
Networking Guide

Release Version: 15.0.0

OpenStack contributors

Aug 23, 2019

CONTENTS

Abstract 1

Contents 2
Conventions . 2
Introduction . 2
Configuration . 20
Deployment examples . 171
Operations . 282
Migration . 288
Miscellaneous . 294

Appendix 301
Community support . 301

Glossary 305
Glossary . 305

Index 340

i

ABSTRACT

This guide targets OpenStack administrators seeking to deploy and manage OpenStack Networking (neutron).

This guide documents the OpenStack Ocata release.

1

CONTENTS

Conventions

The OpenStack documentation uses several typesetting conventions.

Notices

Notices take these forms:

Note: A comment with additional information that explains a part of the text.

Important: Something you must be aware of before proceeding.

Tip: An extra but helpful piece of practical advice.

Caution: Helpful information that prevents the user from making mistakes.

Warning: Critical information about the risk of data loss or security issues.

Command prompts

$ command

Any user, including the root user, can run commands that are prefixed with the $ prompt.

command

The root user must run commands that are prefixed with the # prompt. You can also prefix these commands
with the sudo command, if available, to run them.

Introduction

The OpenStack Networking service provides an API that allows users to set up and define network connectivity
and addressing in the cloud. The project code-name for Networking services is neutron. OpenStack Networking
handles the creation and management of a virtual networking infrastructure, including networks, switches,
subnets, and routers for devices managed by the OpenStack Compute service (nova). Advanced services such
as firewalls or virtual private networks (VPNs) can also be used.

2

Networking Guide (Release Version: 15.0.0)

OpenStack Networking consists of the neutron-server, a database for persistent storage, and any number of
plug-in agents, which provide other services such as interfacing with native Linux networking mechanisms,
external devices, or SDN controllers.

OpenStack Networking is entirely standalone and can be deployed to a dedicated host. If your deployment uses
a controller host to run centralized Compute components, you can deploy the Networking server to that specific
host instead.

OpenStack Networking integrates with various OpenStack components:

• OpenStack Identity service (keystone) is used for authentication and authorization of API requests.

• OpenStack Compute service (nova) is used to plug each virtual NIC on the VM into a particular network.

• OpenStack Dashboard (horizon) is used by administrators and project users to create and manage net-
work services through a web-based graphical interface.

Note: The network address ranges used in this guide are chosen in accordance with RFC 5737 and RFC 3849,
and as such are restricted to the following:

IPv4:

• 192.0.2.0/24

• 198.51.100.0/24

• 203.0.113.0/24

IPv6:

• 2001:DB8::/32

The network address ranges in the examples of this guide should not be used for any purpose other than docu-
mentation.

Note: To reduce clutter, this guide removes command output without relevance to the particular action.

Basic networking

Ethernet

Ethernet is a networking protocol, specified by the IEEE 802.3 standard. Most wired network interface cards
(NICs) communicate using Ethernet.

In the OSI model of networking protocols, Ethernet occupies the second layer, which is known as the data link
layer. When discussing Ethernet, you will often hear terms such as local network, layer 2, L2, link layer and
data link layer.

In an Ethernet network, the hosts connected to the network communicate by exchanging frames. Every host
on an Ethernet network is uniquely identified by an address called the media access control (MAC) address. In
particular, every virtual machine instance in an OpenStack environment has a unique MAC address, which is
different from the MAC address of the compute host. A MAC address has 48 bits and is typically represented
as a hexadecimal string, such as 08:00:27:b9:88:74. The MAC address is hard-coded into the NIC by the

Introduction 3

https://tools.ietf.org/rfc/rfc5737
https://tools.ietf.org/html/rfc3849
https://en.wikipedia.org/wiki/OSI_model

Networking Guide (Release Version: 15.0.0)

manufacturer, although modern NICs allow you to change the MAC address programmatically. In Linux, you
can retrieve the MAC address of a NIC using the ip command:

$ ip link show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT�

↪→group default qlen 1000

link/ether 08:00:27:b9:88:74 brd ff:ff:ff:ff:ff:ff

Conceptually, you can think of an Ethernet network as a single bus that each of the network hosts connects to.
In early implementations, an Ethernet network consisted of a single coaxial cable that hosts would tap into to
connect to the network. However, network hosts in modern Ethernet networks connect directly to a network
device called a switch. Still, this conceptual model is useful, and in network diagrams (including those generated
by the OpenStack dashboard) an Ethernet network is often depicted as if it was a single bus. You’ll sometimes
hear an Ethernet network referred to as a layer 2 segment.

In an Ethernet network, every host on the network can send a frame directly to every other host. An Ethernet
network also supports broadcasts so that one host can send a frame to every host on the network by sending
to the special MAC address ff:ff:ff:ff:ff:ff. ARP and DHCP are two notable protocols that use Ether-
net broadcasts. Because Ethernet networks support broadcasts, you will sometimes hear an Ethernet network
referred to as a broadcast domain.

When a NIC receives an Ethernet frame, by default the NIC checks to see if the destination MAC address
matches the address of the NIC (or the broadcast address), and the Ethernet frame is discarded if the MAC
address does not match. For a compute host, this behavior is undesirable because the frame may be intended
for one of the instances. NICs can be configured for promiscuous mode, where they pass all Ethernet frames
to the operating system, even if the MAC address does not match. Compute hosts should always have the
appropriate NICs configured for promiscuous mode.

As mentioned earlier, modern Ethernet networks use switches to interconnect the network hosts. A switch is
a box of networking hardware with a large number of ports that forward Ethernet frames from one connected
host to another. When hosts first send frames over the switch, the switch doesn’t know which MAC address
is associated with which port. If an Ethernet frame is destined for an unknown MAC address, the switch
broadcasts the frame to all ports. The switch learns which MAC addresses are at which ports by observing the
traffic. Once it knows which MAC address is associated with a port, it can send Ethernet frames to the correct
port instead of broadcasting. The switch maintains the mappings of MAC addresses to switch ports in a table
called a forwarding table or forwarding information base (FIB). Switches can be daisy-chained together, and
the resulting connection of switches and hosts behaves like a single network.

VLANs

VLAN is a networking technology that enables a single switch to act as if it was multiple independent switches.
Specifically, two hosts that are connected to the same switch but on different VLANs do not see each other’s
traffic. OpenStack is able to take advantage of VLANs to isolate the traffic of different projects, even if the
projects happen to have instances running on the same compute host. Each VLAN has an associated numerical
ID, between 1 and 4095. We say “VLAN 15” to refer to the VLAN with a numerical ID of 15.

To understand how VLANs work, let’s consider VLAN applications in a traditional IT environment, where
physical hosts are attached to a physical switch, and no virtualization is involved. Imagine a scenario where
you want three isolated networks but you only have a single physical switch. The network administrator would
choose three VLAN IDs, for example, 10, 11, and 12, and would configure the switch to associate switchports
with VLAN IDs. For example, switchport 2 might be associated with VLAN 10, switchport 3 might be associ-
ated with VLAN 11, and so forth. When a switchport is configured for a specific VLAN, it is called an access
port. The switch is responsible for ensuring that the network traffic is isolated across the VLANs.

4 Introduction

Networking Guide (Release Version: 15.0.0)

Now consider the scenario that all of the switchports in the first switch become occupied, and so the organization
buys a second switch and connects it to the first switch to expand the available number of switchports. The
second switch is also configured to support VLAN IDs 10, 11, and 12. Now imagine host A connected to switch
1 on a port configured for VLAN ID 10 sends an Ethernet frame intended for host B connected to switch 2 on a
port configured for VLAN ID 10. When switch 1 forwards the Ethernet frame to switch 2, it must communicate
that the frame is associated with VLAN ID 10.

If two switches are to be connected together, and the switches are configured for VLANs, then the switchports
used for cross-connecting the switches must be configured to allow Ethernet frames from any VLAN to be
forwarded to the other switch. In addition, the sending switch must tag each Ethernet frame with the VLAN ID
so that the receiving switch can ensure that only hosts on the matching VLAN are eligible to receive the frame.

A switchport that is configured to pass frames from all VLANs and tag them with the VLAN IDs is called a
trunk port. IEEE 802.1Q is the network standard that describes how VLAN tags are encoded in Ethernet frames
when trunking is being used.

Note that if you are using VLANs on your physical switches to implement project isolation in your OpenStack
cloud, you must ensure that all of your switchports are configured as trunk ports.

It is important that you select a VLAN range not being used by your current network infrastructure. For ex-
ample, if you estimate that your cloud must support a maximum of 100 projects, pick a VLAN range outside
of that value, such as VLAN 200–299. OpenStack, and all physical network infrastructure that handles project
networks, must then support this VLAN range.

Trunking is used to connect between different switches. Each trunk uses a tag to identify which VLAN is in
use. This ensures that switches on the same VLAN can communicate.

Subnets and ARP

While NICs use MAC addresses to address network hosts, TCP/IP applications use IP addresses. The Address
Resolution Protocol (ARP) bridges the gap between Ethernet and IP by translating IP addresses into MAC
addresses.

IP addresses are broken up into two parts: a network number and a host identifier. Two hosts are on the same
subnet if they have the same network number. Recall that two hosts can only communicate directly over Ethernet
if they are on the same local network. ARP assumes that all machines that are in the same subnet are on the
same local network. Network administrators must take care when assigning IP addresses and netmasks to hosts
so that any two hosts that are in the same subnet are on the same local network, otherwise ARP does not work
properly.

To calculate the network number of an IP address, you must know the netmask associated with the address. A
netmask indicates how many of the bits in the 32-bit IP address make up the network number.

There are two syntaxes for expressing a netmask:

• dotted quad

• classless inter-domain routing (CIDR)

Consider an IP address of 192.168.1.5, where the first 24 bits of the address are the network number. In dotted
quad notation, the netmask would be written as 255.255.255.0. CIDR notation includes both the IP address
and netmask, and this example would be written as 192.168.1.5/24.

Note: Creating CIDR subnets including a multicast address or a loopback address cannot be used in an Open-
Stack environment. For example, creating a subnet using 224.0.0.0/16 or 127.0.1.0/24 is not supported.

Introduction 5

Networking Guide (Release Version: 15.0.0)

Sometimes we want to refer to a subnet, but not any particular IP address on the subnet. A common convention
is to set the host identifier to all zeros to make reference to a subnet. For example, if a host’s IP address is
10.10.53.24/16, then we would say the subnet is 10.10.0.0/16.

To understand how ARP translates IP addresses to MAC addresses, consider the following example. Assume
host A has an IP address of 192.168.1.5/24 and a MAC address of fc:99:47:49:d4:a0, and wants to send
a packet to host B with an IP address of 192.168.1.7. Note that the network number is the same for both
hosts, so host A is able to send frames directly to host B.

The first time host A attempts to communicate with host B, the destination MAC address is not known. Host A
makes an ARP request to the local network. The request is a broadcast with a message like this:

To: everybody (ff:ff:ff:ff:ff:ff). I am looking for the computer who has IP address 192.168.1.7. Signed: MAC
address fc:99:47:49:d4:a0.

Host B responds with a response like this:

To: fc:99:47:49:d4:a0. I have IP address 192.168.1.7. Signed: MAC address 54:78:1a:86:00:a5.

Host A then sends Ethernet frames to host B.

You can initiate an ARP request manually using the arping command. For example, to send an ARP request
to IP address 10.30.0.132:

$ arping -I eth0 10.30.0.132

ARPING 10.30.0.132 from 10.30.0.131 eth0

Unicast reply from 10.30.0.132 [54:78:1A:86:1C:0B] 0.670ms

Unicast reply from 10.30.0.132 [54:78:1A:86:1C:0B] 0.722ms

Unicast reply from 10.30.0.132 [54:78:1A:86:1C:0B] 0.723ms

Sent 3 probes (1 broadcast(s))

Received 3 response(s)

To reduce the number of ARP requests, operating systems maintain an ARP cache that contains the mappings
of IP addresses to MAC address. On a Linux machine, you can view the contents of the ARP cache by using
the arp command:

$ arp -n

Address HWtype HWaddress Flags Mask Iface

10.0.2.3 ether 52:54:00:12:35:03 C eth0

10.0.2.2 ether 52:54:00:12:35:02 C eth0

DHCP

Hosts connected to a network use the Dynamic Host Configuration Protocol (DHCP) to dynamically obtain IP
addresses. A DHCP server hands out the IP addresses to network hosts, which are the DHCP clients.

DHCP clients locate the DHCP server by sending aUDP packet from port 68 to address 255.255.255.255 on
port 67. Address 255.255.255.255 is the local network broadcast address: all hosts on the local network see
theUDP packets sent to this address. However, such packets are not forwarded to other networks. Consequently,
the DHCP server must be on the same local network as the client, or the server will not receive the broadcast.
The DHCP server responds by sending a UDP packet from port 67 to port 68 on the client. The exchange looks
like this:

1. The client sends a discover (“I’m a client at MAC address 08:00:27:b9:88:74, I need an IP address”)

2. The server sends an offer (“OK 08:00:27:b9:88:74, I’m offering IP address 10.10.0.112”)

6 Introduction

Networking Guide (Release Version: 15.0.0)

3. The client sends a request (“Server 10.10.0.131, I would like to have IP 10.10.0.112”)

4. The server sends an acknowledgement (“OK 08:00:27:b9:88:74, IP 10.10.0.112 is yours”)

OpenStack uses a third-party program called dnsmasq to implement the DHCP server. Dnsmasq writes to the
syslog, where you can observe the DHCP request and replies:

Apr 23 15:53:46 c100-1 dhcpd: DHCPDISCOVER from 08:00:27:b9:88:74 via eth2

Apr 23 15:53:46 c100-1 dhcpd: DHCPOFFER on 10.10.0.112 to 08:00:27:b9:88:74 via eth2

Apr 23 15:53:48 c100-1 dhcpd: DHCPREQUEST for 10.10.0.112 (10.10.0.131) from�

↪→08:00:27:b9:88:74 via eth2

Apr 23 15:53:48 c100-1 dhcpd: DHCPACK on 10.10.0.112 to 08:00:27:b9:88:74 via eth2

When troubleshooting an instance that is not reachable over the network, it can be helpful to examine this log
to verify that all four steps of the DHCP protocol were carried out for the instance in question.

IP

The Internet Protocol (IP) specifies how to route packets between hosts that are connected to different local
networks. IP relies on special network hosts called routers or gateways. A router is a host that is connected to
at least two local networks and can forward IP packets from one local network to another. A router has multiple
IP addresses: one for each of the networks it is connected to.

In the OSI model of networking protocols IP occupies the third layer, known as the network layer. When
discussing IP, you will often hear terms such as layer 3, L3, and network layer.

A host sending a packet to an IP address consults its routing table to determine which machine on the local
network(s) the packet should be sent to. The routing table maintains a list of the subnets associated with each
local network that the host is directly connected to, as well as a list of routers that are on these local networks.

On a Linux machine, any of the following commands displays the routing table:

$ ip route show

$ route -n

$ netstat -rn

Here is an example of output from ip route show:

$ ip route show

default via 10.0.2.2 dev eth0

10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.15

192.168.27.0/24 dev eth1 proto kernel scope link src 192.168.27.100

192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1

Line 1 of the output specifies the location of the default route, which is the effective routing rule if none of the
other rules match. The router associated with the default route (10.0.2.2 in the example above) is sometimes
referred to as the default gateway. A DHCP server typically transmits the IP address of the default gateway to
the DHCP client along with the client’s IP address and a netmask.

Line 2 of the output specifies that IPs in the 10.0.2.0/24 subnet are on the local network associated with the
network interface eth0.

Line 3 of the output specifies that IPs in the 192.168.27.0/24 subnet are on the local network associated with
the network interface eth1.

Line 4 of the output specifies that IPs in the 192.168.122.0/24 subnet are on the local network associated
with the network interface virbr0.

