API Model

API Model

Problem Description

Currently Neutron does not support service function chaining. To support service function chaining, Service VMs must be attached at points in the network and then traffic must be steered between these attachment points. Please refer to Neutron Service Chain blue-print and Bugs [1] [2] related to this specification for more information.

Proposed Change

All Neutron network services and VMs are connected to a Neutron network via Neutron ports. This makes it possible to create a traffic steering model for service chaining that uses only Neutron ports. This traffic steering model has no notion of the actual services attached to these Neutron ports.

The service VM hosting the service functions is instantiated and configured, then VNICs are added to the VM and then these VNICs are attached to the network by Neutron ports. Once the service function is attached to Neutron ports, the ports may be included in a “port chain” to allow the service function to provide treatment to the user’s traffic.

A Port Chain (Service Function Path) consists of:

  • a set of Neutron ports, to define the sequence of service functions

  • a set of flow classifiers, to specify the classified traffic flows to enter the chain

If a service function has a pair of ports, the first port in the port-pair is the ingress port of the service function, and the second port is the egress port of the service function. If a service function has one bidirectional port, then both ports in the port-pair have the same value. A Port Chain is a directional service chain. The first port of the first port-pair is the head of the service chain. The second port of the last port-pair is the tail of the service chain. A bidirectional service chain would be composed of two unidirectional Port Chains.

For example, [{‘p1’: ‘p2’}, {‘p3’: ‘p4’}, {‘p5’: ‘p6’}] represents:

   +------+     +------+     +------+
   | SF1  |     | SF2  |     | SF3  |
   +------+     +------+     +------+
   p1|  |p2     p3|  |p4      p5| |p6
     |  |         |  |          | |
->---+  +---------+  +----------+ +---->

where p1 is the head of the Port Chain and p6 is the tail of the Port Chain, and SF1 has ports p1 and p2, SF2 has ports p3 and p4, and SF3 has ports p5 and p6.

In order to create a chain, the user needs to have the actual port objects. The work flow would typically be:

  1. create the ports

  2. create the chain

  3. boot the vm’s passing the ports as nic’s parameters

The sequence of 2. and 3. can be switched.

A SF’s Neutron port may be associated with more than one Port Chain to allow a service function to be shared by multiple chains.

If there is more than one service function instance of a specific type available to meet the user’s service requirement, their Neutron ports are included in the port chain as a sub-list. For example, if {p3, p4}, {p7, p8} are the port-pairs of two FW instances, they both may be included in a port chain for load distribution as shown below:

[{'p1': 'p2'}, [{'p3': 'p4'},{'p7': 'p8'}], {'p5': 'p6'}]

Flow classifiers are used to select the traffic that can access the chain. Traffic that matches any flow classifier will be directed to the first port in the chain. The flow classifier will be a generic independent module and may be used by other projects like FW, QOS, etc.

A flow classifier cannot be part of two different port-chains otherwise ambiguity will arise as to which chain path that flow’s packets should go. A check will be made to ensure no ambiguity. But multiple flow classifiers can be associated with a port chain since multiple different types of flows can request the same service treatment path.

CLI Commands

Syntax:

openstack sfc port pair create [-h]
        [--description <description>]
        --ingress <port-id>
        --egress <port-id>
        [--service-function-parameters <parameter>] PORT-PAIR-NAME

openstack sfc port pair group create [-h]
        [--description <description>]
        --port-pair <port-pair-id>
        [--port-pair-group-parameters <parameter>] PORT-PAIR-GROUP-NAME

openstack sfc flow classifier create [-h]
        [--description <description>]
        [--protocol <protocol>]
        [--ethertype <Ethertype>]
        [--source-port <Minimum source protocol port>:<Maximum source protocol port>]
        [--destination-port <Minimum destination protocol port>:<Maximum destination protocol port>]
        [--source-ip-prefix <Source IP prefix>]
        [--destination-ip-prefix <Destination IP prefix>]
        [--logical-source-port <Neutron source port>]
        [--logical-destination-port <Neutron destination port>]
        [--l7-parameters <L7 parameter>] FLOW-CLASSIFIER-NAME

openstack sfc port chain create [-h]
        [--description <description>]
         --port-pair-group <port-pair-group-id>
        [--flow-classifier <classifier-id>]
        [--chain-parameters <chain-parameter>] PORT-CHAIN-NAME

openstack sfc port chain create

The sfc port chain create command returns the ID of the Port Chain.

