A dictionary of HTML attributes which should be rendered into the markup for this tab.

load
Read-only access to determine whether or not this tabs data should be loaded immediately.

permissions
A list of permission names which this tab requires in order to be displayed. Defaults to an
empty list ([]).

allowed(request)
Determines whether or not the tab is displayed.

Tab instances can override this method to specify conditions under which this tab should not
be shown at all by returning False.

The default behavior is to return True for all cases.

enabled(request)
Determines whether or not the tab should be accessible.

For example, the tab should be rendered into the HTML on load and respond to a click event.

If a tab returns False from enabled it will ignore the value of preload and only render
the HTML of the tab after being clicked.

The default behavior is to return True for all cases.

get_context_data(request, **kwargs)
Return a dictionary of context data used to render the tab.

Required.

get_default_classes()
Returns a list of the default classes for the tab.

262 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Defaults to and empty list ([]), however additional classes may be added depending on the
state of the tab as follows:

If the tab is the active tab for the tab group, in which the class "active" will be added.

If the tab is not enabled, the classes the class "disabled" will be added.

get_id()
Returns the id for this tab.

Defaults to "{{ tab_group.slug }}__{{ tab.slug }}".

get_template_name(request)
Returns the name of the template to be used for rendering this tab.

By default it returns the value of the template_name attribute on the Tab class.

is_active()
Method to access whether or not this tab is the active tab.

post(request, *args, **kwargs)
Handles POST data sent to a tab.

Tab instances can override this method to have tab-specific POST logic without polluting the
TabView code.

The default behavior is to ignore POST data.

render()
Renders the tab to HTML.

get_context_data() method and the get_template_name() method are called.

If preload is False and force_load is not True, or either allowed() or
enabled() returns False this method will return an empty string.

class horizon.tabs.TableTab(tab_group, request)
A Tab class which knows how to deal with DataTable classes inside of it.

This distinct class is required due to the complexity involved in handling both dynamic tab loading,
dynamic table updating and table actions all within one view.

table_classes
An iterable containing the DataTable classes which this tab will contain. Equiva-
lent to the table_classes attribute on MultiTableView . For each table class
you need to define a corresponding get_{{ table_name }}_data method as with
MultiTableView .

get_context_data(request, **kwargs)
Adds a {{ table_name }}_table item to the context for each table.

The target tables are specified by the table_classes attribute.

If only one table class is provided, a shortcut table context variable is also added contain-
ing the single table.

load_table_data()
Calls the get_{{ table_name }}_data methods for each table class.

When returning, the loaded data is set on the tables.

3.1. Contributor Documentation 263

Horizon Documentation, Release 18.6.5.dev13

TabView

There is also a useful and simple generic class-based view for handling the display of a TabGroup
class.

class horizon.tabs.TabView
A generic view for displaying a horizon.tabs.TabGroup.

This view handles selecting specific tabs and deals with AJAX requests gracefully.

tab_group_class
The only required attribute for TabView. It should be a class which inherits from
horizon.tabs.TabGroup.

get_context_data(**kwargs)
Adds the tab_group variable to the context data.

get_tabs(request, **kwargs)
Returns the initialized tab group for this view.

handle_tabbed_response(tab_group, context)
Sends back an AJAX-appropriate response for the tab group if needed.

Otherwise renders the response as normal.

class horizon.tabs.TabbedTableView(*args, **kwargs)

get_tables()
A no-op on this class. Tables are handled at the tab level.

handle_table(table_dict)
Loads the table data based on a given table_dict and handles them.

For the given dict containing a DataTable and a TableTab instance, it loads the table
data for that tab and calls the tables maybe_handle() method. The return value will be
the result of maybe_handle.

load_tabs()
Loads the tab group.

It compiles the table instances for each table attached to any horizon.tabs.TableTab
instances on the tab group. This step is necessary before processing any tab or table actions.

Horizon Forms

Horizon ships with some very useful base form classes, form fields, class-based views, and javascript
helpers which streamline most of the common tasks related to form handling.

264 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Form Classes

class horizon.forms.base.DateForm(*args, **kwargs)
A simple form for selecting a range of time.

class horizon.forms.base.SelfHandlingForm(request, *args, **kwargs)
A base Form class which includes processing logic in its subclasses.

api_error(message)
Adds an error to the forms error dictionary.

It can be used after validation based on problems reported via the API. This is useful when
you wish for API errors to appear as errors on the form rather than using the messages
framework.

set_warning(message)
Sets a warning on the form.

Unlike NON_FIELD_ERRORS, this doesnt fail form validation.

Form Fields

class horizon.forms.fields.ChoiceInput(name, value, attrs, choice, index)
ChoiceInput class from django 1.10.7 codebase

An object used by ChoiceFieldRenderer that represents a single <input type=$input_type>.

class horizon.forms.fields.DynamicChoiceField(add_item_link=None,
add_item_link_args=None,
*args, **kwargs)

ChoiceField that make dynamically updating its elements easier.

Notably, the field declaration takes an extra argument, add_item_link which may be a string
or callable defining the URL that should be used for the add link associated with the field.

widget
alias of DynamicSelectWidget

class horizon.forms.fields.DynamicSelectWidget(attrs=None, choices=(),
data_attrs=(), trans-
form=None, trans-
form_html_attrs=None)

Select widget to handle dynamic changes to the available choices.

A subclass of the Select widget which renders extra attributes for use in callbacks to handle
dynamic changes to the available choices.

render(*args, **kwargs)
Render the widget as an HTML string.

class horizon.forms.fields.DynamicTypedChoiceField(add_item_link=None,
add_item_link_args=None,
*args, **kwargs)

Simple mix of DynamicChoiceField and TypedChoiceField.

class horizon.forms.fields.ExternalFileField(*args, **kwargs)
Special FileField to upload file to some external location.