Introduction 7

http://www.thekelleys.org.uk/dnsmasq/doc.html

Networking Guide (Release Version: 15.0.0)

The output of the route -n and netstat -rn commands are formatted in a slightly different way. This
example shows how the same routes would be formatted using these commands:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 eth0

10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.27.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0

The ip route get command outputs the route for a destination IP address. From the below example, desti-
nation IP address 10.0.2.14 is on the local network of eth0 and would be sent directly:

$ ip route get 10.0.2.14

10.0.2.14 dev eth0 src 10.0.2.15

The destination IP address 93.184.216.34 is not on any of the connected local networks and would be for-
warded to the default gateway at 10.0.2.2:

$ ip route get 93.184.216.34

93.184.216.34 via 10.0.2.2 dev eth0 src 10.0.2.15

It is common for a packet to hop across multiple routers to reach its final destination. On a Linux machine, the
traceroute and more recent mtr programs prints out the IP address of each router that an IP packet traverses
along its path to its destination.

TCP/UDP/ICMP

For networked software applications to communicate over an IP network, they must use a protocol layered atop
IP. These protocols occupy the fourth layer of the OSI model known as the transport layer or layer 4. See
the Protocol Numbers web page maintained by the Internet Assigned Numbers Authority (IANA) for a list of
protocols that layer atop IP and their associated numbers.

The Transmission Control Protocol (TCP) is the most commonly used layer 4 protocol in networked applica-
tions. TCP is a connection-oriented protocol: it uses a client-server model where a client connects to a server,
where server refers to the application that receives connections. The typical interaction in a TCP-based appli-
cation proceeds as follows:

1. Client connects to server.

2. Client and server exchange data.

3. Client or server disconnects.

Because a network host may have multiple TCP-based applications running, TCP uses an addressing scheme
called ports to uniquely identify TCP-based applications. A TCP port is associated with a number in the range
1-65535, and only one application on a host can be associated with a TCP port at a time, a restriction that is
enforced by the operating system.

A TCP server is said to listen on a port. For example, an SSH server typically listens on port 22. For a client to
connect to a server using TCP, the client must know both the IP address of a server’s host and the server’s TCP
port.

The operating system of the TCP client application automatically assigns a port number to the client. The client
owns this port number until the TCP connection is terminated, after which the operating system reclaims the

8 Introduction

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Networking Guide (Release Version: 15.0.0)

port number. These types of ports are referred to as ephemeral ports.

IANAmaintains a registry of port numbers for many TCP-based services, as well as services that use other layer
4 protocols that employ ports. Registering a TCP port number is not required, but registering a port number
is helpful to avoid collisions with other services. See firewalls and default ports in OpenStack Administrator
Guide for the default TCP ports used by various services involved in an OpenStack deployment.

Themost common application programming interface (API) for writing TCP-based applications is calledBerke-
ley sockets, also known as BSD sockets or, simply, sockets. The sockets API exposes a stream oriented interface
for writing TCP applications. From the perspective of a programmer, sending data over a TCP connection is
similar to writing a stream of bytes to a file. It is the responsibility of the operating system’s TCP/IP implemen-
tation to break up the stream of data into IP packets. The operating system is also responsible for automatically
retransmitting dropped packets, and for handling flow control to ensure that transmitted data does not overrun
the sender’s data buffers, receiver’s data buffers, and network capacity. Finally, the operating system is respon-
sible for re-assembling the packets in the correct order into a stream of data on the receiver’s side. Because
TCP detects and retransmits lost packets, it is said to be a reliable protocol.

TheUser Datagram Protocol (UDP) is another layer 4 protocol that is the basis of several well-known network-
ing protocols. UDP is a connectionless protocol: two applications that communicate over UDP do not need
to establish a connection before exchanging data. UDP is also an unreliable protocol. The operating system
does not attempt to retransmit or even detect lost UDP packets. The operating system also does not provide any
guarantee that the receiving application sees the UDP packets in the same order that they were sent in.

UDP, like TCP, uses the notion of ports to distinguish between different applications running on the same system.
Note, however, that operating systems treat UDP ports separately from TCP ports. For example, it is possible
for one application to be associated with TCP port 16543 and a separate application to be associated with UDP
port 16543.

Like TCP, the sockets API is the most common API for writing UDP-based applications. The sockets API
provides a message-oriented interface for writing UDP applications: a programmer sends data over UDP by
transmitting a fixed-sized message. If an application requires retransmissions of lost packets or a well-defined
ordering of received packets, the programmer is responsible for implementing this functionality in the applica-
tion code.

DHCP, the Domain Name System (DNS), the Network Time Protocol (NTP), and Virtual extensible local area
network (VXLAN) are examples of UDP-based protocols used in OpenStack deployments.

UDP has support for one-to-many communication: sending a single packet to multiple hosts. An application
can broadcast a UDP packet to all of the network hosts on a local network by setting the receiver IP address
as the special IP broadcast address 255.255.255.255. An application can also send a UDP packet to a set of
receivers using IP multicast. The intended receiver applications join a multicast group by binding a UDP socket
to a special IP address that is one of the valid multicast group addresses. The receiving hosts do not have to be
on the same local network as the sender, but the intervening routers must be configured to support IP multicast
routing. VXLAN is an example of a UDP-based protocol that uses IP multicast.

The Internet Control Message Protocol (ICMP) is a protocol used for sending control messages over an IP
network. For example, a router that receives an IP packet may send an ICMP packet back to the source if there
is no route in the router’s routing table that corresponds to the destination address (ICMP code 1, destination
host unreachable) or if the IP packet is too large for the router to handle (ICMP code 4, fragmentation required
and “don’t fragment” flag is set).

The ping and mtr Linux command-line tools are two examples of network utilities that use ICMP.

Network components

Introduction 9

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://docs.openstack.org/admin-guide/firewalls-default-ports.html

Networking Guide (Release Version: 15.0.0)

Switches

Switches are Multi-Input Multi-Output (MIMO) devices that enable packets to travel from one node to another.
Switches connect hosts that belong to the same layer-2 network. Switches enable forwarding of the packet
received on one port (input) to another port (output) so that they reach the desired destination node. Switches
operate at layer-2 in the networking model. They forward the traffic based on the destination Ethernet address
in the packet header.

Routers

Routers are special devices that enable packets to travel from one layer-3 network to another. Routers enable
communication between two nodes on different layer-3 networks that are not directly connected to each other.
Routers operate at layer-3 in the networking model. They route the traffic based on the destination IP address
in the packet header.

Firewalls

Firewalls are used to regulate traffic to and from a host or a network. A firewall can be either a specialized
device connecting two networks or a software-based filtering mechanism implemented on an operating system.
Firewalls are used to restrict traffic to a host based on the rules defined on the host. They can filter packets
based on several criteria such as source IP address, destination IP address, port numbers, connection state, and
so on. It is primarily used to protect the hosts from unauthorized access and malicious attacks. Linux-based
operating systems implement firewalls through iptables.

Load balancers

Load balancers can be software-based or hardware-based devices that allow traffic to evenly be distributed
across several servers. By distributing the traffic across multiple servers, it avoids overload of a single server
thereby preventing a single point of failure in the product. This further improves the performance, network
throughput, and response time of the servers. Load balancers are typically used in a 3-tier architecture. In this
model, a load balancer receives a request from the front-end web server, which then forwards the request to
one of the available back-end database servers for processing. The response from the database server is passed
back to the web server for further processing.

Overlay (tunnel) protocols

Tunneling is a mechanism that makes transfer of payloads feasible over an incompatible delivery network. It
allows the network user to gain access to denied or insecure networks. Data encryption may be employed to
transport the payload, ensuring that the encapsulated user network data appears as public even though it is
private and can easily pass the conflicting network.

Generic routing encapsulation (GRE)

Generic routing encapsulation (GRE) is a protocol that runs over IP and is employed when delivery and payload
protocols are compatible but payload addresses are incompatible. For instance, a payload might think it is
running on a datalink layer but it is actually running over a transport layer using datagram protocol over IP.
GRE creates a private point-to-point connection and works by encapsulating a payload. GRE is a foundation
protocol for other tunnel protocols but the GRE tunnels provide only weak authentication.

10 Introduction

Networking Guide (Release Version: 15.0.0)

Virtual extensible local area network (VXLAN)

The purpose of VXLAN is to provide scalable network isolation. VXLAN is a Layer 2 overlay scheme on
a Layer 3 network. It allows an overlay layer-2 network to spread across multiple underlay layer-3 network
domains. Each overlay is termed a VXLAN segment. Only VMs within the same VXLAN segment can com-
municate.

Network namespaces

A namespace is a way of scoping a particular set of identifiers. Using a namespace, you can use the same
identifier multiple times in different namespaces. You can also restrict an identifier set visible to particular
processes.

For example, Linux provides namespaces for networking and processes, among other things. If a process
is running within a process namespace, it can only see and communicate with other processes in the same
namespace. So, if a shell in a particular process namespace ran ps waux, it would only show the other processes
in the same namespace.

Linux network namespaces

In a network namespace, the scoped ‘identifiers’ are network devices; so a given network device, such as eth0,
exists in a particular namespace. Linux starts up with a default network namespace, so if your operating system
does not do anything special, that is where all the network devices will be located. But it is also possible to
create further non-default namespaces, and create new devices in those namespaces, or to move an existing
device from one namespace to another.

Each network namespace also has its own routing table, and in fact this is the main reason for namespaces to
exist. A routing table is keyed by destination IP address, so network namespaces are what you need if you want
the same destination IP address to mean different things at different times - which is something that OpenStack
Networking requires for its feature of providing overlapping IP addresses in different virtual networks.

Each network namespace also has its own set of iptables (for both IPv4 and IPv6). So, you can apply different
security to flows with the same IP addressing in different namespaces, as well as different routing.

Any given Linux process runs in a particular network namespace. By default this is inherited from its parent
process, but a process with the right capabilities can switch itself into a different namespace; in practice this
is mostly done using the ip netns exec NETNS COMMAND... invocation, which starts COMMAND running in
the namespace named NETNS. Suppose such a process sends out a message to IP address A.B.C.D, the effect of
the namespace is that A.B.C.D will be looked up in that namespace’s routing table, and that will determine the
network device that the message is transmitted through.

Virtual routing and forwarding (VRF)

Virtual routing and forwarding is an IP technology that allows multiple instances of a routing table to coexist on
the same router at the same time. It is another name for the network namespace functionality described above.

Network address translation

Network Address Translation (NAT) is a process for modifying the source or destination addresses in the headers
of an IP packet while the packet is in transit. In general, the sender and receiver applications are not aware that
the IP packets are being manipulated.

Introduction 11

Networking Guide (Release Version: 15.0.0)

NAT is often implemented by routers, and so we will refer to the host performing NAT as a NAT router. How-
ever, in OpenStack deployments it is typically Linux servers that implement the NAT functionality, not hardware
routers. These servers use the iptables software package to implement the NAT functionality.

There are multiple variations of NAT, and here we describe three kinds commonly found in OpenStack deploy-
ments.

SNAT

In Source Network Address Translation (SNAT), the NAT router modifies the IP address of the sender in IP
packets. SNAT is commonly used to enable hosts with private addresses to communicate with servers on the
public Internet.

RFC 1918 reserves the following three subnets as private addresses:

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

These IP addresses are not publicly routable, meaning that a host on the public Internet can not send an IP packet
to any of these addresses. Private IP addresses are widely used in both residential and corporate environments.

Often, an application running on a host with a private IP address will need to connect to a server on the public
Internet. An example is a user who wants to access a public website such as www.openstack.org. If the IP
packets reach the web server at www.openstack.org with a private IP address as the source, then the web server
cannot send packets back to the sender.

SNAT solves this problem by modifying the source IP address to an IP address that is routable on the public
Internet. There are different variations of SNAT; in the form that OpenStack deployments use, a NAT router
on the path between the sender and receiver replaces the packet’s source IP address with the router’s public
IP address. The router also modifies the source TCP or UDP port to another value, and the router maintains a
record of the sender’s true IP address and port, as well as the modified IP address and port.

When the router receives a packet with the matching IP address and port, it translates these back to the private
IP address and port, and forwards the packet along.

Because the NAT router modifies ports as well as IP addresses, this form of SNAT is sometimes referred to as
Port Address Translation (PAT). It is also sometimes referred to as NAT overload.

OpenStack uses SNAT to enable applications running inside of instances to connect out to the public Internet.

DNAT

InDestination Network Address Translation (DNAT), the NAT router modifies the IP address of the destination
in IP packet headers.

OpenStack uses DNAT to route packets from instances to theOpenStackmetadata service. Applications running
inside of instances access the OpenStack metadata service by making HTTP GET requests to a web server with
IP address 169.254.169.254. In an OpenStack deployment, there is no host with this IP address. Instead,
OpenStack uses DNAT to change the destination IP of these packets so they reach the network interface that a
metadata service is listening on.

12 Introduction

http://www.netfilter.org/projects/iptables/index.html
https://tools.ietf.org/html/rfc1918

Networking Guide (Release Version: 15.0.0)

One-to-one NAT

In one-to-one NAT, the NAT router maintains a one-to-one mapping between private IP addresses and public
IP addresses. OpenStack uses one-to-one NAT to implement floating IP addresses.

OpenStack Networking

OpenStack Networking allows you to create and manage network objects, such as networks, subnets, and ports,
which other OpenStack services can use. Plug-ins can be implemented to accommodate different networking
equipment and software, providing flexibility to OpenStack architecture and deployment.

The Networking service, code-named neutron, provides an API that lets you define network connectivity and
addressing in the cloud. The Networking service enables operators to leverage different networking technolo-
gies to power their cloud networking. The Networking service also provides an API to configure and manage
a variety of network services ranging from L3 forwarding and NAT to load balancing, perimeter firewalls, and
virtual private networks.

It includes the following components:

API server The OpenStack Networking API includes support for Layer 2 networking and IP address manage-
ment (IPAM), as well as an extension for a Layer 3 router construct that enables routing between Layer 2
networks and gateways to external networks. OpenStack Networking includes a growing list of plug-ins
that enable interoperability with various commercial and open source network technologies, including
routers, switches, virtual switches and software-defined networking (SDN) controllers.

OpenStack Networking plug-in and agents Plugs and unplugs ports, creates networks or subnets, and pro-
vides IP addressing. The chosen plug-in and agents differ depending on the vendor and technologies
used in the particular cloud. It is important to mention that only one plug-in can be used at a time.

Messaging queue Accepts and routes RPC requests between agents to complete API operations. Message
queue is used in the ML2 plug-in for RPC between the neutron server and neutron agents that run on
each hypervisor, in the ML2 mechanism drivers for Open vSwitch and Linux bridge.

Concepts

To configure rich network topologies, you can create and configure networks and subnets and instruct other
OpenStack services like Compute to attach virtual devices to ports on these networks. OpenStack Compute
is a prominent consumer of OpenStack Networking to provide connectivity for its instances. In particular,
OpenStack Networking supports each project having multiple private networks and enables projects to choose
their own IP addressing scheme, even if those IP addresses overlap with those that other projects use. There
are two types of network, project and provider networks. It is possible to share any of these types of networks
among projects as part of the network creation process.

Provider networks

Provider networks offer layer-2 connectivity to instances with optional support for DHCP andmetadata services.
These networks connect, or map, to existing layer-2 networks in the data center, typically using VLAN (802.1q)
tagging to identify and separate them.

Provider networks generally offer simplicity, performance, and reliability at the cost of flexibility. By default
only administrators can create or update provider networks because they require configuration of physical net-

Introduction 13

Networking Guide (Release Version: 15.0.0)

work infrastructure. It is possible to change the user who is allowed to create or update provider networks with
the following parameters of policy.json:

• create_network:provider:physical_network

• update_network:provider:physical_network

Warning: The creation and modification of provider networks enables use of physical network resources,
such as VLAN-s. Enable these changes only for trusted tenants.