Each --port-pair-group option specifies a type of SF. If a chain consists of a sequence of different types of SFs, then the chain will have multiple “port-pair-group”s. There must be at least one “port-pair-group” in the Port Chain.

The -flow-classifier option may be repeated to associate multiple flow classifiers with a port chain, with each classifier identifying a flow. If the flow-classifier is not specified, then no traffic will be steered through the chain.

One chain parameter option is currently defined. More parameter options can be added in future extensions to accommodate new requirements. The correlation parameter is used to specify the type of chain correlation mechanism. This parameter allows different correlation mechanisms to be selected. The chain correlation concept is equivalent to SFC Encapsulation, as defined in RFC 7665. The default is “mpls”, but “nsh” is also supported.

The sfc port chain create command returns the ID of a Port chain.

A port chain can be created, read, updated and deleted, and when a chain is created/read/updated/deleted, the options that are involved would be based on the CRUD in the “Port Chain” resource table below.

openstack sfc port pair group create

Inside each “port-pair-group”, there could be one or more port-pairs. Multiple port-pairs may be included in a “port-pair-group” to allow the specification of a set of functionally equivalent SFs that can be used for load distribution, i.e., the --port-pair option may be repeated for multiple port-pairs of functionally equivalent SFs.

The sfc port pair group create command returns the ID of a Port Pair group.

openstack sfc port pair create

A Port Pair represents a service function instance. The ingress port and the egress port of the service function may be specified. If a service function has one bidirectional port, the ingress port has the same value as the egress port. The --service-function-parameters option allows the passing of SF specific parameter information to the data path. These include:

  • The correlation parameter is used to specify the type of chain correlation mechanism supported by a specific SF. This is needed by the data plane switch to determine how to associate a packet with a chain. This will be set to “none” for now since there is no correlation mechanism supported by the SF. In the future, it can be extended to include “mpls”, “nsh”, etc.. If this parameter is not specified, it will default to “none”.

  • The weight parameter is used to specify the weight for each SF for load distribution in a port pair group. This represents a percentage of the traffic to be sent to each SF.

The sfc port pair create command returns the ID of a Port Pair.

openstack sfc flow classifier create

A combination of the “source” options defines the source of the flow. A combination of the “destination” options defines the destination of the flow. The l7_parameter is a place-holder that may be used to support flow classification using L7 fields, such as URL. If an option is not specified, it will default to wildcard value except for ethertype which defaults to ‘IPv4’, for logical-source-port and logical-destination-port which defaults to none.

The sfc flow classifier create command returns the ID of a flow classifier.

Data Model Impact

Data model:

 +-------+        +----------+        +------------+
 | Port  |--------| Port Pair|--------| Port Pairs |
 | Chain |*      *| Groups   | 1     *|            |
 +-------+        +----------+        +------------+
   |1
   |
   |*
+--------------+
| Flow         |
| Classifiers  |
+--------------+

New objects:

Port Chain
  • id - Port chain ID.

  • project_id - Tenant ID.

  • name - Readable name.

  • description - Readable description.

  • port_pair_groups - List of port-pair-group IDs.

  • flow_classifiers - List of flow-classifier IDs.

  • chain_parameters - Dict. of chain parameters.

  • chain_id - Data-plane chain path ID.

Port Pair Group
  • id - Port pair group ID.

  • project_id - Tenant ID.

  • name - Readable name.

  • description - Readable description.

  • port_pairs - List of service function (Neutron) port-pairs.

  • port_pair_group_parameters - Dict. of port pair group parameters.

Port Pair
  • id - Port pair ID.

  • project_id - Tenant ID.

  • name - Readable name.

  • description - Readable description.

  • ingress - Ingress port.

  • egress - Egress port.