3.1. Contributor Documentation 265

Horizon Documentation, Release 18.6.5.dev13

This is a special flavor of FileField which is meant to be used in cases when instead of uploading
file to Django it should be uploaded to some external location, while the form validation is done
as usual. It should be paired with ExternalUploadMeta metaclass embedded into the Form class.

class horizon.forms.fields.ExternalUploadMeta(name, bases, attrs)
Metaclass to process ExternalFileField fields in a specific way.

Set this class as the metaclass of a form that contains ExternalFileField in order to process Ex-
ternalFileField fields in a specific way. A hidden CharField twin of FieldField is created which
contains just the filename (if any file was selected on browser side) and a special clean method for
FileField is defined which extracts just file name. This allows to avoid actual file upload to Django
server, yet process form clean() phase as usual. Actual file upload happens entirely on client-side.

class horizon.forms.fields.IPField(*args, **kwargs)
Form field for entering IP/range values, with validation.

Supports IPv4/IPv6 in the format: .. xxx.xxx.xxx.xxx .. xxx.xxx.xxx.xxx/zz ..
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff .. ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/zz and all compressed forms. Also
the short forms are supported: xxx/yy xxx.xxx/yy

version
Specifies which IP version to validate, valid values are 1 (fields.IPv4), 2 (fields.IPv6) or both
- 3 (fields.IPv4 | fields.IPv6). Defaults to IPv4 (1)

mask
Boolean flag to validate subnet masks along with IP address. E.g: 10.0.0.1/32

mask_range_from
Subnet range limitation, e.g. 16
That means the input mask will be checked to be in the range
16:max_value. Useful to limit the subnet ranges
to A/B/C-class networks.

clean(value)
Validate the given value and return its cleaned value as an appropriate Python object. Raise
ValidationError for any errors.

class horizon.forms.fields.MACAddressField(*, required=True, wid-
get=None, label=None,
initial=None, help_text=”,
error_messages=None,
show_hidden_initial=False,
validators=(), local-
ize=False, disabled=False,
label_suffix=None)

Form field for entering a MAC address with validation.

Supports all formats known by netaddr.EUI(), for example: .. xx:xx:xx:xx:xx:xx .. xx-xx-xx-xx-
xx-xx .. xxxx.xxxx.xxxx

clean(value)
Validate the given value and return its cleaned value as an appropriate Python object. Raise
ValidationError for any errors.

class horizon.forms.fields.MultiIPField(*args, **kwargs)
Extends IPField to allow comma-separated lists of addresses.

266 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

clean(value)
Validate the given value and return its cleaned value as an appropriate Python object. Raise
ValidationError for any errors.

class horizon.forms.fields.SelectWidget(attrs=None, choices=(),
data_attrs=(), transform=None,
transform_html_attrs=None)

Custom select widget.

It allows to render data-xxx attributes from choices. This widget also allows user to specify
additional html attributes for choices.

data_attrs
Specifies object properties to serialize as data-xxx attribute. If passed (id,), this will
be rendered as: <option data-id=123>option_value</option> where 123 is the value of
choice_value.id

transform
A callable used to render the display value from the option object.

transform_html_attrs
A callable used to render additional HTML attributes for the option object. It returns a
dictionary containing the html attributes and their values. For example, to define a title
attribute for the choices:

helpText = { 'Apple': 'This is a fruit',
'Carrot': 'This is a vegetable' }

def get_title(data):
text = helpText.get(data, None)
if text:

return {'title': text}
else:

return {}

....

....

widget=forms.ThemableSelect(attrs={'class': 'switchable',
'data-slug': 'source'},

transform_html_attrs=get_title)

self.fields[<field name>].choices =
([

('apple','Apple'),
('carrot','Carrot')

])

build_attrs(extra_attrs=None, **kwargs)
Helper function for building an attribute dictionary.

render(name, value, attrs=None, renderer=None)
Render the widget as an HTML string.

class horizon.forms.fields.SubWidget(parent_widget, name, value, attrs,
choices)

SubWidget class from django 1.10.7 codebase

3.1. Contributor Documentation 267

Horizon Documentation, Release 18.6.5.dev13

Some widgets are made of multiple HTML elements namely, RadioSelect. This is a class that
represents the inner HTML element of a widget.

class horizon.forms.fields.ThemableCheckboxChoiceInput(*args,
**kwargs)

class horizon.forms.fields.ThemableCheckboxInput(attrs=None,
check_test=None)

Checkbox widget which renders extra markup.

It is used to allow a custom checkbox experience.

render(name, value, attrs=None, renderer=None)
Render the widget as an HTML string.

class horizon.forms.fields.ThemableChoiceField(*, choices=(), **kwargs)
Bootstrap based select field.

widget
alias of ThemableSelectWidget

class horizon.forms.fields.ThemableDynamicChoiceField(add_item_link=None,
add_item_link_args=None,
*args,
**kwargs)

widget
alias of ThemableDynamicSelectWidget

class horizon.forms.fields.ThemableDynamicSelectWidget(attrs=None,
choices=(),
data_attrs=(),
trans-
form=None,
trans-
form_html_attrs=None)

class horizon.forms.fields.ThemableDynamicTypedChoiceField(add_item_link=None,
add_item_link_args=None,
*args,
**kwargs)

Simple mix of ThemableDynamicChoiceField & TypedChoiceField.

class horizon.forms.fields.ThemableSelectWidget(attrs=None, choices=(),
data_attrs=(), trans-
form=None, trans-
form_html_attrs=None)

Bootstrap base select field widget.

render(name, value, attrs=None, renderer=None, choices=())
Render the widget as an HTML string.

268 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Form Views

class horizon.forms.views.ModalBackdropMixin(*args, **kwargs)
Mixin class to allow ModalFormView and WorkflowView together.