Also, provider networks only handle layer-2 connectivity for instances, thus lacking support for features such
as routers and floating IP addresses.

In many cases, operators who are already familiar with virtual networking architectures that rely on physical
network infrastructure for layer-2, layer-3, or other services can seamlessly deploy the OpenStack Networking
service. In particular, provider networks appeal to operators looking to migrate from the Compute networking
service (nova-network) to the OpenStack Networking service. Over time, operators can build on this minimal
architecture to enable more cloud networking features.

In general, the OpenStack Networking software components that handle layer-3 operations impact performance
and reliability the most. To improve performance and reliability, provider networks move layer-3 operations to
the physical network infrastructure.

In one particular use case, the OpenStack deployment resides in a mixed environment with conventional virtu-
alization and bare-metal hosts that use a sizable physical network infrastructure. Applications that run inside
the OpenStack deployment might require direct layer-2 access, typically using VLANs, to applications outside
of the deployment.

Routed provider networks

Routed provider networks offer layer-3 connectivity to instances. These networks map to existing layer-3
networks in the data center. More specifically, the network maps to multiple layer-2 segments, each of which
is essentially a provider network. Each has a router gateway attached to it which routes traffic between them
and externally. The Networking service does not provide the routing.

Routed provider networks offer performance at scale that is difficult to achieve with a plain provider network
at the expense of guaranteed layer-2 connectivity.

See Routed provider networks for more information.

Self-service networks

Self-service networks primarily enable general (non-privileged) projects to manage networks without involving
administrators. These networks are entirely virtual and require virtual routers to interact with provider and
external networks such as the Internet. Self-service networks also usually provide DHCP and metadata services
to instances.

In most cases, self-service networks use overlay protocols such as VXLAN or GRE because they can support
many more networks than layer-2 segmentation using VLAN tagging (802.1q). Furthermore, VLANs typically
require additional configuration of physical network infrastructure.

14 Introduction

Networking Guide (Release Version: 15.0.0)

IPv4 self-service networks typically use private IP address ranges (RFC1918) and interact with provider net-
works via source NAT on virtual routers. Floating IP addresses enable access to instances from provider net-
works via destination NAT on virtual routers. IPv6 self-service networks always use public IP address ranges
and interact with provider networks via virtual routers with static routes.

The Networking service implements routers using a layer-3 agent that typically resides at least one network
node. Contrary to provider networks that connect instances to the physical network infrastructure at layer-2,
self-service networks must traverse a layer-3 agent. Thus, oversubscription or failure of a layer-3 agent or
network node can impact a significant quantity of self-service networks and instances using them. Consider
implementing one or more high-availability features to increase redundancy and performance of self-service
networks.

Users create project networks for connectivity within projects. By default, they are fully isolated and are not
shared with other projects. OpenStack Networking supports the following types of network isolation and over-
lay technologies.

Flat All instances reside on the same network, which can also be shared with the hosts. No VLAN tagging or
other network segregation takes place.

VLAN Networking allows users to create multiple provider or project networks using VLAN IDs (802.1Q
tagged) that correspond toVLANs present in the physical network. This allows instances to communicate
with each other across the environment. They can also communicate with dedicated servers, firewalls,
load balancers, and other networking infrastructure on the same layer 2 VLAN.

GRE and VXLAN VXLAN and GRE are encapsulation protocols that create overlay networks to activate
and control communication between compute instances. A Networking router is required to allow traffic
to flow outside of the GRE or VXLAN project network. A router is also required to connect directly-
connected project networks with external networks, including the Internet. The router provides the ability
to connect to instances directly from an external network using floating IP addresses.

Subnets

A block of IP addresses and associated configuration state. This is also known as the native IPAM (IP Address
Management) provided by the networking service for both project and provider networks. Subnets are used to

Introduction 15

Networking Guide (Release Version: 15.0.0)

allocate IP addresses when new ports are created on a network.

Subnet pools

End users normally can create subnets with any valid IP addresses without other restrictions. However, in some
cases, it is nice for the admin or the project to pre-define a pool of addresses from which to create subnets with
automatic allocation.

Using subnet pools constrains what addresses can be used by requiring that every subnet be within the defined
pool. It also prevents address reuse or overlap by two subnets from the same pool.

See Subnet pools for more information.

Ports

A port is a connection point for attaching a single device, such as the NIC of a virtual server, to a virtual network.
The port also describes the associated network configuration, such as the MAC and IP addresses to be used on
that port.

Routers

Routers provide virtual layer-3 services such as routing and NAT between self-service and provider networks
or among self-service networks belonging to a project. The Networking service uses a layer-3 agent to manage
routers via namespaces.

Security groups

Security groups provide a container for virtual firewall rules that control ingress (inbound to instances) and
egress (outbound from instances) network traffic at the port level. Security groups use a default deny policy
and only contain rules that allow specific traffic. Each port can reference one or more security groups in an
additive fashion. The firewall driver translates security group rules to a configuration for the underlying packet
filtering technology such as iptables.

Each project contains a default security group that allows all egress traffic and denies all ingress traffic. You
can change the rules in the default security group. If you launch an instance without specifying a security
group, the default security group automatically applies to it. Similarly, if you create a port without specifying
a security group, the default security group automatically applies to it.

Note: If you use the metadata service, removing the default egress rules denies access to TCP port 80 on
169.254.169.254, thus preventing instances from retrieving metadata.

Security group rules are stateful. Thus, allowing ingress TCP port 22 for secure shell automatically creates
rules that allow return egress traffic and ICMP error messages involving those TCP connections.

By default, all security groups contain a series of basic (sanity) and anti-spoofing rules that perform the follow-
ing actions:

16 Introduction

Networking Guide (Release Version: 15.0.0)

• Allow egress traffic only if it uses the source MAC and IP addresses of the port for the instance,
source MAC and IP combination in allowed-address-pairs, or valid MAC address (port or
allowed-address-pairs) and associated EUI64 link-local IPv6 address.

• Allow egress DHCP discovery and request messages that use the source MAC address of the port for the
instance and the unspecified IPv4 address (0.0.0.0).

• Allow ingress DHCP and DHCPv6 responses from the DHCP server on the subnet so instances can
acquire IP addresses.

• Deny egress DHCP and DHCPv6 responses to prevent instances from acting as DHCP(v6) servers.

• Allow ingress/egress ICMPv6MLD, neighbor solicitation, and neighbor discoverymessages so instances
can discover neighbors and join multicast groups.

• Deny egress ICMPv6 router advertisements to prevent instances from acting as IPv6 routers and for-
warding IPv6 traffic for other instances.

• Allow egress ICMPv6 MLD reports (v1 and v2) and neighbor solicitation messages that use the source
MAC address of a particular instance and the unspecified IPv6 address (::). Duplicate address detection
(DAD) relies on these messages.

• Allow egress non-IP traffic from the MAC address of the port for the instance and any additional MAC
addresses in allowed-address-pairs on the port for the instance.

Although non-IP traffic, security groups do not implicitly allow all ARP traffic. Separate ARP filtering rules
prevent instances from using ARP to intercept traffic for another instance. You cannot disable or remove these
rules.

You can disable security groups including basic and anti-spoofing rules by setting the port attribute
port_security_enabled to False.

Extensions

The OpenStack Networking service is extensible. Extensions serve two purposes: they allow the introduction
of new features in the API without requiring a version change and they allow the introduction of vendor specific
niche functionality. Applications can programmatically list available extensions by performing a GET on the
/extensions URI. Note that this is a versioned request; that is, an extension available in one API version
might not be available in another.

DHCP

The optional DHCP service manages IP addresses for instances on provider and self-service networks. The
Networking service implements the DHCP service using an agent that manages qdhcp namespaces and the
dnsmasq service.

Metadata

The optional metadata service provides an API for instances to obtain metadata such as SSH keys.

Introduction 17

Networking Guide (Release Version: 15.0.0)

Service and component hierarchy

Server

• Provides API, manages database, etc.

Plug-ins

• Manages agents

Agents

• Provides layer 2/3 connectivity to instances

• Handles physical-virtual network transition

• Handles metadata, etc.

Layer 2 (Ethernet and Switching)

• Linux Bridge

• OVS

Layer 3 (IP and Routing)

• L3

• DHCP

Miscellaneous

• Metadata

Services

Routing services

VPNaaS

The Virtual Private Network-as-a-Service (VPNaaS) is a neutron extension that introduces the VPN feature set.

LBaaS

The Load-Balancer-as-a-Service (LBaaS) API provisions and configures load balancers. The reference imple-
mentation is based on the HAProxy software load balancer.

18 Introduction

Networking Guide (Release Version: 15.0.0)

FWaaS

The Firewall-as-a-Service (FWaaS) API is an experimental API that enables early adopters and vendors to test
their networking implementations.

Firewall-as-a-Service (FWaaS)

The Firewall-as-a-Service (FWaaS) plug-in applies firewalls to OpenStack objects such as projects, routers, and
router ports.

Note: We anticipate this to expand to VM ports in the Ocata cycle.

The central concepts with OpenStack firewalls are the notions of a firewall policy and a firewall rule. A policy
is an ordered collection of rules. A rule specifies a collection of attributes (such as port ranges, protocol, and
IP addresses) that constitute match criteria and an action to take (allow or deny) on matched traffic. A policy
can be made public, so it can be shared across projects.

Firewalls are implemented in various ways, depending on the driver used. For example, an iptables driver
implements firewalls using iptable rules. An OpenVSwitch driver implements firewall rules using flow entries
in flow tables. ACisco firewall drivermanipulates Cisco appliances. AVMware driver configures NSX routers.

FWaaS v1

The original FWaaS implementation, v1, provides protection for routers. When a firewall is applied to a router,
all internal ports are protected.

The following diagram depicts FWaaS v1 protection. It illustrates the flow of ingress and egress traffic for the
VM2 instance:

Introduction 19

Networking Guide (Release Version: 15.0.0)

FWaaS v2

The newer FWaaS implementation, v2, provides a much more granular service. The notion of a firewall has
been replaced with firewall group to indicate that a firewall consists of two policies: an ingress policy and an
egress policy. A firewall group is applied not at the router level (all ports on a router) but at the port level.
Currently, router ports can be specified. For Ocata, VM ports can also be specified.

FWaaS v1 versus v2

The following table compares v1 and v2 features.

Feature v1 v2

Supports L3 firewalling for routers YES NO*
Supports L3 firewalling for router ports NO YES
Supports L2 firewalling (VM ports) NO NO**
CLI support YES YES
Horizon support YES NO

* A firewall group can be applied to all ports on a given router in order to effect this.

** This feature is planned for Ocata.

For further information, see v1 configuration guide or v2 configuration guide.

Configuration

ML2 plug-in

Architecture

The Modular Layer 2 (ML2) neutron plug-in is a framework allowing OpenStack Networking to simultane-
ously use the variety of layer 2 networking technologies found in complex real-world data centers. The ML2
framework distinguishes between the two kinds of drivers that can be configured:

• Type drivers

Define how an OpenStack network is technically realized. Example: VXLAN

Each available network type is managed by an ML2 type driver. Type drivers maintain any needed
type-specific network state. They validate the type specific information for provider networks and are
responsible for the allocation of a free segment in project networks.

• Mechanism drivers

Define the mechanism to access an OpenStack network of a certain type. Example: Open vSwitch
mechanism driver.

The mechanism driver is responsible for taking the information established by the type driver and ensur-
ing that it is properly applied given the specific networking mechanisms that have been enabled.

Mechanism drivers can utilize L2 agents (via RPC) and/or interact directly with external devices or
controllers.

Multiple mechanism and type drivers can be used simultaneously to access different ports of the same virtual
network.

20 Configuration

https://docs.openstack.org/ocata/networking-guide/fwaas-v1-scenario.html
https://docs.openstack.org/ocata/networking-guide/fwaas-v2-scenario.html

Networking Guide (Release Version: 15.0.0)

ML2 driver support matrix

Table 1: Mechanism drivers and L2 agents

type driver / mech driver Flat VLAN VXLAN GRE

Open vSwitch yes yes yes yes
Linux bridge yes yes yes no
SRIOV yes yes no no
MacVTap yes yes no no
L2 population no no yes yes

Note: L2 population is a special mechanism driver that optimizes BUM (Broadcast, unknown destination
address, multicast) traffic in the overlay networks VXLAN and GRE. It needs to be used in conjunction with
either the Linux bridge or the Open vSwitch mechanism driver and cannot be used as standalone mechanism
driver. For more information, see theMechanism drivers section below.

Configuration

Network type drivers

To enable type drivers in the ML2 plug-in. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file:

[ml2]

type_drivers = flat,vlan,vxlan,gre

For more details, see the Networking configuration options of Configuration Reference.

The following type drivers are available

• Flat

• VLAN

• GRE

• VXLAN

Provider network types

Provider networks provide connectivity like project networks. But only administrative (privileged) users can
manage those networks because they interface with the physical network infrastructure. More information about
provider networks see OpenStack Networking or the OpenStack Administrator Guide.

• Flat

The administrator needs to configure a list of physical network names that can be used for provider
networks. For more details, see the related section in the Configuration Reference.

• VLAN

The administrator needs to configure a list of physical network names that can be used for provider
networks. For more details, see the related section in the Configuration Reference.

Configuration 21

https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-plug-in-configuration-options
https://docs.openstack.org/admin-guide/networking-adv-features.html#provider-networks
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-flat-type-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-vlan-type-configuration-options

Networking Guide (Release Version: 15.0.0)

• GRE

No additional configuration required.

• VXLAN

The administrator can configure the VXLAN multicast group that should be used.

Note: VXLAN multicast group configuration is not applicable for the Open vSwitch agent.

As of today it is not used in the Linux bridge agent. The Linux bridge agent has its own agent specific
configuration option. Please see the following bug for more details: https://bugs.launchpad.net/neutron/
+bug/1523614

Project network types

Project networks provide connectivity to instances for a particular project. Regular (non-privileged) users can
manage project networks within the allocation that an administrator or operator defines for them. More infor-
mation about project and provider networks seeOpenStack Networking or the OpenStack Administrator Guide.

Project network configurations are made in the /etc/neutron/plugins/ml2/ml2_conf.ini configuration
file on the neutron server:

• VLAN

The administrator needs to configure the range of VLAN IDs that can be used for project network allo-
cation. For more details, see the related section in the Configuration Reference.

• GRE

The administrator needs to configure the range of tunnel IDs that can be used for project network allo-
cation. For more details, see the related section in the Configuration Reference.

• VXLAN

The administrator needs to configure the range of VXLAN IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

Note: Flat networks for project allocation are not supported. They only can exist as a provider network.

Mechanism drivers

To enable mechanism drivers in the ML2 plug-in, edit the /etc/neutron/plugins/ml2/ml2_conf.ini file
on the neutron server:

[ml2]

mechanism_drivers = ovs,l2pop

For more details, see the Configuration Reference.

• Linux bridge

22 Configuration

https://bugs.launchpad.net/neutron/+bug/1523614
https://bugs.launchpad.net/neutron/+bug/1523614
https://docs.openstack.org/admin-guide/networking-adv-features.html#provider-networks
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-vlan-type-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-gre-type-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-vxlan-type-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-plug-in-configuration-options

Networking Guide (Release Version: 15.0.0)

No additional configurations required for the mechanism driver. Additional agent configuration is re-
quired. For details, see the related L2 agent section below.

• Open vSwitch

No additional configurations required for the mechanism driver. Additional agent configuration is re-
quired. For details, see the related L2 agent section below.

• SRIOV

The administrator needs to define a list PCI hardware that shall be used by OpenStack. For more details,
see the related section in the Configuration Reference.

• MacVTap

No additional configurations required for the mechanism driver. Additional agent configuration is re-
quired. Please see the related section.