  • service_function_parameters - Dict. of service function parameters

Flow Classifier
  • id - Flow classifier ID.

  • project_id - Tenant ID.

  • name - Readable name.

  • description - Readable description.

  • ethertype - Ethertype (‘IPv4’/’IPv6’).

  • protocol - IP protocol.

  • source_port_range_min - Minimum source protocol port.

  • source_port_range_max - Maximum source protocol port.

  • destination_port_range_min - Minimum destination protocol port.

  • destination_port_range_max - Maximum destination protocol port.

  • source_ip_prefix - Source IP address or prefix.

  • destination_ip_prefix - Destination IP address or prefix.

  • logical_source_port - Neutron source port.

  • logical_destination_port - Neutron destination port.

  • l7_parameters - Dictionary of L7 parameters.

REST API

Port Chain Operations:

Operation

URL

Description

POST

/sfc/port_chains

Create a Port Chain

PUT

/sfc/port_chains/{chain_id}

Update a specific Port Chain

DELETE

/sfc/port_chains/{chain_id}

Delete a specific Port Chain

GET

/sfc/port_chains

List all Port Chains for specified tenant

GET

/sfc/port_chains/{chain_id}

Show information for a specific Port Chain

Port Pair Group Operations:

Operation

URL

Description

POST

/sfc/port_pair_groups

Create a Port Pair Group

PUT

/sfc/port_pair_groups/{group_id}

Update a specific Port Pair Group

DELETE

/sfc/port_pair_groups/{group_id}

Delete a specific Port Pair Group

GET

/sfc/port_pair_groups

List all Port Pair Groups for specified tenant

GET

/sfc/port_pair_groups/{group_id}

Show information for a specific Port Pair

Port Pair Operations:

Operation

URL

Description

POST

/sfc/port_pairs

Create a Port Pair

PUT

/sfc/port_pairs/{pair_id}

Update a specific Port Pair

DELETE

/sfc/port_pairs/{pair_id}

Delete a specific Port Pair

GET

/sfc/port_pairs

List all Port Pairs for specified tenant

GET

/sfc/port_pairs/{pair_id}

Show information for a specific Port Pair

Flow Classifier Operations:

Operation

URL

Description

POST

/sfc/flow_classifiers

Create a Flow-classifier

PUT

/sfc/flow_classifiers/{flow_id}

Update a specific Flow-classifier

DELETE

/sfc/flow_classifiers/{flow_id}

Delete a specific Flow-classifier

GET

/sfc/flow_classifiers

List all Flow-classifiers for specified tenant

GET

/sfc/flow_classifiers/{flow_id}

Show information for a specific Flow-classifier

REST API Impact

The following new resources will be created as a result of the API handling.

Port Chain resource:

Attribute Name

Type

Access

Default Value

CRUD

Description

id

uuid

RO, all

generated

R

Port Chain ID.

project_id

uuid

RO, all

from auth token

CR

Tenant ID.

name

string

RW, all

‘’

CRU

Port Chain name.

description

string

RW, all

‘’

CRU

Port Chain description.

port_pair_groups

list(uuid)

RW, all

N/A

CRU

List of port-pair-groups.

flow_classifiers

list(uuid)

RW, all

[]

CRU

List of flow-classifiers.

chain_parameters

dict

RW, all

mpls

CR

Dict. of parameters: ‘correlation’:String

chain_id

integer

RW, all

Any

CR

Data-plane Chain Path ID.

The data-plane chain path ID is normally generated by the data-plane implementation. However, an application may optionally generate its own data-plane chain path ID and apply it to the Port Chain using the chain_id attribute.