This mixin class is to be used for together with ModalFormView and WorkflowView classes to
augment them with modal_backdrop context data.

class horizon.forms.views.ModalFormMixin(*args, **kwargs)

class horizon.forms.views.ModalFormView(*args, **kwargs)
The main view class for all views which handle forms in Horizon.

All view which handles forms in Horiozn should inherit this class. It takes care of all details with
processing SelfHandlingForm classes, and modal concerns when the associated template
inherits from horizon/common/_modal_form.html.

Subclasses must define a form_class and template_name attribute at minimum.

See Djangos documentation on the FormView class for more details.

form_invalid(form)
If the form is invalid, render the invalid form.

form_valid(form)
If the form is valid, redirect to the supplied URL.

get_context_data(**kwargs)
Insert the form into the context dict.

get_form(form_class=None)
Returns an instance of the form to be used in this view.

get_object_display(obj)
Returns the display name of the created object.

For dynamic insertion of resources created in modals, this method returns the display name
of the created object. Defaults to returning the name attribute.

get_object_id(obj)
Returns the ID of the created object.

For dynamic insertion of resources created in modals, this method returns the id of the cre-
ated object. Defaults to returning the id attribute.

Forms Javascript

Switchable Fields

By marking fields with the "switchable" and "switched" classes along with defining a few data
attributes you can programmatically hide, show, and rename fields in a form.

The triggers are fields using a select input widget, marked with the switchable class, and defining
a data-slug attribute. When they are changed, any input with the "switched" class and defining a
"data-switch-on" attribute which matches the select inputs "data-slug" attribute will be
evaluated for necessary changes. In simpler terms, if the "switched" target inputs "switch-on"
matches the "slug" of the "switchable" trigger input, it gets switched. Simple, right?

3.1. Contributor Documentation 269

https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-editing/#formview

Horizon Documentation, Release 18.6.5.dev13

The "switched" inputs also need to define states. For each state in which the input should be
shown, it should define a data attribute like the following: data-<slug>-<value>="<desired
label>". When the switch event happens the value of the "switchable" field will be compared
to the data attributes and the correct label will be applied to the field. If a corresponding label for that
value is not found, the field will be hidden instead.

A simplified example is as follows:

source = forms.ChoiceField(
label=_('Source'),
choices=[

('cidr', _('CIDR')),
('sg', _('Security Group'))

],
widget=forms.ThemableSelectWidget(attrs={

'class': 'switchable',
'data-slug': 'source'

})
)

cidr = fields.IPField(
label=_("CIDR"),
required=False,
widget=forms.TextInput(attrs={

'class': 'switched',
'data-switch-on': 'source',
'data-source-cidr': _('CIDR')

})
)

security_group = forms.ChoiceField(
label=_('Security Group'),
required=False,
widget=forms.ThemableSelectWidget(attrs={

'class': 'switched',
'data-switch-on': 'source',
'data-source-sg': _('Security Group')

})
)

That code would create the "switchable" control field source, and the two "switched" fields
cidr and security group which are hidden or shown depending on the value of source.

Note: A field can only safely define one slug in its "switch-on" attribute. While switching on
multiple fields is possible, the behavior is very hard to predict due to the events being fired from the
various switchable fields in order. You generally end up just having it hidden most of the time by
accident, so its not recommended. Instead just add a second field to the form and control the two
independently, then merge their results in the forms clean or handle methods at the end.

270 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Horizon Middleware

HorizonMiddleware

class horizon.middleware.HorizonMiddleware(get_response)
The main Horizon middleware class. Required for use of Horizon.

process_exception(request, exception)
Catches internal Horizon exception classes.

Exception classes such as NotAuthorized, NotFound and Http302 are caught and handles
them gracefully.

OperationLogMiddleware

class horizon.middleware.OperationLogMiddleware(get_response)
Middleware to output operation log.

This log can includes information below:

• domain name

• domain id

• project name

• project id

• user name

• user id

• request scheme

• referer url

• request url

• message

• method

• http status

• request parameters

and log format is defined in OPERATION_LOG_OPTIONS.

process_exception(request, exception)
Log error info when exception occurred.

3.1. Contributor Documentation 271

Horizon Documentation, Release 18.6.5.dev13

Horizon Context Processors

Context processors used by Horizon.

horizon.context_processors.horizon(request)
The main Horizon context processor. Required for Horizon to function.

It adds the Horizon config to the context as well as setting the names True and False in the
context to their boolean equivalents for convenience.

Warning: Dont put API calls in context processors; they will be called once for each tem-
plate/template fragment which takes context that is used to render the complete output.

Horizon Decorators

General-purpose decorators for use with Horizon.

horizon.decorators.require_auth(view_func)
Performs user authentication check.

Similar to Djangos login_required decorator, except that this throws NotAuthenticated ex-
ception if the user is not signed-in.

horizon.decorators.require_component_access(view_func, component)
Perform component can_access check to access the view.

:param component containing the view (panel or dashboard).

Raises a NotAuthorized exception if the user cannot access the component containing the
view. By example the check of component policy rules will be applied to its views.

horizon.decorators.require_perms(view_func, required)
Enforces permission-based access controls.

Parameters required (list) A tuple of permission names, all of which the re-
quest user must possess in order access the decorated view.

Example usage:

from horizon.decorators import require_perms

@require_perms(['foo.admin', 'foo.member'])
def my_view(request):

...

Raises a NotAuthorized exception if the requirements are not met.

272 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Horizon Exceptions

Exceptions raised by the Horizon code and the machinery for handling them.

exception horizon.exceptions.AlreadyExists(name, resource_type)
API resources tried to create already exists.

exception horizon.exceptions.BadRequest
Generic error to replace all BadRequest-type API errors.

exception horizon.exceptions.ConfigurationError
Exception to be raised when invalid settings have been provided.

exception horizon.exceptions.Conflict
Generic error to replace all Conflict-type API errors.

exception horizon.exceptions.GetFileError(name, resource_type)
Exception to be raised when the value of get_file is not expected.