• L2 population

The administrator can configure some optional configuration options. For more details, see the related
section in the Configuration Reference.

• Specialized

– Open source

External open source mechanism drivers exist as well as the neutron integrated reference imple-
mentations. Configuration of those drivers is not part of this document. For example:

* OpenDaylight

* OpenContrail

– Proprietary (vendor)

External mechanism drivers from various vendors exist as well as the neutron integrated reference
implementations.

Configuration of those drivers is not part of this document.

Agents

L2 agent

An L2 agent serves layer 2 (Ethernet) network connectivity to OpenStack resources. It typically runs on each
Network Node and on each Compute Node.

• Open vSwitch agent

The Open vSwitch agent configures the Open vSwitch to realize L2 networks for OpenStack resources.

Configuration for the Open vSwitch agent is typically done in the openvswitch_agent.ini configu-
ration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

• Linux bridge agent

The Linux bridge agent configures Linux bridges to realize L2 networks for OpenStack resources.

Configuration 23

https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-sr-iov-mechanism-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-l2-population-mechanism-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#open-vswitch-agent-configuration-options

Networking Guide (Release Version: 15.0.0)

Configuration for the Linux bridge agent is typically done in the linuxbridge_agent.ini configura-
tion file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

• SRIOV Nic Switch agent

The sriov nic switch agent configures PCI virtual functions to realize L2 networks for OpenStack in-
stances. Network attachments for other resources like routers, DHCP, and so on are not supported.

Configuration for the SRIOV nic switch agent is typically done in the sriov_agent.ini configuration
file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

• MacVTap agent

The MacVTap agent uses kernel MacVTap devices for realizing L2 networks for OpenStack instances.
Network attachments for other resources like routers, DHCP, and so on are not supported.

Configuration for the MacVTap agent is typically done in the macvtap_agent.ini configuration file.
Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

L3 agent

The L3 agent offers advanced layer 3 services, like virtual Routers and Floating IPs. It requires an L2 agent
running in parallel.

Configuration for the L3 agent is typically done in the l3_agent.ini configuration file. Make sure that on
agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

DHCP agent

The DHCP agent is responsible for DHCP and RADVD (Router Advertisement Daemon) services. It requires
a running L2 agent on the same node.

Configuration for the DHCP agent is typically done in the dhcp_agent.ini configuration file. Make sure that
on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

Metadata agent

The Metadata agent allows instances to access cloud-init meta data and user data via the network. It requires a
running L2 agent on the same node.

Configuration for the Metadata agent is typically done in the metadata_agent.ini configuration file. Make
sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

24 Configuration

https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#linux-bridge-agent-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#sr-iov-agent-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#modular-layer-2-ml2-macvtap-mechanism-configuration-options
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#l3-agent
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#dhcp-agent
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#metadata-agent

Networking Guide (Release Version: 15.0.0)

L3 metering agent

The L3 metering agent enables layer3 traffic metering. It requires a running L3 agent on the same node.

Configuration for the L3 metering agent is typically done in the metering_agent.ini configuration file.
Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

Security

L2 agents support some important security configurations.

• Security Groups

For more details, see the related section in the Configuration Reference.

• Arp Spoofing Prevention

Configured in the L2 agent configuration.

Reference implementations

Overview

In this section, the combination of a mechanism driver and an L2 agent is called ‘reference implementation’.
The following table lists these implementations:

Table 2: Mechanism drivers and L2 agents

Mechanism Driver L2 agent

Open vSwitch Open vSwitch agent
Linux bridge Linux bridge agent
SRIOV SRIOV nic switch agent
MacVTap MacVTap agent
L2 population Open vSwitch agent, Linux bridge agent

The following tables shows which reference implementations support which non-L2 neutron agents:

Table 3: Reference implementations and other agents

Reference Implementation L3 agent DHCP agent Metadata agent L3 Metering agent

Open vSwitch & Open vSwitch agent yes yes yes yes
Linux bridge & Linux bridge agent yes yes yes yes
SRIOV & SRIOV nic switch agent no no no no
MacVTap & MacVTap agent no no no no

Note: L2 population is not listed here, as it is not a standalone mechanism. If other agents are supported
depends on the conjunctive mechanism driver that is used for binding a port.

More information about L2 population see the OpenStack Manuals.

Configuration 25

https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#metering-agent
https://docs.openstack.org/ocata/config-reference/networking/networking_options_reference.html#security-groups
http://docs.ocselected.org/openstack-manuals/kilo/networking-guide/content/ml2_l2pop_scenarios.html

Networking Guide (Release Version: 15.0.0)

Buying guide

This guide characterizes the L2 reference implementations that currently exist.

• Open vSwitch mechanism and Open vSwitch agent

Can be used for instance network attachments as well as for attachments of other network resources like
routers, DHCP, and so on.

• Linux bridge mechanism and Linux bridge agent

Can be used for instance network attachments as well as for attachments of other network resources like
routers, DHCP, and so on.

• SRIOV mechanism driver and SRIOV NIC switch agent

Can only be used for instance network attachments (device_owner = compute).

Is deployed besides an other mechanism driver and L2 agent such as OVS or Linux bridge. It offers
instances direct access to the network adapter through a PCI Virtual Function (VF). This gives an instance
direct access to hardware capabilities and high performance networking.

The cloud consumer can decide via the neutron APIs VNIC_TYPE attribute, if an instance gets a normal
OVS port or an SRIOV port.

Due to direct connection, some features are not available when using SRIOV. For example, DVR, security
groups, migration.

For more information see the SR-IOV .

• MacVTap mechanism driver and MacVTap agent

Can only be used for instance network attachments (device_owner = compute) and not for attachment of
other resources like routers, DHCP, and so on.

It is positioned as alternative to Open vSwitch or Linux bridge support on the compute node for internal
deployments.

MacVTap offers a direct connection with very little overhead between instances and down to the adapter.
You can use MacVTap agent on the compute node when you require a network connection that is per-
formance critical. It does not require specific hardware (like with SRIOV).

Due to the direct connection, some features are not available when using it on the compute node. For
example, DVR, security groups and arp-spoofing protection.

Address scopes

Address scopes build from subnet pools. While subnet pools provide a mechanism for controlling the allocation
of addresses to subnets, address scopes show where addresses can be routed between networks, preventing the
use of overlapping addresses in any two subnets. Because all addresses allocated in the address scope do not
overlap, neutron routers do not NAT between your projects’ network and your external network. As long as the
addresses within an address scope match, the Networking service performs simple routing between networks.

Accessing address scopes

Anyone with access to the Networking service can create their own address scopes. However, network ad-
ministrators can create shared address scopes, allowing other projects to create networks within that address

26 Configuration

Networking Guide (Release Version: 15.0.0)

scope.

Access to addresses in a scope are managed through subnet pools. Subnet pools can either be created in an
address scope, or updated to belong to an address scope.

With subnet pools, all addresses in use within the address scope are unique from the point of view of the address
scope owner. Therefore, add more than one subnet pool to an address scope if the pools have different owners,
allowing for delegation of parts of the address scope. Delegation prevents address overlap across the whole
scope. Otherwise, you receive an error if two pools have the same address ranges.

Each router interface is associated with an address scope by looking at subnets connected to the network. When
a router connects to an external network with matching address scopes, network traffic routes between without
Network address translation (NAT). The router marks all traffic connections originating from each interface
with its corresponding address scope. If traffic leaves an interface in the wrong scope, the router blocks the
traffic.

Backwards compatibility

Networks created before the Mitaka release do not contain explicitly named address scopes, unless the network
contains subnets from a subnet pool that belongs to a created or updated address scope. The Networking service
preserves backwards compatibility with pre-Mitaka networks through special address scope properties so that
these networks can perform advanced routing:

1. Unlimited address overlap is allowed.

2. Neutron routers, by default, will NAT traffic from internal networks to external networks.

3. Pre-Mitaka address scopes are not visible through the API. You cannot list address scopes or show details.
Scopes exist implicitly as a catch-all for addresses that are not explicitly scoped.

Create shared address scopes as an administrative user

This section shows how to set up shared address scopes to allow simple routing for project networks with the
same subnet pools.

Note: Irrelevant fields have been trimmed from the output of these commands for brevity.

1. Create IPv6 and IPv4 address scopes:

$ openstack address scope create --share --ip-version 6 address-scope-ip6

+------------+--------------------------------------+

| Field | Value |

+------------+--------------------------------------+

| headers | |

| id | 28424dfc-9abd-481b-afa3-1da97a8fead7 |

| ip_version | 6 |

| name | address-scope-ip6 |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| shared | True |

+------------+--------------------------------------+

Configuration 27

Networking Guide (Release Version: 15.0.0)

$ openstack address scope create --share --ip-version 4 address-scope-ip4

+------------+--------------------------------------+

| Field | Value |

+------------+--------------------------------------+

| headers | |

| id | 3193bd62-11b5-44dc-acf8-53180f21e9f2 |

| ip_version | 4 |

| name | address-scope-ip4 |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| shared | True |

+------------+--------------------------------------+

2. Create subnet pools specifying the name (or UUID) of the address scope that the subnet pool belongs
to. If you have existing subnet pools, use the openstack subnet pool set command to put them in
a new address scope:

$ openstack subnet pool create --address-scope address-scope-ip6 \

--share --pool-prefix 2001:db8:a583::/48 --default-prefix-length 64 \

subnet-pool-ip6

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| address_scope_id | 28424dfc-9abd-481b-afa3-1da97a8fead7 |

| created_at | 2016-12-13T22:53:30Z |

| default_prefixlen | 64 |

| default_quota | None |

| description | |

| id | a59ff52b-0367-41ff-9781-6318b927dd0e |

| ip_version | 6 |

| is_default | False |

| max_prefixlen | 128 |

| min_prefixlen | 64 |

| name | subnet-pool-ip6 |

| prefixes | 2001:db8:a583::/48 |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 1 |

| shared | True |

| updated_at | 2016-12-13T22:53:30Z |

+-------------------+--------------------------------------+

$ openstack subnet pool create --address-scope address-scope-ip4 \

--share --pool-prefix 203.0.113.0/24 --default-prefix-length 26 \

subnet-pool-ip4

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| address_scope_id | 3193bd62-11b5-44dc-acf8-53180f21e9f2 |

| created_at | 2016-12-13T22:55:09Z |

| default_prefixlen | 26 |

| default_quota | None |

| description | |

| id | d02af70b-d622-426f-8e60-ed9df2a8301f |

| ip_version | 4 |

| is_default | False |

| max_prefixlen | 32 |

28 Configuration

Networking Guide (Release Version: 15.0.0)

| min_prefixlen | 8 |

| name | subnet-pool-ip4 |

| prefixes | 203.0.113.0/24 |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 1 |

| shared | True |

| updated_at | 2016-12-13T22:55:09Z |

+-------------------+--------------------------------------+

3. Make sure that subnets on an external network are created from the subnet pools created above:

$ openstack subnet show ipv6-public-subnet

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | 2001:db8:a583::2-2001:db8:a583:0:ffff:ff |

| | ff:ffff:ffff |

| cidr | 2001:db8:a583::/64 |

| created_at | 2016-12-10T21:36:04Z |

| description | |

| dns_nameservers | |

| enable_dhcp | False |

| gateway_ip | 2001:db8:a583::1 |

| host_routes | |

| id | b333bf5a-758c-4b3f-97ec-5f12d9bfceb7 |

| ip_version | 6 |

| ipv6_address_mode | None |

| ipv6_ra_mode | None |

| name | ipv6-public-subnet |

| network_id | 05a8d31e-330b-4d96-a3fa-884b04abfa4c |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 2 |

| segment_id | None |

| service_types | |

| subnetpool_id | a59ff52b-0367-41ff-9781-6318b927dd0e |

| updated_at | 2016-12-10T21:36:04Z |

+-------------------+--+

$ openstack subnet show public-subnet

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 203.0.113.2-203.0.113.62 |

| cidr | 203.0.113.0/26 |

| created_at | 2016-12-10T21:35:52Z |

| description | |

| dns_nameservers | |

| enable_dhcp | False |

| gateway_ip | 203.0.113.1 |

| host_routes | |

| id | 7fd48240-3acc-4724-bc82-16c62857edec |

| ip_version | 4 |

| ipv6_address_mode | None |

| ipv6_ra_mode | None |

| name | public-subnet |

| network_id | 05a8d31e-330b-4d96-a3fa-884b04abfa4c |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

Configuration 29

Networking Guide (Release Version: 15.0.0)

| revision_number | 2 |

| segment_id | None |

| service_types | |

| subnetpool_id | d02af70b-d622-426f-8e60-ed9df2a8301f |

| updated_at | 2016-12-10T21:35:52Z |

+-------------------+--------------------------------------+

Routing with address scopes for non-privileged users

This section shows how non-privileged users can use address scopes to route straight to an external network
without NAT.

1. Create a couple of networks to host subnets:

$ openstack network create network1

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2016-12-13T23:21:01Z |

| description | |

| headers | |

| id | 1bcf3fe9-a0cb-4d88-a067-a4d7f8e635f0 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | network1 |

| port_security_enabled | True |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 94 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-13T23:21:01Z |

+---------------------------+--------------------------------------+

$ openstack network create network2

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2016-12-13T23:21:45Z |

| description | |

| headers | |

| id | 6c583603-c097-4141-9c5c-288b0e49c59f |

| ipv4_address_scope | None |

30 Configuration

Networking Guide (Release Version: 15.0.0)

| ipv6_address_scope | None |

| mtu | 1450 |

| name | network2 |

| port_security_enabled | True |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 81 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-13T23:21:45Z |

+---------------------------+--------------------------------------+

2. Create a subnet not associated with a subnet pool or an address scope:

$ openstack subnet create --network network1 --subnet-range \

198.51.100.0/26 subnet-ip4-1

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 198.51.100.2-198.51.100.62 |

| cidr | 198.51.100.0/26 |

| created_at | 2016-12-13T23:24:16Z |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 198.51.100.1 |

| headers | |

| host_routes | |

| id | 66874039-d31b-4a27-85d7-14c89341bbb7 |

| ip_version | 4 |

| ipv6_address_mode | None |

| ipv6_ra_mode | None |

| name | subnet-ip4-1 |

| network_id | 1bcf3fe9-a0cb-4d88-a067-a4d7f8e635f0 |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 2 |

| service_types | |

| subnetpool_id | None |

| updated_at | 2016-12-13T23:24:16Z |

+-------------------+--------------------------------------+

$ openstack subnet create --network network1 --ipv6-ra-mode slaac \

--ipv6-address-mode slaac --ip-version 6 --subnet-range \

2001:db8:80d2:c4d3::/64 subnet-ip6-1

+-------------------+---+

| Field | Value |

+-------------------+---+

| allocation_pools | 2001:db8:80d2:c4d3::2-2001:db8:80d2:c4d |

| | 3:ffff:ffff:ffff:ffff |

| cidr | 2001:db8:80d2:c4d3::/64 |

| created_at | 2016-12-13T23:28:28Z |

| description | |

Configuration 31

Networking Guide (Release Version: 15.0.0)

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 2001:db8:80d2:c4d3::1 |

| headers | |

| host_routes | |

| id | a7551b23-2271-4a88-9c41-c84b048e0722 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | subnet-ip6-1 |

| network_id | 1bcf3fe9-a0cb-4d88-a067-a4d7f8e635f0 |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 2 |

| service_types | |

| subnetpool_id | None |

| updated_at | 2016-12-13T23:28:28Z |

+-------------------+---+

3. Create a subnet using a subnet pool associated with an address scope from an external network:

$ openstack subnet create --subnet-pool subnet-pool-ip4 \

--network network2 subnet-ip4-2

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 203.0.113.2-203.0.113.62 |

| cidr | 203.0.113.0/26 |

| created_at | 2016-12-13T23:32:12Z |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 203.0.113.1 |

| headers | |

| host_routes | |

| id | 12be8e8f-5871-4091-9e9e-4e0651b9677e |

| ip_version | 4 |

| ipv6_address_mode | None |

| ipv6_ra_mode | None |

| name | subnet-ip4-2 |

| network_id | 6c583603-c097-4141-9c5c-288b0e49c59f |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 2 |

| service_types | |

| subnetpool_id | d02af70b-d622-426f-8e60-ed9df2a8301f |

| updated_at | 2016-12-13T23:32:12Z |

+-------------------+--------------------------------------+

$ openstack subnet create --ip-version 6 --ipv6-ra-mode slaac \

--ipv6-address-mode slaac --subnet-pool subnet-pool-ip6 \

--network network2 subnet-ip6-2

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 2001:db8:a583::2-2001:db8:a583:0:fff |

| | f:ffff:ffff:ffff |

| cidr | 2001:db8:a583::/64 |

| created_at | 2016-12-13T23:31:17Z |

32 Configuration

Networking Guide (Release Version: 15.0.0)

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 2001:db8:a583::1 |

| headers | |

| host_routes | |

| id | b599c2be-e3cd-449c-ba39-3cfcc744c4be |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | subnet-ip6-2 |

| network_id | 6c583603-c097-4141-9c5c-288b0e49c59f |

| project_id | 098429d072d34d3596c88b7dbf7e91b6 |

| revision_number | 2 |

| service_types | |

| subnetpool_id | a59ff52b-0367-41ff-9781-6318b927dd0e |

| updated_at | 2016-12-13T23:31:17Z |

+-------------------+--------------------------------------+

By creating subnets from scoped subnet pools, the network is associated with the address scope.