Port Pair Group resource:

Attribute Name

Type

Access

Default Value

CRUD

Description

id

uuid

RO, all

generated

R

Port pair group ID.

project_id

uuid

RO, all

from auth token

CR

Tenant ID.

name

string

RW, all

‘’

CRU

Port pair group name.

description

string

RW, all

‘’

CRU

Port pair group description.

port_pairs

list

RW, all

N/A

CRU

List of port-pairs.

port_pair_group _parameters

dict

RW, all

‘’

CR

Dict. of parameters: ‘lb_fields’:String ‘service_type’:String

Port Pair resource:

Attribute Name

Type

Access

Default

CRUD

Description

id

uuid

RO, all

generated

R

Port pair ID.

project_id

uuid

RO, all

from auth token

CR

Tenant ID.

name

string

RW, all

‘’

CRU

Port pair name.

description

string

RW, all

‘’

CRU

Port pair description.

ingress

uuid

RW, all

N/A

CR

Ingress port ID.

egress

uuid

RW, all

N/A

CR

Egress port ID.

service_function_parameters

dict

RW, all

None

CR

Dict. of parameters: ‘correlation’:String ‘weight’:Integer

Flow Classifier resource:

Attribute Name

Type

Access

Default Value

CRUD

Description

id

uuid

RO, all

generated

R

Flow-classifier ID.

project_id

uuid

RO, all

from auth token

CR

Tenant ID.

name

string

RW, all

‘’

CRU

Flow-classifier name.

description

string

RW, all

‘’

CRU

Flow-classifier description.

ethertype

string

RW, all

‘IPv4’

CR

L2 ethertype. Can be ‘IPv4’ or ‘IPv6’ only.

protocol

string

RW, all

Any

CR

IP protocol name.

source_port_range_min

integer

RW, all

Any

CR

Minimum source protocol port.

source_port_range_max

integer

RW, all

Any

CR

Maximum source protocol port.

destination_port_range_min

integer

RW, all

Any

CR

Minimum destination protocol port.

destination_port_range_max

integer

RW, all

Any

CR

Maximum destination protocol port.

source_ip_prefix

CIDR

RW, all

Any

CR

Source IPv4 or IPv6 prefix.

destination_ip_prefix

CIDR

RW, all

Any

CR

Destination IPv4 or IPv6 prefix.

logical_source_port

uuid

RW, all

None

CR

Neutron source port.

logical_destination_port

uuid

RW, all

None

CR

Neutron destination port.

l7_parameters

dict

RW, all

Any

CR

Dict. of L7 parameters.

Json Port-pair create request example:

{"port_pair": {"name": "SF1",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Firewall SF instance",
       "ingress": "dace4513-24fc-4fae-af4b-321c5e2eb3d1",
       "egress": "aef3478a-4a56-2a6e-cd3a-9dee4e2ec345",
   }
}

{"port_pair":  {"name": "SF2",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Loadbalancer SF instance",
       "ingress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
       "egress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
   }
}

Json Port-pair create response example:

{"port_pair": {"name": "SF1",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Firewall SF instance",
       "ingress": "dace4513-24fc-4fae-af4b-321c5e2eb3d1",
       "egress": "aef3478a-4a56-2a6e-cd3a-9dee4e2ec345",
       "id": "78dcd363-fc23-aeb6-f44b-56dc5e2fb3ae",
   }
 }

{"port_pair":  {"name": "SF2",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Loadbalancer SF instance",
       "ingress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
       "egress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
       "id": "d11e9190-73d4-11e5-b392-2c27d72acb4c"
   }
}

Json Port Pair Group create request example:

{"port_pair_group": {"name": "Firewall_PortPairGroup",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Grouping Firewall SF instances",
       "port_pairs": [
           "78dcd363-fc23-aeb6-f44b-56dc5e2fb3ae"
       ],
       "port_pair_group_parameters": [
           "lb_fields: ip_src"
       ]
   }
 }

{"port_pair_group": {"name": "Loadbalancer_PortPairGroup",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Grouping Loadbalancer SF instances",
       "port_pairs": [
           "d11e9190-73d4-11e5-b392-2c27d72acb4c"
       ]
       "port_pair_group_parameters": [
           "lb_fields: ip_src"
       ]
   }
}

Json Port Pair Group create response example:

{"port_pair_group": {"name": "Firewall_PortPairGroup",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Grouping Firewall SF instances",
       "port_pairs": [
           "78dcd363-fc23-aeb6-f44b-56dc5e2fb3ae
       ],
       "port_pair_group_parameters": [
           "lb_fields: ip_src"
       ]
       "id": "4512d643-24fc-4fae-af4b-321c5e2eb3d1",
   }
}