The expected values start with https:// or http://. Otherwise this exception will be raised.

exception horizon.exceptions.HandledException(wrapped)
Used internally to track exceptions that are already handled.

It is used to track exceptions that have gone through horizon.exceptions.handle()
more than once.

exception horizon.exceptions.HorizonException
Base exception class for distinguishing our own exception classes.

class horizon.exceptions.HorizonReporterFilter
Error report filter thats always active, even in DEBUG mode.

is_active(request)
This filter is to add safety in production environments (i.e. DEBUG is False). If DEBUG
is True then your site is not safe anyway. This hook is provided as a convenience to easily
activate or deactivate the filter on a per request basis.

exception horizon.exceptions.Http302(location, message=None)
Exception used to redirect at the middleware level.

This error class which can be raised from within a handler to cause an early bailout and redirect
at the middleware level.

exception horizon.exceptions.MessageFailure
Exception raised during message notification.

exception horizon.exceptions.NotAuthenticated
Raised when a user is trying to make requests and they are not logged in.

The included HorizonMiddleware catches NotAuthenticated and handles it gracefully
by displaying an error message and redirecting the user to a login page.

exception horizon.exceptions.NotAuthorized
User tries to access a resource without sufficient permissions.

Raised whenever a user attempts to access a resource which they do not have permission-based
access to (such as when failing the require_perms() decorator).

3.1. Contributor Documentation 273

https://
http://

Horizon Documentation, Release 18.6.5.dev13

The included HorizonMiddleware catches NotAuthorized and handles it gracefully by
displaying an error message and redirecting the user to a login page.

exception horizon.exceptions.NotAvailable
Exception to be raised when something is not available.

exception horizon.exceptions.NotFound
Generic error to replace all Not Found-type API errors.

exception horizon.exceptions.RecoverableError
Generic error to replace any Recoverable-type API errors.

exception horizon.exceptions.ServiceCatalogException(service_name)
A requested service is not available in the ServiceCatalog.

ServiceCatalog is fetched from Keystone.

exception horizon.exceptions.WorkflowError
Exception to be raised when something goes wrong in a workflow.

exception horizon.exceptions.WorkflowValidationError
Exception raised during workflow validation.

It is raised if required data is missing, or existing data is not valid.

horizon.exceptions.check_message(keywords, message)
Checks an exception for given keywords and raises an error if found.

It raises a new ActionError with the desired message if the keywords are found. This allows
selective control over API error messages.

horizon.exceptions.handle(request, message=None, redirect=None, ignore=False,
escalate=False, log_level=None, force_log=None, de-
tails=None)

Centralized error handling for Horizon.

Because Horizon consumes so many different APIs with completely different Exception types,
its necessary to have a centralized place for handling exceptions which may be raised.

Exceptions are roughly divided into 3 types:

1. UNAUTHORIZED: Errors resulting from authentication or authorization problems. These
result in being logged out and sent to the login screen.

2. NOT_FOUND: Errors resulting from objects which could not be located via the API. These
generally result in a user-facing error message, but are otherwise returned to the normal code
flow. Optionally a redirect value may be passed to the error handler so users are returned to
a different view than the one requested in addition to the error message.

3. RECOVERABLE: Generic API errors which generate a user-facing message but drop directly
back to the regular code flow.

All other exceptions bubble the stack as normal unless the ignore argument is passed in as
True, in which case only unrecognized errors are bubbled.

If the exception is not re-raised, an appropriate wrapper exception class indicating the type of
exception that was encountered will be returned. If details is None (default), take it from exception
sys.exc_info. If details is other string, then use that string explicitly or if details is empty then
suppress it.

274 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

Horizon TestCase Classes

Horizon provides a base test case class which provides several useful pre-prepared attributes for testing
Horizon components.

class horizon.test.helpers.TestCase(methodName=’runTest’)
Base test case class for Horizon with numerous additional features.

• A RequestFactory class which supports Djangos contrib.messages framework
via self.factory.

• A ready-to-go request object via self.request.

assertMessageCount(response=None, **kwargs)
Asserts that the expected number of messages have been attached.

The expected number of messages can be specified per message type. Usage would look like
self.assertMessageCount(success=1).

assertNoMessages(response=None)
Asserts no messages have been attached by the messages framework.

The expected messages framework is django.contrib.messages.

setUp()
Hook method for setting up the test fixture before exercising it.

tearDown()
Hook method for deconstructing the test fixture after testing it.

The OpenStack Dashboard also provides test case classes for greater ease-of-use when testing APIs and
OpenStack-specific auth scenarios.

class openstack_dashboard.test.helpers.TestCase(methodName=’runTest’)
Specialized base test case class for Horizon.

It gives access to numerous additional features:

• A full suite of test data through various attached objects and managers (e.g. self.
servers, self.user, etc.). See the docs for TestData for more information.

• A set of request context data via self.context.

• A RequestFactory class which supports Djangos contrib.messages framework
via self.factory.

• A ready-to-go request object via self.request.

• The ability to override specific time data controls for easier testing.

• Several handy additional assertion methods.

assertFormErrors(response, count=0, message=None, context_name=’form’)
Check for form errors.

Asserts that the response does contain a form in its context, and that form has errors, if count
were given, it must match the exact numbers of errors

assertNoFormErrors(response, context_name=’form’)
Checks for no form errors.

3.1. Contributor Documentation 275

Horizon Documentation, Release 18.6.5.dev13

Asserts that the response either does not contain a form in its context, or that if it does, that
form has no errors.

assertNoWorkflowErrors(response, context_name=’workflow’)
Checks for no workflow errors.