$ openstack network show network2

+---------------------------+------------------------------+

| Field | Value |

+---------------------------+------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | nova |

| created_at | 2016-12-13T23:21:45Z |

| description | |

| id | 6c583603-c097-4141-9c5c- |

| | 288b0e49c59f |

| ipv4_address_scope | 3193bd62-11b5-44dc- |

| | acf8-53180f21e9f2 |

| ipv6_address_scope | 28424dfc-9abd-481b- |

| | afa3-1da97a8fead7 |

| mtu | 1450 |

| name | network2 |

| port_security_enabled | True |

| project_id | 098429d072d34d3596c88b7dbf7e |

| | 91b6 |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 81 |

| revision_number | 10 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | 12be8e8f-5871-4091-9e9e- |

| | 4e0651b9677e, b599c2be-e3cd- |

| | 449c-ba39-3cfcc744c4be |

| tags | [] |

| updated_at | 2016-12-13T23:32:12Z |

+---------------------------+------------------------------+

4. Connect a router to each of the project subnets that have been created, for example, using a router called
router1:

Configuration 33

Networking Guide (Release Version: 15.0.0)

$ openstack router add subnet router1 subnet-ip4-1

$ openstack router add subnet router1 subnet-ip4-2

$ openstack router add subnet router1 subnet-ip6-1

$ openstack router add subnet router1 subnet-ip6-2

Checking connectivity

This example shows how to check the connectivity between networks with address scopes.

1. Launch two instances, instance1 on network1 and instance2 on network2. Associate a floating IP
address to both instances.

2. Adjust security groups to allow pings and SSH (both IPv4 and IPv6):

$ openstack server list

+--------------+-----------+--

↪→-----------------+------------+

| ID | Name | Networks �

↪→ | Image Name |

+--------------+-----------+--

↪→-----------------+------------+

| 97e49c8e-... | instance1 | network1=2001:db8:80d2:c4d3:f816:3eff:fe52:b69f, 198.51.

↪→100.3, 203.0.113.3| cirros |

| ceba9638-... | instance2 | network2=203.0.113.3,�

↪→2001:db8:a583:0:f816:3eff:fe42:1eeb, 203.0.113.4 | centos |

+--------------+-----------+--

↪→-----------------+------------+

Regardless of address scopes, the floating IPs can be pinged from the external network:

$ ping -c 1 203.0.113.3

1 packets transmitted, 1 received, 0% packet loss, time 0ms

$ ping -c 1 203.0.113.4

1 packets transmitted, 1 received, 0% packet loss, time 0ms

You can now ping instance2 directly because instance2 shares the same address scope as the external
network:

Note: BGP routing can be used to automatically set up a static route for your instances.

ip route add 203.0.113.0/26 via 203.0.113.2

$ ping -c 1 203.0.113.3

1 packets transmitted, 1 received, 0% packet loss, time 0ms

ip route add 2001:db8:a583::/64 via 2001:db8::1

$ ping6 -c 1 2001:db8:a583:0:f816:3eff:fe42:1eeb

1 packets transmitted, 1 received, 0% packet loss, time 0ms

You cannot ping instance1 directly because the address scopes do not match:

ip route add 198.51.100.0/26 via 203.0.113.2

$ ping -c 1 198.51.100.3

1 packets transmitted, 0 received, 100% packet loss, time 0ms

34 Configuration

Networking Guide (Release Version: 15.0.0)

ip route add 2001:db8:80d2:c4d3::/64 via 2001:db8::1

$ ping6 -c 1 2001:db8:80d2:c4d3:f816:3eff:fe52:b69f

1 packets transmitted, 0 received, 100% packet loss, time 0ms

If the address scopes match between networks then pings and other traffic route directly through. If the scopes
do not match between networks, the router either drops the traffic or applies NAT to cross scope boundaries.

Automatic allocation of network topologies

The auto-allocation feature introduced in Mitaka simplifies the procedure of setting up an external connectivity
for end-users, and is also known as Get Me A Network.

Previously, a user had to configure a range of networking resources to boot a server and get access to the Internet.
For example, the following steps are required:

• Create a network

• Create a subnet

• Create a router

• Uplink the router on an external network

• Downlink the router on the previously created subnet

These steps need to be performed on each logical segment that a VM needs to be connected to, and may require
networking knowledge the user might not have.

This feature is designed to automate the basic networking provisioning for projects. The steps to provision a
basic network are run during instance boot, making the networking setup transparent.

To make this possible, provide a default external network and default subnetpools (one for IPv4, or one for
IPv6, or one of each) so that the platform can choose what to do in lieu of input. Once these are in place, users
can boot their VMs without specifying any networking details. The Compute service will then use this feature
automatically to wire user VMs.

Enabling the deployment for auto-allocation

To use this feature, the neutron service must have the following extensions enabled:

• auto-allocated-topology

• subnet_allocation

• external-net

• router

Before the end-user can use the auto-allocation feature, the operator must create the resources that will be used
for the auto-allocated network topology creation. To perform this task, proceed with the following steps:

1. Set up a default external network

Setting up an external network is described in OpenStack Administrator Guide. Assuming the exter-
nal network to be used for the auto-allocation feature is named public, make it the default external
network with the following command:

Configuration 35

https://docs.openstack.org/admin-guide/networking-adv-features.html

Networking Guide (Release Version: 15.0.0)

$ neutron net-update public --is-default=True

Note: The flag --default (and --no-default flag) is only effective with external networks and has
no effects on regular (or internal) networks.

2. Create default subnetpools

The auto-allocation feature requires at least one default subnetpool. One for IPv4, or one for IPv6, or
one of each.

$ openstack subnet pool create --share --default \

--pool-prefix 192.0.2.0/24 --default-prefix-length 26 \

shared-default

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| address_scope_id | None |

| created_at | 2017-01-12T15:10:34Z |

| default_prefixlen | 26 |

| default_quota | None |

| description | |

| headers | |

| id | b41b7b9c-de57-4c19-b1c5-731985bceb7f |

| ip_version | 4 |

| is_default | True |

| max_prefixlen | 32 |

| min_prefixlen | 8 |

| name | shared-default |

| prefixes | 192.0.2.0/24 |

| project_id | 86acdbd1d72745fd8e8320edd7543400 |

| revision_number | 1 |

| shared | True |

| updated_at | 2017-01-12T15:10:34Z |

+-------------------+--------------------------------------+

$ openstack subnet pool create --share --default \

--pool-prefix 2001:db8:8000::/48 --default-prefix-length 64 \

default-v6

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| address_scope_id | None |

| created_at | 2017-01-12T15:14:35Z |

| default_prefixlen | 64 |

| default_quota | None |

| description | |

| headers | |

| id | 6f387016-17f0-4564-96ad-e34775b6ea14 |

| ip_version | 6 |

| is_default | True |

| max_prefixlen | 128 |

| min_prefixlen | 64 |

| name | default-v6 |

36 Configuration

Networking Guide (Release Version: 15.0.0)

| prefixes | 2001:db8:8000::/48 |

| project_id | 86acdbd1d72745fd8e8320edd7543400 |

| revision_number | 1 |

| shared | True |

| updated_at | 2017-01-12T15:14:35Z |

+-------------------+--------------------------------------+

Get Me A Network

In a deployment where the operator has set up the resources as described above, validate that users can get their
auto-allocated network topology as follows:

$ neutron auto-allocated-topology-show

+------------+--------------------------------------+

| Field | Value |

+------------+--------------------------------------+

| id | 8b835bfb-cae2-4acc-b53f-c16bb5f9a7d0 |

| project_id | 3a4e311bcb3545b9b7ad326f93194f8c |

| tenant_id | 3a4e311bcb3545b9b7ad326f93194f8c |

+------------+--------------------------------------+

Operators (and users with admin role) can get the auto-allocated topology for a project by specifying the project
ID:

$ neutron auto-allocated-topology-show 3a4e311bcb3545b9b7ad326f93194f8c

+------------+--------------------------------------+

| Field | Value |

+------------+--------------------------------------+

| id | 8b835bfb-cae2-4acc-b53f-c16bb5f9a7d0 |

| project_id | 3a4e311bcb3545b9b7ad326f93194f8c |

| tenant_id | 3a4e311bcb3545b9b7ad326f93194f8c |

+------------+--------------------------------------+

The ID returned by this command is a network which can be used for booting a VM.

$ openstack server create --flavor m1.small --image \

cirros-0.3.5-x86_64-uec --nic \

net-id=8b835bfb-cae2-4acc-b53f-c16bb5f9a7d0 vm1

The auto-allocated topology for a user never changes. In practice, when a user boots a server omit-
ting the --nic option, and not have any neutron network available, nova will invoke the API behind
auto-allocated-topology-show, fetch the network UUID, and pass it on during the boot process.

Validating the requirements for auto-allocation

To validate that the required resources are correctly set up for auto-allocation, without actually provisioning
any resource, use the --dry-run option:

$ neutron auto-allocated-topology-show --dry-run

Deployment error: No default router:external network.

$ neutron net-update public --is-default=True

Configuration 37

Networking Guide (Release Version: 15.0.0)

$ neutron auto-allocated-topology-show --dry-run

Deployment error: No default subnetpools defined.

$ neutron subnetpool-update shared-default --is-default=True

$ neutron auto-allocated-topology-show --dry-run

+---------+-------+

| Field | Value |

+---------+-------+

| dry_run | pass |

+---------+-------+

The validation option behaves identically for all users. However, it is considered primarily an admin or service
utility since it is the operator who must set up the requirements.

Project resources created by auto-allocation

The auto-allocation feature creates one network topology in every project where it is used. The auto-allocated
network topology for a project contains the following resources:

Resource Name

network auto_allocated_network

subnet (IPv4) auto_allocated_subnet_v4

subnet (IPv6) auto_allocated_subnet_v6

router auto_allocated_router

Compatibility notes

Nova uses the auto-allocated-typology feature with API micro version 2.37 or later. This is because,
unlike the neutron feature which was implemented in theMitaka release, the integration for nova was completed
during the Newton release cycle. Note that the CLI option --nic can be omitted regardless of the microversion
used as long as there is no more than one network available to the project, in which case nova fails with a
400 error because it does not know which network to use. Furthermore, nova does not start using the feature,
regardless of whether or not a user requests micro version 2.37 or later, unless all of the nova-compute services
are running Newton-level code.

Availability zones

An availability zone groups network nodes that run services like DHCP, L3, FW, and others. It is defined as an
agent’s attribute on the network node. This allows users to associate an availability zone with their resources
so that the resources get high availability.

Use case

An availability zone is used to make network resources highly available. The operators group the nodes that
are attached to different power sources under separate availability zones and configure scheduling for resources
with high availability so that they are scheduled on different availability zones.

38 Configuration

Networking Guide (Release Version: 15.0.0)

Required extensions

The core plug-in must support the availability_zone extension. The core plug-in also must support
the network_availability_zone extension to schedule a network according to availability zones. The
Ml2Plugin supports it. The router service plug-in must support the router_availability_zone extension
to schedule a router according to the availability zones. The L3RouterPlugin supports it.

$ openstack extension list --network -c Alias -c Name

+---------------------------+---------------------------+

| Name | Alias |

+---------------------------+---------------------------+

...

| Network Availability Zone | network_availability_zone |

...

| Availability Zone | availability_zone |

...

| Router Availability Zone | router_availability_zone |

...

+---------------------------+---------------------------+

Availability zone of agents

The availability_zone attribute can be defined in dhcp-agent and l3-agent. To define an availabil-
ity zone for each agent, set the value into [AGENT] section of /etc/neutron/dhcp_agent.ini or /etc/
neutron/l3_agent.ini:

[AGENT]

availability_zone = zone-1

To confirm the agent’s availability zone:

$ openstack network agent show 116cc128-4398-49af-a4ed-3e95494cd5fc

+---------------------+---+

| Field | Value |

+---------------------+---+

| admin_state_up | UP |

| agent_type | DHCP agent |

| alive | True |

| availability_zone | zone-1 |

| binary | neutron-dhcp-agent |

| configurations | dhcp_driver='neutron.agent.linux.dhcp.Dnsmasq', |

| | dhcp_lease_duration='86400', |

| | log_agent_heartbeats='False', networks='2', |

| | notifies_port_ready='True', ports='6', subnets='4 |

| created_at | 2016-12-14 00:25:54 |

| description | None |

| heartbeat_timestamp | 2016-12-14 06:20:24 |

| host | ankur-desktop |

| id | 116cc128-4398-49af-a4ed-3e95494cd5fc |

| started_at | 2016-12-14 00:25:54 |

| topic | dhcp_agent |

+---------------------+---+

$ openstack network agent show 9632309a-2aa4-4304-8603-c4de02c4a55f

+---------------------+---+

Configuration 39

Networking Guide (Release Version: 15.0.0)

| Field | Value |

+---------------------+---+

| admin_state_up | UP |

| agent_type | L3 agent |

| alive | True |

| availability_zone | zone-1 |

| binary | neutron-l3-agent |

| configurations | agent_mode='legacy', ex_gw_ports='2', |

| | external_network_bridge='', floating_ips='0', |

| | gateway_external_network_id='', |

| | handle_internal_only_routers='True', |

| | interface_driver='openvswitch', interfaces='4', |

| | log_agent_heartbeats='False', routers='2' |

| created_at | 2016-12-14 00:25:58 |

| description | None |

| heartbeat_timestamp | 2016-12-14 06:20:28 |

| host | ankur-desktop |

| id | 9632309a-2aa4-4304-8603-c4de02c4a55f |

| started_at | 2016-12-14 00:25:58 |

| topic | l3_agent |

+---------------------+---+

Availability zone related attributes

The following attributes are added into network and router:

Attribute name Access Re-

quired

Input type Description

availabil-
ity_zone_hints

RW(POST
only)

No list of
string

availability zone candidates for the
resource

availability_zones RO N/A list of
string

availability zones for the resource

Use availability_zone_hints to specify the zone in which the resource is hosted:

$ openstack network create --availability-zone-hint zone-1 \

--availability-zone-hint zone-2 net1

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | zone-1 |

| | zone-2 |

| availability_zones | |

| created_at | 2016-12-14T06:23:36Z |

| description | |

| headers | |

| id | ad88e059-e7fa-4cf7-8857-6731a2a3a554 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | net1 |

| port_security_enabled | True |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| provider:network_type | vxlan |

40 Configuration

Networking Guide (Release Version: 15.0.0)

| provider:physical_network | None |

| provider:segmentation_id | 77 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-14T06:23:37Z |

+---------------------------+--------------------------------------+

$ openstack router create --ha --availability-zone-hint zone-1 \

--availability-zone-hint zone-2 router1

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | zone-1 |

| | zone-2 |

| availability_zones | |

| created_at | 2016-12-14T06:25:40Z |

| description | |

| distributed | False |

| external_gateway_info | null |

| flavor_id | None |

| ha | False |

| headers | |

| id | ced10262-6cfe-47c1-8847-cd64276a868c |

| name | router1 |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| revision_number | 3 |

| routes | |

| status | ACTIVE |

| updated_at | 2016-12-14T06:25:40Z |

+-------------------------+--------------------------------------+

Availability zone is selected from default_availability_zones in /etc/neutron/neutron.conf if a
resource is created without availability_zone_hints:

default_availability_zones = zone-1,zone-2

To confirm the availability zone defined by the system:

$ openstack availability zone list

+-----------+-------------+

| Zone Name | Zone Status |

+-----------+-------------+

| zone-1 | available |

| zone-2 | available |

| zone-1 | available |

| zone-2 | available |

+-----------+-------------+

Look at the availability_zones attribute of each resource to confirm in which zone the resource is hosted:

Configuration 41

Networking Guide (Release Version: 15.0.0)

$ openstack network show net1

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | zone-1 |

| | zone-2 |

| availability_zones | zone-1 |

| | zone-2 |

| created_at | 2016-12-14T06:23:36Z |

| description | |

| headers | |

| id | ad88e059-e7fa-4cf7-8857-6731a2a3a554 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | net1 |

| port_security_enabled | True |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 77 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-14T06:23:37Z |

+---------------------------+--------------------------------------+

$ openstack router show router1

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | zone-1 |

| | zone-2 |

| availability_zones | zone-1 |

| | zone-2 |

| created_at | 2016-12-14T06:25:40Z |

| description | |

| distributed | False |

| external_gateway_info | null |

| flavor_id | None |

| ha | False |

| headers | |

| id | ced10262-6cfe-47c1-8847-cd64276a868c |

| name | router1 |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| revision_number | 3 |

| routes | |

| status | ACTIVE |

| updated_at | 2016-12-14T06:25:40Z |

+-------------------------+--------------------------------------+

42 Configuration

Networking Guide (Release Version: 15.0.0)

Note: The availability_zones attribute does not have a value until the resource is scheduled.
Once the Networking service schedules the resource to zones according to availability_zone_hints,
availability_zones shows in which zone the resource is hosted practically. The availability_zones
may not match availability_zone_hints. For example, even if you specify a zone with
availability_zone_hints, all agents of the zone may be dead before the resource is scheduled. In gen-
eral, they should match, unless there are failures or there is no capacity left in the zone requested.

Availability zone aware scheduler

Network scheduler

Set AZAwareWeightScheduler to network_scheduler_driver in /etc/neutron/neutron.conf so that
the Networking service schedules a network according to the availability zone:

network_scheduler_driver = neutron.scheduler.dhcp_agent_scheduler.AZAwareWeightScheduler

dhcp_load_type = networks

The Networking service schedules a network to one of the agents within the selected zone as with
WeightScheduler. In this case, scheduler refers to dhcp_load_type as well.

Router scheduler

Set AZLeastRoutersScheduler to router_scheduler_driver in file /etc/neutron/neutron.conf so
that the Networking service schedules a router according to the availability zone:

router_scheduler_driver = neutron.scheduler.l3_agent_scheduler.AZLeastRoutersScheduler

The Networking service schedules a router to one of the agents within the selected zone as with
LeastRouterScheduler.

Achieving high availability with availability zone

Although, the Networking service provides high availability for routers and high availability and fault tolerance
for networks’ DHCP services, availability zones provide an extra layer of protection by segmenting a Network-
ing service deployment in isolated failure domains. By deploying HA nodes across different availability zones,
it is guaranteed that network services remain available in face of zone-wide failures that affect the deployment.

This section explains how to get high availability with the availability zone for L3 and DHCP. You should
naturally set above configuration options for the availability zone.

L3 high availability

Set the following configuration options in file /etc/neutron/neutron.conf so that you get L3 high avail-
ability.

l3_ha = True

max_l3_agents_per_router = 3

Configuration 43

Networking Guide (Release Version: 15.0.0)

HA routers are created on availability zones you selected when creating the router.

DHCP high availability

Set the following configuration options in file /etc/neutron/neutron.conf so that you get DHCP high
availability.

dhcp_agents_per_network = 2

DHCP services are created on availability zones you selected when creating the network.

BGP dynamic routing

BGP dynamic routing enables advertisement of self-service (private) network prefixes to physical network
devices that support BGP such as routers, thus removing the conventional dependency on static routes. The
feature relies on address scopes and requires knowledge of their operation for proper deployment.

BGP dynamic routing consists of a service plug-in and an agent. The service plug-in implements theNetworking
service extension and the agent manages BGP peering sessions. A cloud administrator creates and configures
a BGP speaker using the CLI or API and manually schedules it to one or more hosts running the agent. Agents
can reside on hosts with or without other Networking service agents. Prefix advertisement depends on the
binding of external networks to a BGP speaker and the address scope of external and internal IP address ranges
or subnets.

Note: Although self-service networks generally use private IP address ranges (RFC1918) for IPv4 subnets,

44 Configuration

Networking Guide (Release Version: 15.0.0)

BGP dynamic routing can advertise any IPv4 address ranges.

Example configuration

The example configuration involves the following components:

• One BGP agent.

• One address scope containing IP address range 203.0.113.0/24 for provider networks, and IP address
ranges 10.0.1.0/24 and 10.0.2.0/24 for self-service networks.

• One provider network using IP address range 203.0.113.0/24.

• Three self-service networks.

– Self-service networks 1 and 2 use IP address ranges inside of the address scope.

– Self-service network 3 uses a unique IP address range 10.0.3.0/24 to demonstrate that the BGP
speaker does not advertise prefixes outside of address scopes.

• Three routers. Each router connects one self-service network to the provider network.

– Router 1 contains IP addresses 203.0.113.11 and 10.0.1.1.

– Router 2 contains IP addresses 203.0.113.12 and 10.0.2.1.

– Router 3 contains IP addresses 203.0.113.13 and 10.0.3.1.

Note: The example configuration assumes sufficient knowledge about the Networking service, routing, and
BGP. For basic deployment of the Networking service, consult one of the Deployment examples. For more
information on BGP, see RFC 4271.

Controller node

• In the neutron.conf file, enable the conventional layer-3 and BGP dynamic routing service plug-ins:

[DEFAULT]

service_plugins = neutron_dynamic_routing.services.bgp.bgp_plugin.BgpPlugin,neutron.

↪→services.l3_router.l3_router_plugin.L3RouterPlugin

Agent nodes

• In the bgp_dragent.ini file:

– Configure the driver.

[BGP]

bgp_speaker_driver = neutron_dynamic_routing.services.bgp.agent.driver.ryu.driver.

↪→RyuBgpDriver

Note: The agent currently only supports the Ryu BGP driver.

Configuration 45

https://tools.ietf.org/html/rfc4271

Networking Guide (Release Version: 15.0.0)

– Configure the router ID.

[BGP]

bgp_router_id = ROUTER_ID

Replace ROUTER_ID with a suitable unique 32-bit number, typically an IPv4 address on the host
running the agent. For example, 192.0.2.2.

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of each BGP dynamic routing agent.

$ neutron agent-list --agent-type="BGP dynamic routing agent"

+--------------------------------------+---------------------------+------------+-----

↪→--------------+-------+----------------+---------------------------+

| id | agent_type | host |�

↪→availability_zone | alive | admin_state_up | binary |

+--------------------------------------+---------------------------+------------+-----

↪→--------------+-------+----------------+---------------------------+

| 37729181-2224-48d8-89ef-16eca8e2f77e | BGP dynamic routing agent | controller | �

↪→ | :-) | True | neutron-bgp-dragent |

+--------------------------------------+---------------------------+------------+-----

↪→--------------+-------+----------------+---------------------------+

Create the address scope and subnet pools

1. Create an address scope. The provider (external) and self-service networks must belong to the same
address scope for the agent to advertise those self-service network prefixes.

$ openstack address scope create --share --ip-version 4 bgp

+------------+--------------------------------------+

| Field | Value |

+------------+--------------------------------------+

| headers | |

| id | f71c958f-dbe8-49a2-8fb9-19c5f52a37f1 |

| ip_version | 4 |

| name | bgp |

| project_id | 86acdbd1d72745fd8e8320edd7543400 |

| shared | True |

+------------+--------------------------------------+

2. Create subnet pools. The provider and self-service networks use different pools.

• Create the provider network pool.

$ openstack subnet pool create --pool-prefix 203.0.113.0/24 \

--address-scope bgp provider

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

46 Configuration

Networking Guide (Release Version: 15.0.0)

| address_scope_id | f71c958f-dbe8-49a2-8fb9-19c5f52a37f1 |

| created_at | 2017-01-12T14:58:57Z |

| default_prefixlen | 8 |

| default_quota | None |

| description | |

| headers | |

| id | 63532225-b9a0-445a-9935-20a15f9f68d1 |

| ip_version | 4 |

| is_default | False |

| max_prefixlen | 32 |

| min_prefixlen | 8 |

| name | provider |

| prefixes | 203.0.113.0/24 |

| project_id | 86acdbd1d72745fd8e8320edd7543400 |

| revision_number | 1 |

| shared | False |

| updated_at | 2017-01-12T14:58:57Z |

+-------------------+--------------------------------------+

• Create the self-service network pool.

$ openstack subnet pool create --pool-prefix 10.0.1.0/24 \

--pool-prefix 10.0.2.0/24 --address-scope bgp \

--share selfservice

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| address_scope_id | f71c958f-dbe8-49a2-8fb9-19c5f52a37f1 |

| created_at | 2017-01-12T15:02:31Z |

| default_prefixlen | 8 |

| default_quota | None |

| description | |

| headers | |

| id | 8d8270b1-b194-4b7e-914c-9c741dcbd49b |

| ip_version | 4 |

| is_default | False |

| max_prefixlen | 32 |

| min_prefixlen | 8 |

| name | selfservice |

| prefixes | 10.0.1.0/24, 10.0.2.0/24 |

| project_id | 86acdbd1d72745fd8e8320edd7543400 |

| revision_number | 1 |

| shared | True |

| updated_at | 2017-01-12T15:02:31Z |

+-------------------+--------------------------------------+

Create the provider and self-service networks

1. Create the provider network.

$ openstack network create provider --external --provider-physical-network \

provider --provider-network-type flat

Created a new network:

+---------------------------+--------------------------------------+

Configuration 47

Networking Guide (Release Version: 15.0.0)

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2016-12-21T08:47:41Z |

| description | |

| headers | |

| id | 190ca651-2ee3-4a4b-891f-dedda47974fe |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| is_default | False |

| mtu | 1450 |

| name | provider |

| port_security_enabled | True |

| project_id | c961a8f6d3654657885226378ade8220 |

| provider:network_type | flat |

| provider:physical_network | provider |

| provider:segmentation_id | 66 |

| revision_number | 3 |

| router:external | External |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-21T08:47:41Z |

+---------------------------+--------------------------------------+

2. Create a subnet on the provider network using an IP address range from the provider subnet pool.

$ neutron subnet-create --name provider --subnetpool provider \

--prefixlen 24 --allocation-pool start=203.0.113.11,end=203.0.113.254 \

--gateway 203.0.113.1 provider

Created a new subnet:

+-------------------+---+

| Field | Value |

+-------------------+---+

| allocation_pools | {"start": "203.0.113.11", "end": "203.0.113.254"} |

| cidr | 203.0.113.0/24 |

| created_at | 2016-03-17T23:17:16 |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 203.0.113.1 |

| host_routes | |

| id | 8ed65d41-2b2a-4f3a-9f92-45adb266e01a |

| ip_version | 4 |

| ipv6_address_mode | |

| ipv6_ra_mode | |

| name | provider |

| network_id | 68ec148c-181f-4656-8334-8f4eb148689d |

| subnetpool_id | 3771c0e7-7096-46d3-a3bd-699c58e70259 |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| updated_at | 2016-03-17T23:17:16 |

+-------------------+---+

48 Configuration

Networking Guide (Release Version: 15.0.0)

Note: The IP address allocation pool starting at .11 improves clarity of the diagrams. You can safely
omit it.

3. Create the self-service networks.

$ openstack network create selfservice1

Created a new network:

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2016-12-21T08:49:38Z |

| description | |

| headers | |

| id | 9d842606-ef3d-4160-9ed9-e03fa63aed96 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | selfservice1 |

| port_security_enabled | True |

| project_id | c961a8f6d3654657885226378ade8220 |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 106 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-21T08:49:38Z |

+---------------------------+--------------------------------------+

$ openstack network create selfservice2

Created a new network:

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2016-12-21T08:50:05Z |

| description | |

| headers | |

| id | f85639e1-d23f-438e-b2b1-f40570d86b1c |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | selfservice2 |

| port_security_enabled | True |

| project_id | c961a8f6d3654657885226378ade8220 |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 21 |

Configuration 49

Networking Guide (Release Version: 15.0.0)

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-21T08:50:05Z |

+---------------------------+--------------------------------------+

$ openstack network create selfservice3

Created a new network:

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2016-12-21T08:50:35Z |

| description | |

| headers | |

| id | eeccdb82-5cf4-4999-8ab3-e7dc99e7d43b |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | selfservice3 |

| port_security_enabled | True |

| project_id | c961a8f6d3654657885226378ade8220 |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 86 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2016-12-21T08:50:35Z |

+---------------------------+--------------------------------------+

4. Create a subnet on the first two self-service networks using an IP address range from the self-service
subnet pool.

$ neutron subnet-create --name selfservice1 --subnetpool selfservice \

--prefixlen 24 selfservice1

Created a new subnet:

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | {"start": "10.0.1.2", "end": "10.0.1.254"} |

| cidr | 10.0.1.0/24 |

| created_at | 2016-03-17T23:20:20 |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 10.0.1.1 |

| host_routes | |

| id | 8edd3dc2-df40-4d71-816e-a4586d61c809 |

50 Configuration

Networking Guide (Release Version: 15.0.0)

| ip_version | 4 |

| ipv6_address_mode | |

| ipv6_ra_mode | |

| name | selfservice1 |

| network_id | be79de1e-5f56-11e6-9dfb-233e41cec48c |

| subnetpool_id | c7e9737a-cfd3-45b5-a861-d1cee1135a92 |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| updated_at | 2016-03-17T23:20:20 |

+-------------------+--+

$ neutron subnet-create --name selfservice2 --subnetpool selfservice \

--prefixlen 24 selfservice2

Created a new subnet:

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | {"start": "10.0.2.2", "end": "10.0.2.254"} |

| cidr | 10.0.2.0/24 |

| created_at | 2016-03-17T23:20:20 |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 10.0.2.1 |

| host_routes | |

| id | 8edd3dc2-df40-4d71-816e-a4586d61c809 |

| ip_version | 4 |

| ipv6_address_mode | |

| ipv6_ra_mode | |

| name | selfservice2 |

| network_id | c1fd9846-5f56-11e6-a8ac-0f998d9cc0a2 |

| subnetpool_id | c7e9737a-cfd3-45b5-a861-d1cee1135a92 |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| updated_at | 2016-03-17T23:20:20 |