{"port_pair_group":  {"name": "Loadbalancer_PortPairGroup",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Grouping Loadbalancer SF instances",
       "port_pairs": [
           "d11e9190-73d4-11e5-b392-2c27d72acb4c"
       ],
       "port_pair_group_parameters": [
           "lb_fields: ip_src"
       ]
       "id": "4a634d49-76dc-4fae-af4b-321c5e23d651",
   }
}

Json Flow Classifier create request example:

{"flow_classifier": {"name": "FC1",
       "project_id": "1814726e2d22407b8ca76db5e567dcf1",
       "description": "Flow rule for classifying TCP traffic",
       "protocol": "TCP",
       "source_port_range_min": 22, "source_port_range_max": 4000,
       "destination_port_range_min": 80, "destination_port_range_max": 80,
       "source_ip_prefix": null, "destination_ip_prefix": "22.12.34.45"
   }
}

{"flow_classifier": {"name": "FC2",
       "project_id": "1814726e2d22407b8ca76db5e567dcf1",
       "description": "Flow rule for classifying UDP traffic",
       "protocol": "UDP",
       "source_port_range_min": 22, "source_port_range_max": 22,
       "destination_port_range_min": 80, "destination_port_range_max": 80,
       "source_ip_prefix": null, "destination_ip_prefix": "22.12.34.45"
   }
}

Json Flow Classifier create response example:

{"flow_classifier": {"name": "FC1",
       "project_id": "1814726e2d22407b8ca76db5e567dcf1",
       "description": "Flow rule for classifying TCP traffic",
       "protocol": "TCP",
       "source_port_range_min": 22, "source_port_range_max": 4000,
       "destination_port_range_min": 80, "destination_port_range_max": 80,
       "source_ip_prefix": null , "destination_ip_prefix": "22.12.34.45",
       "id": "4a334cd4-fe9c-4fae-af4b-321c5e2eb051"
   }
}

{"flow_classifier": {"name": "FC2",
       "project_id": "1814726e2d22407b8ca76db5e567dcf1",
       "description": "Flow rule for classifying UDP traffic",
       "protocol": "UDP",
       "source_port_range_min": 22, "source_port_range_max": 22,
       "destination_port_range_min": 80, "destination_port_range_max": 80,
       "source_ip_prefix": null , "destination_ip_prefix": "22.12.34.45",
       "id": "105a4b0a-73d6-11e5-b392-2c27d72acb4c"
   }
}

Json Port Chain create request example:

{"port_chain": {"name": "PC1",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Steering TCP and UDP traffic first to Firewall and then to Loadbalancer",
       "flow_classifiers": [
           "4a334cd4-fe9c-4fae-af4b-321c5e2eb051",
           "105a4b0a-73d6-11e5-b392-2c27d72acb4c"
       ],
       "port_pair_groups": [
           "4512d643-24fc-4fae-af4b-321c5e2eb3d1",
           "4a634d49-76dc-4fae-af4b-321c5e23d651"
       ],
       "chain_id": "10034"
   }
}

Json Port Chain create response example:

{"port_chain": {"name": "PC1",
       "project_id": "d382007aa9904763a801f68ecf065cf5",
       "description": "Steering TCP and UDP traffic first to Firewall and then to Loadbalancer",
       "flow_classifiers": [
           "4a334cd4-fe9c-4fae-af4b-321c5e2eb051",
           "105a4b0a-73d6-11e5-b392-2c27d72acb4c"
       ],
       "port_pair_groups": [
           "4512d643-24fc-4fae-af4b-321c5e2eb3d1",
           "4a634d49-76dc-4fae-af4b-321c5e23d651"
       ],
       "chain_id": "10034",
       "id": "1278dcd4-459f-62ed-754b-87fc5e4a6751"
   }
}

Implementation

Assignee(s)

Authors of the Specification and Primary contributors:
Other contributors:
Creative Commons Attribution 3.0 License

Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 License. See all OpenStack Legal Documents.