Asserts that the response either does not contain a workflow in its context, or that if it does,
that workflow has no errors.

assertRedirectsNoFollow(response, expected_url)
Check for redirect.

Asserts that the given response issued a 302 redirect without processing the view which is
redirected to.

assertStatusCode(response, expected_code)
Validates an expected status code.

Matches camel case of other assert functions

assertWorkflowErrors(response, count=0, message=None, con-
text_name=’workflow’)

Check for workflow errors.

Asserts that the response does contain a workflow in its context, and that workflow has errors,
if count were given, it must match the exact numbers of errors

setUp()
Hook method for setting up the test fixture before exercising it.

tearDown()
Hook method for deconstructing the test fixture after testing it.

class openstack_dashboard.test.helpers.APITestCase(methodName=’runTest’)

setUp()
Hook method for setting up the test fixture before exercising it.

class openstack_dashboard.test.helpers.BaseAdminViewTests(methodName=’runTest’)
Sets an active user with the admin role.

For testing admin-only views and functionality.

openstack_auth Module

The Backend Module

Module defining the Django auth backend class for the Keystone API.

class openstack_auth.backend.KeystoneBackend
Django authentication backend for use with django.contrib.auth.

authenticate(request, auth_url=None, **kwargs)
Authenticates a user via the Keystone Identity API.

get_all_permissions(user, obj=None)
Returns a set of permission strings that the user has.

This permission available to the user is derived from the users Keystone roles.

276 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

The permissions are returned as "openstack.{{ role.name }}".

get_group_permissions(user, obj=None)
Returns an empty set since Keystone doesnt support groups.

get_user(user_id)
Returns the current user from the session data.

If authenticated, this return the user object based on the user ID and session data.

Note: This required monkey-patching the contrib.auth middleware to make the
request object available to the auth backend class.

has_module_perms(user, app_label)
Returns True if user has any permissions in the given app_label.

Currently this matches for the app_label "openstack".

has_perm(user, perm, obj=None)
Returns True if the given user has the specified permission.

The Forms Module

class openstack_auth.forms.DummyAuth(user_id)
A dummy Auth object

It is needed for _KeystoneAdapter to get the user_id from, but otherwise behaves as if it doesnt
exist (is falsy).

get_headers(session, **kwargs)
Fetch authentication headers for message.

This is a more generalized replacement of the older get_token to allow plugins to specify dif-
ferent or additional authentication headers to the OpenStack standard X-Auth-Token header.

How the authentication headers are obtained is up to the plugin. If the headers are still valid
they may be re-used, retrieved from cache or the plugin may invoke an authentication request
against a server.

The default implementation of get_headers calls the get_token method to enable older style
plugins to continue functioning unchanged. Subclasses should feel free to completely over-
ride this function to provide the headers that they want.

There are no required kwargs. They are passed directly to the auth plugin and they are
implementation specific.

Returning None will indicate that no token was able to be retrieved and that authorization was
a failure. Adding no authentication data can be achieved by returning an empty dictionary.

Parameters session (keystoneauth1.session.Session) The session
object that the auth_plugin belongs to.

Returns Headers that are set to authenticate a message or None for failure. Note
that when checking this value that the empty dict is a valid, non-failure re-
sponse.

Return type dict

3.1. Contributor Documentation 277

Horizon Documentation, Release 18.6.5.dev13

class openstack_auth.forms.Login(*args, **kwargs)
Form used for logging in a user.

Handles authentication with Keystone by providing the domain name, username and password. A
scoped token is fetched after successful authentication.

A domain name is required if authenticating with Keystone V3 running multi-domain configura-
tion.

If the user authenticated has a default project set, the token will be automatically scoped to their
default project.

If the user authenticated has no default project set, the authentication backend will try to scope to
the projects returned from the users assigned projects. The first successful project scoped will be
returned.

Inherits from the base django.contrib.auth.forms.AuthenticationForm class for
added security features.

clean()
Hook for doing any extra form-wide cleaning after Field.clean() has been called on every
field. Any ValidationError raised by this method will not be associated with a particular
field; it will have a special-case association with the field named __all__.

class openstack_auth.forms.Password(*args, **kwargs)
Form used for changing users password without having to log in.

clean()
Hook for doing any extra form-wide cleaning after Field.clean() has been called on every
field. Any ValidationError raised by this method will not be associated with a particular
field; it will have a special-case association with the field named __all__.

The User Module

class openstack_auth.user.Token(auth_ref, unscoped_token=None)
Encapsulates the AccessInfo object from keystoneclient.

Token object provides a consistent interface for accessing the keystone token information and
service catalog.

Added for maintaining backward compatibility with horizon that expects Token object in the user
object.

class openstack_auth.user.User(id=None, token=None, user=None, ten-
ant_id=None, service_catalog=None,
tenant_name=None, roles=None,
authorized_tenants=None, end-
point=None, enabled=False, ser-
vices_region=None, user_domain_id=None,
user_domain_name=None, domain_id=None,
domain_name=None, project_id=None,
project_name=None, is_federated=False, un-
scoped_token=None, password=None, pass-
word_expires_at=None)

A User class with some extra special sauce for Keystone.

In addition to the standard Django user attributes, this class also has the following:

278 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

token
The Keystone token object associated with the current user/tenant.

The token object is deprecated, user auth_ref instead.

tenant_id
The id of the Keystone tenant for the current user/token.

The tenant_id keyword argument is deprecated, use project_id instead.

tenant_name
The name of the Keystone tenant for the current user/token.