+-------------------+--+

5. Create a subnet on the last self-service network using an IP address range outside of the address scope.

$ neutron subnet-create --name subnet3 selfservice3 10.0.3.0/24

Created a new subnet:

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | {"start": "10.0.3.2", "end": "10.0.3.254"} |

| cidr | 10.0.3.0/24 |

| created_at | 2016-03-17T23:20:20 |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 10.0.3.1 |

| host_routes | |

| id | cd9f9156-5f59-11e6-aeec-172ec7ee939a |

| ip_version | 4 |

| ipv6_address_mode | |

| ipv6_ra_mode | |

| name | selfservice3 |

| network_id | c283dc1c-5f56-11e6-bfb6-efc30e1eb73b |

| subnetpool_id | |

Configuration 51

Networking Guide (Release Version: 15.0.0)

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| updated_at | 2016-03-17T23:20:20 |

+-------------------+--+

Create and configure the routers

1. Create the routers.

$ openstack router create router1

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-10T13:15:19Z |

| description | |

| distributed | False |

| external_gateway_info | null |

| flavor_id | None |

| ha | False |

| headers | |

| id | 3f6f4ef8-63be-11e6-bbb3-2fbcef363ab8 |

| name | router1 |

| project_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| revision_number | 1 |

| routes | |

| status | ACTIVE |

| updated_at | 2017-01-10T13:15:19Z |

+-------------------------+--------------------------------------+

$ openstack router create router2

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-10T13:15:19Z |

| description | |

| distributed | False |

| external_gateway_info | null |

| flavor_id | None |

| ha | False |

| headers | |

| id | 3fd21a60-63be-11e6-9c95-5714c208c499 |

| name | router2 |

| project_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| revision_number | 1 |

| routes | |

| status | ACTIVE |

| updated_at | 2017-01-10T13:15:19Z |

+-------------------------+--------------------------------------+

$ openstack router create router3

52 Configuration

Networking Guide (Release Version: 15.0.0)

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-10T13:15:19Z |

| description | |

| distributed | False |

| external_gateway_info | null |

| flavor_id | None |

| ha | False |

| headers | |

| id | 40069a4c-63be-11e6-9ecc-e37c1eaa7e84 |

| name | router3 |

| project_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

| revision_number | 1 |

| routes | |

| status | ACTIVE |

| updated_at | 2017-01-10T13:15:19Z |

+-------------------------+--------------------------------------+

2. For each router, add one self-service subnet as an interface on the router.

$ neutron router-interface-add router1 selfservice1

Added interface 90e3880a-5f5c-11e6-914c-9f3e20c8c151 to router router1.

$ neutron router-interface-add router2 selfservice2

Added interface 91628362-5f5c-11e6-826a-7322fb03a821 to router router2.

$ neutron router-interface-add router3 selfservice3

Added interface 91d51044-5f5c-11e6-bf55-ffd180541cc2 to router router3.

3. Add the provider network as a gateway on each router.

$ neutron router-gateway-set router1 provider

Set gateway for router router1

$ neutron router-gateway-set router2 provider

Set gateway for router router2

$ neutron router-gateway-set router3 provider

Set gateway for router router3

Create and configure the BGP speaker

The BGP speaker advertises the next-hop IP address for eligible self-service networks and floating IP addresses
for instances using those networks.

1. Create the BGP speaker.

$ neutron bgp-speaker-create --ip-version 4 \

--local-as LOCAL_AS bgpspeaker

Created a new bgp_speaker:

+-----------------------------------+--------------------------------------+

Configuration 53

Networking Guide (Release Version: 15.0.0)

| Field | Value |

+-----------------------------------+--------------------------------------+

| advertise_floating_ip_host_routes | True |

| advertise_tenant_networks | True |

| id | 5f227f14-4f46-4eca-9524-fc5a1eabc358 |

| ip_version | 4 |

| local_as | 1234 |

| name | bgpspeaker |

| networks | |

| peers | |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

+-----------------------------------+--------------------------------------+

Replace LOCAL_AS with an appropriate local autonomous system number. The example configuration
uses AS 1234.

2. A BGP speaker requires association with a provider network to determine eligible prefixes. The associ-
ation builds a list of all virtual routers with gateways on provider and self-service networks in the same
address scope so the BGP speaker can advertise self-service network prefixes with the corresponding
router as the next-hop IP address. Associate the BGP speaker with the provider network.

$ neutron bgp-speaker-network-add bgpspeaker provider

Added network provider to BGP speaker bgpspeaker.

3. Verify association of the provider network with the BGP speaker.

$ neutron bgp-speaker-show bgpspeaker

+-----------------------------------+--------------------------------------+

| Field | Value |

+-----------------------------------+--------------------------------------+

| advertise_floating_ip_host_routes | True |

| advertise_tenant_networks | True |

| id | 5f227f14-4f46-4eca-9524-fc5a1eabc358 |

| ip_version | 4 |

| local_as | 1234 |

| name | bgpspeaker |

| networks | 68ec148c-181f-4656-8334-8f4eb148689d |

| peers | |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

+-----------------------------------+--------------------------------------+

4. Verify the prefixes and next-hop IP addresses that the BGP speaker advertises.

$ neutron bgp-speaker-advertiseroute-list bgpspeaker

+-------------+--------------+

| destination | next_hop |

+-------------+--------------+

| 10.0.1.0/24 | 203.0.113.11 |

| 10.0.2.0/24 | 203.0.113.12 |

+-------------+--------------+

5. Create a BGP peer.

$ neutron bgp-peer-create --peer-ip 192.0.2.1 \

--remote-as REMOTE_AS bgppeer

Created a new bgp_peer:

+-----------+--------------------------------------+

54 Configuration

Networking Guide (Release Version: 15.0.0)

| Field | Value |

+-----------+--------------------------------------+

| auth_type | none |

| id | 35c89ca0-ac5a-4298-a815-0b073c2362e9 |

| name | bgppeer |

| peer_ip | 192.0.2.1 |

| remote_as | 4321 |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

+-----------+--------------------------------------+

Replace REMOTE_ASwith an appropriate remote autonomous system number. The example configuration
uses AS 4321 which triggers EBGP peering.

Note: The host containing the BGP agent must have layer-3 connectivity to the provider router.

6. Add a BGP peer to the BGP speaker.

$ neutron bgp-speaker-peer-add bgpspeaker bgppeer

Added BGP peer bgppeer to BGP speaker bgpspeaker.

7. Verify addition of the BGP peer to the BGP speaker.

$ neutron bgp-speaker-show bgpspeaker

+-----------------------------------+--------------------------------------+

| Field | Value |

+-----------------------------------+--------------------------------------+

| advertise_floating_ip_host_routes | True |

| advertise_tenant_networks | True |

| id | 5f227f14-4f46-4eca-9524-fc5a1eabc358 |

| ip_version | 4 |

| local_as | 1234 |

| name | bgpspeaker |

| networks | 68ec148c-181f-4656-8334-8f4eb148689d |

| peers | 35c89ca0-ac5a-4298-a815-0b073c2362e9 |

| tenant_id | b3ac05ef10bf441fbf4aa17f16ae1e6d |

+-----------------------------------+--------------------------------------+

Note: After creating a peering session, you cannot change the local or remote autonomous system
numbers.

Schedule the BGP speaker to an agent

1. Unlike most agents, BGP speakers require manual scheduling to an agent. BGP speakers only form
peering sessions and begin prefix advertisement after scheduling to an agent. Schedule the BGP speaker
to agent 37729181-2224-48d8-89ef-16eca8e2f77e.

$ neutron bgp-dragent-speaker-add 37729181-2224-48d8-89ef-16eca8e2f77e bgpspeaker

Associated BGP speaker bgpspeaker to the Dynamic Routing agent.

2. Verify scheduling of the BGP speaker to the agent.

Configuration 55

Networking Guide (Release Version: 15.0.0)

$ neutron bgp-dragent-list-hosting-speaker bgpspeaker

+--------------------------------------+------------+----------------+-------+

| id | host | admin_state_up | alive |

+--------------------------------------+------------+----------------+-------+

| 37729181-2224-48d8-89ef-16eca8e2f77e | controller | True | :-) |

+--------------------------------------+------------+----------------+-------+

$ neutron bgp-speaker-list-on-dragent 37729181-2224-48d8-89ef-16eca8e2f77e

+--------------------------------------+------------+----------+------------+

| id | name | local_as | ip_version |

+--------------------------------------+------------+----------+------------+

| 5f227f14-4f46-4eca-9524-fc5a1eabc358 | bgpspeaker | 1234 | 4 |

+--------------------------------------+------------+----------+------------+

Prefix advertisement

BGP dynamic routing advertises prefixes for self-service networks and host routes for floating IP addresses.

Advertisement of a self-service network requires satisfying the following conditions:

• The external and self-service network reside in the same address scope.

• The router contains an interface on the self-service subnet and a gateway on the external network.

• The BGP speaker associates with the external network that provides a gateway on the router.

• The BGP speaker has the advertise_tenant_networks attribute set to True.

56 Configuration

Networking Guide (Release Version: 15.0.0)

Advertisement of a floating IP address requires satisfying the following conditions:

• The router with the floating IP address binding contains a gateway on an external network with the BGP
speaker association.

• The BGP speaker has the advertise_floating_ip_host_routes attribute set to True.

Configuration 57

Networking Guide (Release Version: 15.0.0)

Operation with Distributed Virtual Routers (DVR)

In deployments using DVR, the BGP speaker advertises floating IP addresses and self-service networks differ-
ently. For floating IP addresses, the BGP speaker advertises the floating IP agent gateway on the corresponding
compute node as the next-hop IP address. For self-service networks using SNAT, the BGP speaker advertises
the DVR SNAT node as the next-hop IP address.

For example, consider the following components:

1. A provider network using IP address range 203.0.113.0/24, and supporting floating IP addresses
203.0.113.101, 203.0.113.102, and 203.0.113.103.

2. A self-service network using IP address range 10.0.1.0/24.

3. The SNAT gateway resides on 203.0.113.11.

4. The floating IP agent gateways (one per compute node) reside on 203.0.113.12, 203.0.113.13, and
203.0.113.14.

5. Three instances, one per compute node, each with a floating IP address.

$ neutron bgp-speaker-advertiseroute-list bgpspeaker

+------------------+--------------+

| destination | next_hop |

58 Configuration

Networking Guide (Release Version: 15.0.0)

+------------------+--------------+

| 10.0.1.0/24 | 203.0.113.11 |

| 203.0.113.101/32 | 203.0.113.12 |

| 203.0.113.102/32 | 203.0.113.13 |

| 203.0.113.103/32 | 203.0.113.14 |

+------------------+--------------+

Note: DVR lacks support for routing directly to a fixed IP address via the floating IP agent gateway port and
thus prevents the BGP speaker from advertising fixed IP addresses.

You can also identify floating IP agent gateways in your environment to assist with verifying operation of the
BGP speaker.

$ neutron port-list --device_owner="network:floatingip_agent_gateway"

+--------------------------------------+------+-------------------+-------------------------

↪→---+

| id | name | mac_address | fixed_ips �

↪→ |

+--------------------------------------+------+-------------------+-------------------------

↪→---+

| 87cf2970-4970-462e-939e-00e808295dfa | | fa:16:3e:7c:68:e3 | {"subnet_id": "8ed65d41-

↪→2b2a-4f3a-9f92-45adb266e01a", "ip_address": "203.0.113.12"} |

| 8d218440-0d2e-49d0-8a7b-3266a6146dc1 | | fa:16:3e:9d:78:cf | {"subnet_id": "8ed65d41-

↪→2b2a-4f3a-9f92-45adb266e01a", "ip_address": "203.0.113.13"} |

| 87cf2970-4970-462e-939e-00e802281dfa | | fa:16:3e:6b:18:e0 | {"subnet_id": "8ed65d41-

↪→2b2a-4f3a-9f92-45adb266e01a", "ip_address": "203.0.113.14"} |

+--------------------------------------+------+-------------------+-------------------------

↪→---+

IPv6

BGP dynamic routing supports peering via IPv6 and advertising IPv6 prefixes.

• To enable peering via IPv6, create a BGP peer and use an IPv6 address for peer_ip.

• To enable advertising IPv6 prefixes, create an address scope with ip_version=6 and a BGP speaker
with ip_version=6.

Note: DVR with IPv6 functions similarly to DVR with IPv4.

High availability

BGP dynamic routing supports scheduling a BGP speaker to multiple agents which effectively multiplies prefix
advertisements to the same peer. If an agent fails, the peer continues to receive advertisements from one or more
operational agents.

1. Show available dynamic routing agents.

$ neutron agent-list --agent-type="BGP dynamic routing agent"

+--------------------------------------+---------------------------+----------+-------

↪→------------+-------+----------------+---------------------------+

Configuration 59

Networking Guide (Release Version: 15.0.0)

| id | agent_type | host |�

↪→availability_zone | alive | admin_state_up | binary |

+--------------------------------------+---------------------------+----------+-------

↪→------------+-------+----------------+---------------------------+

| 37729181-2224-48d8-89ef-16eca8e2f77e | BGP dynamic routing agent | bgp-ha1 | �

↪→ | :-) | True | neutron-bgp-dragent |

| 1a2d33bb-9321-30a2-76ab-22eff3d2f56a | BGP dynamic routing agent | bgp-ha2 | �

↪→ | :-) | True | neutron-bgp-dragent |

+--------------------------------------+---------------------------+----------+-------

↪→------------+-------+----------------+---------------------------+

2. Schedule BGP speaker to multiple agents.

$ neutron bgp-dragent-speaker-add 37729181-2224-48d8-89ef-16eca8e2f77e bgpspeaker

Associated BGP speaker bgpspeaker to the Dynamic Routing agent.

$ neutron bgp-dragent-speaker-add 1a2d33bb-9321-30a2-76ab-22eff3d2f56a bgpspeaker

Associated BGP speaker bgpspeaker to the Dynamic Routing agent.

$ neutron bgp-dragent-list-hosting-speaker bgpspeaker

+--------------------------------------+---------+----------------+-------+

| id | host | admin_state_up | alive |

+--------------------------------------+---------+----------------+-------+

| 37729181-2224-48d8-89ef-16eca8e2f77e | bgp-ha1 | True | :-) |

| 1a2d33bb-9321-30a2-76ab-22eff3d2f56a | bgp-ha2 | True | :-) |

+--------------------------------------+---------+----------------+-------+

$ neutron bgp-speaker-list-on-dragent 37729181-2224-48d8-89ef-16eca8e2f77e

+--------------------------------------+------------+----------+------------+

| id | name | local_as | ip_version |

+--------------------------------------+------------+----------+------------+

| 5f227f14-4f46-4eca-9524-fc5a1eabc358 | bgpspeaker | 1234 | 4 |

+--------------------------------------+------------+----------+------------+

$ neutron bgp-speaker-list-on-dragent 1a2d33bb-9321-30a2-76ab-22eff3d2f56a

+--------------------------------------+------------+----------+------------+

| id | name | local_as | ip_version |

+--------------------------------------+------------+----------+------------+

| 5f227f14-4f46-4eca-9524-fc5a1eabc358 | bgpspeaker | 1234 | 4 |

+--------------------------------------+------------+----------+------------+

High-availability for DHCP

This section describes how to use the agent management (alias agent) and scheduler (alias agent_scheduler)
extensions for DHCP agents scalability and HA.

Note: Use the neutron ext-list client command to check if these extensions are enabled. Check agent
and agent_scheduler are included in the output.