The tenant_name keyword argument is deprecated, use project_name instead.

project_id
The id of the Keystone project for the current user/token.

project_name
The name of the Keystone project for the current user/token.

service_catalog
The ServiceCatalog data returned by Keystone.

roles
A list of dictionaries containing role names and ids as returned by Keystone.

services_region
A list of non-identity service endpoint regions extracted from the service catalog.

user_domain_id
The domain id of the current user.

user_domain_name
The domain name of the current user.

domain_id
The id of the Keystone domain scoped for the current user/token.

is_federated
Whether user is federated Keystone user. (Boolean)

unscoped_token
Unscoped Keystone token.

password_expires_at
Password expiration date.

exception DoesNotExist

exception MultipleObjectsReturned

property authorized_tenants
Returns a memoized list of tenants this user may access.

property available_services_regions
Returns list of unique region name values in service catalog.

has_a_matching_perm(perm_list, obj=None)
Returns True if the user has one of the specified permissions.

If object is passed, it checks if the user has any of the required perms for this object.

3.1. Contributor Documentation 279

Horizon Documentation, Release 18.6.5.dev13

has_perms(perm_list, obj=None)
Returns True if the user has all of the specified permissions.

Tuples in the list will possess the required permissions if the user has a permissions matching
one of the elements of that tuple

property is_active
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are
the only two instances of the class bool. The class bool is a subclass of the class int, and
cannot be subclassed.

property is_anonymous
Return if the user is not authenticated.

Returns True if not authenticated,“False“ otherwise.

property is_authenticated
Checks for a valid authentication.

property is_superuser
Evaluates whether this user has admin privileges.

Returns True or False.

is_token_expired(margin=None)
Determine if the token is expired.

Returns True if the token is expired, False if not, and None if there is no token
set.

Parameters margin A security time margin in seconds before real expiration.
Will return True if the token expires in less than margin seconds of time. A
default margin can be set by the TOKEN_TIMEOUT_MARGIN in the django
settings.

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving
process.

The force_insert and force_update parameters can be used to insist that the save must be an
SQL insert or update (or equivalent for non-SQL backends), respectively. Normally, they
should not be set.

time_until_expiration()
Returns the number of remaining days until users password expires.

Calculates the number days until the user must change their password, once the password
expires the user will not able to log in until an admin changes its password.

280 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

The Utils Module

openstack_auth.utils.LOG = <Logger openstack_auth.utils (WARNING)>
We need the request object to get the user, so well slightly modify the existing
django.contrib.auth.get_user method. To do so we update the auth middleware to point to our
overridden method.

Calling patch_middleware_get_user is done in our custom middleware at open-
stack_auth.middleware to monkeypatch the code in before it is needed.

openstack_auth.utils.allow_expired_passowrd_change()
Checks if users should be able to change their expired passwords.

openstack_auth.utils.build_absolute_uri(request, relative_url)
Ensure absolute_uri are relative to WEBROOT.

openstack_auth.utils.clean_up_auth_url(auth_url)
Clean up the auth url to extract the exact Keystone URL

openstack_auth.utils.default_services_region(service_catalog,
request=None,
ks_endpoint=None)

Return the default service region.

Order of precedence: 1. services_region cookie value 2. Matching endpoint in DE-
FAULT_SERVICE_REGIONS 3. * key in DEFAULT_SERVICE_REGIONS 4. First valid region
from catalog

In each case the value must also be present in available_regions or we move to the next level of
precedence.

openstack_auth.utils.fix_auth_url_version_prefix(auth_url)
Fix up the auth url if an invalid or no version prefix was given.

Fix the URL to say v3 in this case and add version if it is missing entirely. This should be smarter
and use discovery. Until version discovery is implemented we need this method to get everything
working.

openstack_auth.utils.get_admin_permissions()
Common function for getting the admin permissions from settings

This format is openstack.roles.xxx and xxx is a real role name.

Returns

Set object including all admin permission. If there is no permission, this will
return empty:

{
"openstack.roles.foo",
"openstack.roles.bar",
"openstack.roles.admin"

}

openstack_auth.utils.get_admin_roles()
Common function for getting the admin roles from settings

Returns

3.1. Contributor Documentation 281

Horizon Documentation, Release 18.6.5.dev13

Set object including all admin roles. If there is no role, this will return empty:

{
"foo", "bar", "admin"

}

openstack_auth.utils.get_client_ip(request)
Return client ip address using SECURE_PROXY_ADDR_HEADER variable.

If not present or not defined on settings then REMOTE_ADDR is used.

Parameters request (django.http.HttpRequest) Django http request ob-
ject.

Returns Possible client ip address

Return type string

openstack_auth.utils.get_endpoint_region(endpoint)
Common function for getting the region from endpoint.

In Keystone V3, region has been deprecated in favor of region_id.

This method provides a way to get region that works for both Keystone V2 and V3.

openstack_auth.utils.get_role_permission(role)
Common function for getting the permission froms arg

This format is openstack.roles.xxx and xxx is a real role name.

Returns String like openstack.roles.admin If role is None, this will return None.

openstack_auth.utils.get_websso_url(request, auth_url, websso_auth)
Return the keystone endpoint for initiating WebSSO.

Generate the keystone WebSSO endpoint that will redirect the user to the login page of the feder-
ated identity provider.

Based on the authentication type selected by the user in the login form, it will construct the key-
stone WebSSO endpoint.

Parameters

• request (django.http.HttpRequest) Django http request object.

• auth_url (string) Keystone endpoint configured in the horizon setting.
If WEBSSO_KEYSTONE_URL is defined, its value will be used. Otherwise,
the value is derived from: - OPENSTACK_KEYSTONE_URL - AVAIL-
ABLE_REGIONS

• websso_auth (string) Authentication type selected by the user from
the login form. The value is derived from the horizon setting WEB-
SSO_CHOICES.

Example of horizon WebSSO setting:

WEBSSO_CHOICES = (
("credentials", "Keystone Credentials"),
("oidc", "OpenID Connect"),
("saml2", "Security Assertion Markup Language"),
("acme_oidc", "ACME - OpenID Connect"),

(continues on next page)

282 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

(continued from previous page)

("acme_saml2", "ACME - SAML2")
)

WEBSSO_IDP_MAPPING = {
"acme_oidc": ("acme", "oidc"),
"acme_saml2": ("acme", "saml2")
}

}

The value of websso_auth will be looked up in the WEBSSO_IDP_MAPPING dictionary, if a
match is found it will return a IdP specific WebSSO endpoint using the values found in the map-
ping.

The value in WEBSSO_IDP_MAPPING is expected to be a tuple formatted as (<idp_id>, <pro-
tocol_id>). Using the values found, a IdP/protocol specific URL will be constructed:

/auth/OS-FEDERATION/identity_providers/<idp_id>
/protocols/<protocol_id>/websso

If no value is found from the WEBSSO_IDP_MAPPING dictionary, it will treat the value as the
global WebSSO protocol <protocol_id> and construct the WebSSO URL by:

/auth/OS-FEDERATION/websso/<protocol_id>

Returns Keystone WebSSO endpoint.

Return type string

openstack_auth.utils.has_in_url_path(url, subs)
Test if any of subs strings is present in the url path.

openstack_auth.utils.is_token_valid(token, margin=None)
Timezone-aware checking of the auth tokens expiration timestamp.

Returns True if the token has not yet expired, otherwise False.

Parameters

• token The openstack_auth.user.Token instance to check

• margin A time margin in seconds to subtract from the real tokens validity.
An example usage is that the token can be valid once the middleware passed,
and invalid (timed-out) during a view rendering and this generates authoriza-
tion errors during the view rendering. A default margin can be set by the
TOKEN_TIMEOUT_MARGIN in the django settings.

openstack_auth.utils.set_response_cookie(response, cookie_name,
cookie_value)

Common function for setting the cookie in the response.

Provides a common policy of setting cookies for last used project and region, can be reused in
other locations.

This method will set the cookie to expire in 365 days.

3.1. Contributor Documentation 283

Horizon Documentation, Release 18.6.5.dev13

openstack_auth.utils.store_initial_k2k_session(auth_url, request,
scoped_auth_ref, un-
scoped_auth_ref)

Stores session variables if there are k2k service providers

This stores variables related to Keystone2Keystone federation. This function gets skipped if
there are no Keystone service providers. An unscoped token to the identity provider key-
stone gets stored so that it can be used to do federated login into the service providers when
switching keystone providers. The settings file can be configured to set the display name of
the local (identity provider) keystone by setting KEYSTONE_PROVIDER_IDP_NAME. The
KEYSTONE_PROVIDER_IDP_ID settings variable is used for comparison against the service
providers. It should not conflict with any of the service provider ids.

Parameters

• auth_url base token auth url

• request Django http request object

• scoped_auth_ref Scoped Keystone access info object

• unscoped_auth_ref Unscoped Keystone access info object

openstack_auth.utils.url_path_replace(url, old, new, count=None)
Return a copy of url with replaced path.

Return a copy of url with all occurrences of old replaced by new in the url path. If the optional
argument count is given, only the first count occurrences are replaced.

The Views Module

class openstack_auth.views.PasswordView(**kwargs)
Changes users password when its expired or otherwise inaccessible.

form_class
alias of openstack_auth.forms.Password

form_valid(form)
If the form is valid, redirect to the supplied URL.

get_initial()
Return the initial data to use for forms on this view.

openstack_auth.views.login(request)
Logs a user in using the Login form.

openstack_auth.views.logout(request, login_url=None, **kwargs)
Logs out the user if he is logged in. Then redirects to the log-in page.

Parameters

• login_url Once logged out, defines the URL where to redirect after login

• kwargs see django.contrib.auth.views.logout_then_login extra parameters.

openstack_auth.views.switch(request, tenant_id, redirect_field_name=’next’)
Switches an authenticated user from one project to another.

284 Chapter 3. Contributor Docs

Horizon Documentation, Release 18.6.5.dev13

openstack_auth.views.switch_keystone_provider(request, key-
stone_provider=None, redi-
rect_field_name=’next’)

Switches the users keystone provider using K2K Federation

If keystone_provider is given then we switch the user to the keystone provider using K2K federa-
tion. Otherwise if keystone_provider is None then we switch the user back to the Identity Provider
Keystone which a non federated token auth will be used.

openstack_auth.views.switch_region(request, region_name, redi-
rect_field_name=’next’)

Switches the users region for all services except Identity service.

The region will be switched if the given region is one of the regions available for the scoped
project. Otherwise the region is not switched.

openstack_auth.views.websso(request)
Logs a user in using a token from Keystones POST.

3.1.9 Frequently Asked Questions

What is the relationship between Dashboards, Panels, and navigation? The navigational struc-
ture is strongly encouraged to flow from Dashboard objects as top-level navigation items to
Panel objects as sub-navigation items as in the current implementation. Template tags are pro-
vided to automatically generate this structure.

That said, you are not required to use the provided tools and can write templates and URLconfs
by hand to create any desired structure.

Does a panel have to be an app in INSTALLED_APPS? A panel can live in any Python module. It
can be a standalone which ties into an existing dashboard, or it can be contained alongside others
within a larger dashboard app. There is no strict enforcement here. Python is a language for
consenting adults. A module containing a Panel does not need to be added to INSTALLED_APPS,
but this is a common and convenient way to load a standalone panel.

Could I hook an external service into a panel using, for example, an iFrame? Panels are just entry-
points to hook views into the larger dashboard navigational structure and enforce common at-
tributes like RBAC. The views and corresponding templates can contain anything you would like,
including iFrames.

What does this mean for visual design? The ability to add an arbitrary number of top-level naviga-
tional items (Dashboard objects) poses a new design challenge. Horizons lead designer has
taken on the challenge of providing a reference design for Horizon which supports this possibility.

3.1. Contributor Documentation 285

Horizon Documentation, Release 18.6.5.dev13

286 Chapter 3. Contributor Docs

CHAPTER

FOUR

RELEASE NOTES

See https://docs.openstack.org/releasenotes/horizon/.

287

https://docs.openstack.org/releasenotes/horizon/

Horizon Documentation, Release 18.6.5.dev13

288 Chapter 4. Release Notes

CHAPTER

FIVE

INFORMATION

5.1 Glossary

Horizon The OpenStack dashboard project. Also the name of the top-level Python object which handles
registration for the app.

Dashboard A Python class representing a top-level navigation item (e.g. project) which provides a
consistent API for Horizon-compatible applications.

Panel A Python class representing a sub-navigation item (e.g. instances) which contains all the neces-
sary logic (views, forms, tests, etc.) for that interface.

Project Used in user-facing text in place of the term Tenant which is Keystones word.

289

	Introduction
	Using Horizon
	Installation Guide
	System Requirements
	System Requirements

	Installing from Packages
	Install and configure for Debian
	Install and configure for openSUSE and SUSE Linux Enterprise
	Install and configure for Red Hat Enterprise Linux and CentOS
	Install and configure for Ubuntu
	Verify operation for Debian
	Verify operation for openSUSE and SUSE Linux Enterprise
	Verify operation for Red Hat Enterprise Linux and CentOS
	Verify operation for Ubuntu
	Next steps

	Installing from Source
	Manual installation

	Horizon plugins
	Plugin Registry

	Configuration Guide
	Settings Reference
	Introduction
	General Settings
	Service-specific Settings
	Django Settings
	Other Settings

	Pluggable Panels and Groups
	Introduction
	General Pluggbale Settings
	Pluggable Settings for Dashboards
	Pluggable Settings for Panels
	Pluggable Settings for Panel Groups

	Customizing Horizon
	Changing the Site Title
	Changing the Brand Link
	Customizing the Footer
	Modifying Existing Dashboards and Panels
	Horizon customization module (overrides)
	Customize the project and user table columns
	Customize Angular dashboards
	Icons
	Custom Stylesheets
	Custom Javascript
	Customizing Meta Attributes

	Themes
	Inherit from an Existing Theme
	Organizing Your Theme Directory
	Customizing the Logo

	Branding Horizon
	Supported Components
	Step 1
	Top Navbar
	Side Nav
	Charts
	Tables
	Login
	Tabs
	Alerts
	Checkboxes
	Bootswatch and Material Design
	Development Tips

	OpenStack Dashboard User Documentation
	Log in to the dashboard
	OpenStack dashboard — Project tab
	OpenStack dashboard — Admin tab
	OpenStack dashboard — Identity tab
	OpenStack dashboard — Settings tab

	Upload and manage images
	Upload an image
	Update an image
	Delete an image

	Configure access and security for instances
	Add a rule to the default security group
	Add a key pair
	Import a key pair
	Allocate a floating IP address to an instance

	Launch and manage instances
	Launch an instance
	Connect to your instance by using SSH
	Track usage for instances
	Create an instance snapshot
	Manage an instance

	Create and manage networks
	Create a network
	Create a router
	Create a port

	Create and manage object containers
	Create a container
	Upload an object
	Manage an object

	Create and manage volumes
	Create a volume
	Attach a volume to an instance
	Detach a volume from an instance
	Create a snapshot from a volume
	Edit a volume
	Delete a volume

	Supported Browsers

	Administration Guide
	Customize and configure the Dashboard
	Customize the Dashboard
	Configure the Dashboard

	Set up session storage for the Dashboard
	Local memory cache
	Cached database
	Cookies

	Create and manage images
	Create images
	Update images
	Delete images

	Create and manage roles
	Create a role
	Edit a role
	Delete a role

	Manage projects and users
	Add a new project
	Delete a project
	Update a project
	Add a new user
	Delete a new user
	Update a user

	Manage instances
	Create instance snapshots
	Control the state of an instance
	Track usage

	Manage flavors
	Create flavors
	Update flavors
	Update Metadata
	Delete flavors

	Manage volumes and volume types
	Create a volume type
	Create an encrypted volume type
	Delete volume types
	Delete volumes

	View and manage quotas
	View default project quotas
	Update project quotas

	View services information
	Create and manage host aggregates
	To create a host aggregate
	To manage host aggregates

	Contributor Docs
	Contributor Documentation
	So You Want to Contribute…
	Project Resources
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties
	Etiquette

	Horizon Basics
	Values
	History
	The Current Architecture & How It Meets Our Values

	Project Policies
	Supported Software
	Core Reviewer Team

	Quickstart
	Linux Systems
	Setup
	Managing Settings
	Editing Horizon’s Source
	Horizon’s Structure
	Project Structure
	Application Design

	Horizon’s tests and you
	How to run the tests
	tox Test Environments
	Writing tests

	Tutorials
	Tutorial: Creating an Horizon Plugin
	Tutorial: Building a Dashboard using Horizon
	Tutorial: Adding a complex action to a table
	Extending an AngularJS Workflow

	Topic Guides
	Code Style
	Workflows Topic Guide
	DataTables Topic Guide
	Horizon Policy Enforcement (RBAC: Role Based Access Control)
	Horizon Microversion Support
	AngularJS Topic Guide
	Testing Overview
	Styling in Horizon (SCSS)
	Release Notes
	Translation in Horizon
	Profiling Pages
	Defining default settings in code
	Packaging Software
	DevStack for Horizon

	Module Reference
	Horizon Framework
	openstack_auth Module

	Frequently Asked Questions

	Release Notes
	Information
	Glossary