$ openstack extension list --network -c Name -c Alias

+---+---------------------------+

| Name | Alias |

+---+---------------------------+

| Default Subnetpools | default-subnetpools |

60 Configuration

Networking Guide (Release Version: 15.0.0)

| Network IP Availability | network-ip-availability |

| Network Availability Zone | network_availability_zone |

| Auto Allocated Topology Services | auto-allocated-topology |

| Neutron L3 Configurable external gateway mode | ext-gw-mode |

| Port Binding | binding |

| Neutron Metering | metering |

| agent | agent |

| Subnet Allocation | subnet_allocation |

| L3 Agent Scheduler | l3_agent_scheduler |

| Tag support | tag |

| Neutron external network | external-net |

| Neutron Service Flavors | flavors |

| Network MTU | net-mtu |

| Availability Zone | availability_zone |

| Quota management support | quotas |

| HA Router extension | l3-ha |

| Provider Network | provider |

| Multi Provider Network | multi-provider |

| Address scope | address-scope |

| Neutron Extra Route | extraroute |

| Subnet service types | subnet-service-types |

| Resource timestamps | standard-attr-timestamp |

| Neutron Service Type Management | service-type |

| Router Flavor Extension | l3-flavors |

| Tag support for resources: subnet, subnetpool, port, router | tag-ext |

| Neutron Extra DHCP opts | extra_dhcp_opt |

| Resource revision numbers | standard-attr-revisions |

| Pagination support | pagination |

| Sorting support | sorting |

| security-group | security-group |

| DHCP Agent Scheduler | dhcp_agent_scheduler |

| Router Availability Zone | router_availability_zone |

| RBAC Policies | rbac-policies |

| standard-attr-description | standard-attr-description |

| Neutron L3 Router | router |

| Allowed Address Pairs | allowed-address-pairs |

| project_id field enabled | project-id |

| Distributed Virtual Router | dvr |

+---+---------------------------+

Configuration 61

Networking Guide (Release Version: 15.0.0)

Demo setup

There will be three hosts in the setup.

Host Description

OpenStack
controller host -
controlnode

Runs the Networking, Identity, and Compute services that are required to deploy
VMs. The node must have at least one network interface that is connected to the
Management Network. Note that nova-network should not be running because it
is replaced by Neutron.

HostA Runs nova-compute, the Neutron L2 agent and DHCP agent
HostB Same as HostA

Configuration

controlnode: neutron server

1. Neutron configuration file /etc/neutron/neutron.conf:

[DEFAULT]

core_plugin = linuxbridge

rabbit_host = controlnode

allow_overlapping_ips = True

host = controlnode

agent_down_time = 5

dhcp_agents_per_network = 1

62 Configuration

Networking Guide (Release Version: 15.0.0)

Note: In the above configuration, we use dhcp_agents_per_network = 1 for this demonstration.
In usual deployments, we suggest setting dhcp_agents_per_network to more than one to match the
number of DHCP agents in your deployment. See Enabling DHCP high availability by default.

2. Update the plug-in configuration file /etc/neutron/plugins/linuxbridge/linuxbridge_conf.
ini:

[vlans]

tenant_network_type = vlan

network_vlan_ranges = physnet1:1000:2999

[database]

connection = mysql://root:root@127.0.0.1:3306/neutron_linux_bridge

retry_interval = 2

[linux_bridge]

physical_interface_mappings = physnet1:eth0

HostA and HostB: L2 agent

1. Neutron configuration file /etc/neutron/neutron.conf:

[DEFAULT]

rabbit_host = controlnode

rabbit_password = openstack

host = HostB on hostb

host = HostA

2. Update the plug-in configuration file /etc/neutron/plugins/linuxbridge/linuxbridge_conf.
ini:

[vlans]

tenant_network_type = vlan

network_vlan_ranges = physnet1:1000:2999

[database]

connection = mysql://root:root@127.0.0.1:3306/neutron_linux_bridge

retry_interval = 2

[linux_bridge]

physical_interface_mappings = physnet1:eth0

3. Update the nova configuration file /etc/nova/nova.conf:

[DEFAULT]

use_neutron=True

firewall_driver=nova.virt.firewall.NoopFirewallDriver

[neutron]

admin_username=neutron

admin_password=servicepassword

admin_auth_url=http://controlnode:35357/v2.0/

auth_strategy=keystone

admin_tenant_name=servicetenant

url=http://203.0.113.10:9696/

HostA and HostB: DHCP agent

• Update the DHCP configuration file /etc/neutron/dhcp_agent.ini:

Configuration 63

Networking Guide (Release Version: 15.0.0)

[DEFAULT]

interface_driver = neutron.agent.linux.interface.BridgeInterfaceDriver

Prerequisites for demonstration

Admin role is required to use the agent management and scheduler extensions. Ensure you run the following
commands under a project with an admin role.

To experiment, you need VMs and a neutron network:

$ openstack server list

+--------------------------------------+-----------+--------+----------------+------------+

| ID | Name | Status | Networks | Image Name |

+--------------------------------------+-----------+--------+----------------+------------+

| c394fcd0-0baa-43ae-a793-201815c3e8ce | myserver1 | ACTIVE | net1=192.0.2.3 | cirros |

| 2d604e05-9a6c-4ddb-9082-8a1fbdcc797d | myserver2 | ACTIVE | net1=192.0.2.4 | ubuntu |

| c7c0481c-3db8-4d7a-a948-60ce8211d585 | myserver3 | ACTIVE | net1=192.0.2.5 | centos |

+--------------------------------------+-----------+--------+----------------+------------+

$ openstack network list

+--------------------------------------+------+--------------------------------------+

| ID | Name | Subnets |

+--------------------------------------+------+--------------------------------------+

| 89dca1c6-c7d4-4f7a-b730-549af0fb6e34 | net1 | f6c832e3-9968-46fd-8e45-d5cf646db9d1 |

+--------------------------------------+------+--------------------------------------+

Managing agents in neutron deployment

1. List all agents:

$ openstack network agent list

+--------------------------------------+--------------------+-------+-----------------

↪→--+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+-------+-----------------

↪→--+-------+-------+---------------------------+

| 22467163-01ea-4231-ba45-3bd316f425e6 | Linux bridge agent | HostA | None �

↪→ | True | UP | neutron-metering-agent |

| 2444c54d-0d28-460c-ab0f-cd1e6b5d3c7b | DHCP agent | HostA | None �

↪→ | True | UP | neutron-openvswitch-agent |

| 3066d20c-9f8f-440c-ae7c-a40ffb4256b6 | Linux bridge agent | HostB | nova �

↪→ | True | UP | neutron-l3-agent |

| 55569f4e-6f31-41a6-be9d-526efce1f7fe | DHCP agent | HostB | nova �

↪→ | True | UP | neutron-l3-agent |

+--------------------------------------+--------------------+-------+-----------------

↪→--+-------+-------+---------------------------+

Every agent that supports these extensions will register itself with the neutron server when it starts up.

The output shows information for four agents. The alive field shows :-) if the agent reported its state
within the period defined by the agent_down_time option in the neutron.conf file. Otherwise the
alive is xxx.

64 Configuration

Networking Guide (Release Version: 15.0.0)

2. List DHCP agents that host a specified network:

$ neutron dhcp-agent-list-hosting-net net1

+--------------------------------------+-------+----------------+-------+

| id | host | admin_state_up | alive |

+--------------------------------------+-------+----------------+-------+

| a0c1c21c-d4f4-4577-9ec7-908f2d48622d | HostA | True | :-) |

+--------------------------------------+-------+----------------+-------+

3. List the networks hosted by a given DHCP agent:

This command is to show which networks a given dhcp agent is managing.

$ neutron net-list-on-dhcp-agent a0c1c21c-d4f4-4577-9ec7-908f2d48622d

+--------------------------------------+------+---------------------------------------

↪→------------+

| id | name | subnets �

↪→ |

+--------------------------------------+------+---------------------------------------

↪→------------+

| 89dca1c6-c7d4-4f7a-b730-549af0fb6e34 | net1 | f6c832e3-9968-46fd-8e45-d5cf646db9d1�

↪→192.0.2.0/24 |

+--------------------------------------+------+---------------------------------------

↪→------------+

4. Show agent details.

The openstack network agent show command shows details for a specified agent:

$ openstack network agent show 22467163-01ea-4231-ba45-3bd316f425e6

+---------------------+---

↪→----------+

| Field | Value �

↪→ |

+---------------------+---

↪→----------+

| admin_state_up | UP �

↪→ |

| agent_type | Metering agent �

↪→ |

| alive | False �

↪→ |

| availability_zone | None �

↪→ |

| binary | neutron-metering-agent �

↪→ |

| configurations | measure_interval='30', metering_driver='neutron.services.

↪→metering.drive |

| | rs.noop.noop_driver.NoopMeteringDriver', report_interval='300

↪→' |

| created_at | 2016-10-08 15:17:14 �

↪→ |

| description | None �

↪→ |

| heartbeat_timestamp | 2016-10-24 13:53:35 �

↪→ |

| host | HostA �

↪→ |

Configuration 65

Networking Guide (Release Version: 15.0.0)

| id | 22467163-01ea-4231-ba45-3bd316f425e6 �

↪→ |

| started_at | 2016-10-08 15:17:14 �

↪→ |

| topic | dhcp_agent �

↪→ |

+---------------------+---

↪→----------+

In this output, heartbeat_timestamp is the time on the neutron server. You do not need to synchronize
all agents to this time for this extension to run correctly. configurations describes the static configu-
ration for the agent or run time data. This agent is a DHCP agent and it hosts one network, one subnet,
and three ports.

Different types of agents show different details. The following output shows information for a Linux
bridge agent:

$ openstack network agent show 22467163-01ea-4231-ba45-3bd316f425e6

+---------------------+---

↪→----------+

| Field | Value �

↪→ |

+---------------------+---

↪→----------+

| admin_state_up | UP �

↪→ |

| agent_type | Metering agent �

↪→ |

| alive | False �

↪→ |

| availability_zone | None �

↪→ |

| binary | neutron-linuxbridge-agent �

↪→ |

| configurations | measure_interval='30', metering_driver='neutron.services.

↪→metering.drive |

| | rs.noop.noop_driver.NoopMeteringDriver', report_interval='300

↪→' |

| created_at | 2016-10-08 15:17:14 �

↪→ |

| description | None �

↪→ |

| heartbeat_timestamp | 2016-10-24 13:53:35 �

↪→ |

| host | HostB �

↪→ |

| id | 22467163-01ea-4231-ba45-3bd316f425e6 �

↪→ |

| started_at | 2016-10-08 15:17:14 �

↪→ |

| topic | dhcp_agent �

↪→ |

+---------------------+---

↪→----------+

The output shows bridge-mapping and the number of virtual network devices on this L2 agent.

66 Configuration

Networking Guide (Release Version: 15.0.0)

Managing assignment of networks to DHCP agent

A single network can be assigned to more than one DHCP agents and one DHCP agent can host more than one
network. You can add a network to a DHCP agent and remove one from it.

1. Default scheduling.

When you create a network with one port, the network will be scheduled to an active DHCP agent. If
many active DHCP agents are running, select one randomly. You can design more sophisticated schedul-
ing algorithms in the same way as nova-schedule later on.

$ neutron net-create net2

$ neutron subnet-create net2 198.51.100.0/24 --name subnet2

$ neutron port-create net2

$ openstack network agent list --agent-type dhcp --host qiaomin-free

+--------------------------------------+------------+-------+-------------------+-----

↪→--+-------+--------------------+

| ID | Agent Type | Host | Availability Zone |�

↪→Alive | State | Binary |

+--------------------------------------+------------+-------+-------------------+-----

↪→--+-------+--------------------+

| e838ef5c-75b1-4b12-84da-7bdbd62f1040 | DHCP agent | HostA | nova |�

↪→True | UP | neutron-dhcp-agent |

+--------------------------------------+------------+-------+-------------------+-----

↪→--+-------+--------------------+

It is allocated to DHCP agent on HostA. If you want to validate the behavior through the dnsmasq

command, you must create a subnet for the network because the DHCP agent starts the dnsmasq service
only if there is a DHCP.

2. Assign a network to a given DHCP agent.

To add another DHCP agent to host the network, run this command:

$ neutron dhcp-agent-network-add f28aa126-6edb-4ea5-a81e-8850876bc0a8 net2

Added network net2 to dhcp agent

$ openstack network agent list --agent-type dhcp --host qiaomin-free

+--------------------------------------+------------+-------+-------------------+-----

↪→--+-------+--------------------+

| ID | Agent Type | Host | Availability Zone |�

↪→Alive | State | Binary |

+--------------------------------------+------------+-------+-------------------+-----

↪→--+-------+--------------------+

| e838ef5c-75b1-4b12-84da-7bdbd62f1040 | DHCP agent | HostA | nova |�

↪→True | UP | neutron-dhcp-agent |

| f28aa126-6edb-4ea5-a81e-8850876bc0a8 | DHCP agent | HostB | nova |�

↪→True | UP | neutron-dhcp-agent |

+--------------------------------------+------------+-------+-------------------+-----

↪→--+-------+--------------------+

Both DHCP agents host the net2 network.

3. Remove a network from a specified DHCP agent.

This command is the sibling command for the previous one. Remove net2 from the DHCP agent for
HostA:

Configuration 67

Networking Guide (Release Version: 15.0.0)

$ neutron dhcp-agent-network-remove a0c1c21c-d4f4-4577-9ec7-908f2d48622d \

net2

Removed network net2 to dhcp agent

$ neutron dhcp-agent-list-hosting-net net2

+--------------------------------------+-------+----------------+-------+

| id | host | admin_state_up | alive |

+--------------------------------------+-------+----------------+-------+

| f28aa126-6edb-4ea5-a81e-8850876bc0a8 | HostB | True | :-) |

+--------------------------------------+-------+----------------+-------+

You can see that only the DHCP agent for HostB is hosting the net2 network.

HA of DHCP agents

Boot a VM on net2. Let both DHCP agents host net2. Fail the agents in turn to see if the VM can still get the
desired IP.

1. Boot a VM on net2:

$ openstack network list

+--------------------------------------+------+--------------------------------------+

| ID | Name | Subnets |

+--------------------------------------+------+--------------------------------------+

| 89dca1c6-c7d4-4f7a-b730-549af0fb6e34 | net1 | f6c832e3-9968-46fd-8e45-d5cf646db9d1 |

| 9b96b14f-71b8-4918-90aa-c5d705606b1a | net2 | 6979b71a-0ae8-448c-aa87-65f68eedcaaa |

+--------------------------------------+------+--------------------------------------+

$ openstack server create --image tty --flavor 1 myserver4 \

--nic net-id=9b96b14f-71b8-4918-90aa-c5d705606b1a

...

$ openstack server list

+--------------------------------------+-----------+--------+-------------------+-----

↪→-------+

| ID | Name | Status | Networks |�

↪→Image Name |

+--------------------------------------+-----------+--------+-------------------+-----

↪→-------+

| c394fcd0-0baa-43ae-a793-201815c3e8ce | myserver1 | ACTIVE | net1=192.0.2.3 |�

↪→cirros |

| 2d604e05-9a6c-4ddb-9082-8a1fbdcc797d | myserver2 | ACTIVE | net1=192.0.2.4 |�

↪→ubuntu |

| c7c0481c-3db8-4d7a-a948-60ce8211d585 | myserver3 | ACTIVE | net1=192.0.2.5 |�

↪→centos |

| f62f4731-5591-46b1-9d74-f0c901de567f | myserver4 | ACTIVE | net2=198.51.100.2 |�

↪→cirros1 |

+--------------------------------------+-----------+--------+-------------------+-----

↪→-------+

2. Make sure both DHCP agents hosting net2:

Use the previous commands to assign the network to agents.

$ neutron dhcp-agent-list-hosting-net net2

+--------------------------------------+-------+----------------+-------+

| id | host | admin_state_up | alive |

+--------------------------------------+-------+----------------+-------+

| a0c1c21c-d4f4-4577-9ec7-908f2d48622d | HostA | True | :-) |

68 Configuration

Networking Guide (Release Version: 15.0.0)

| f28aa126-6edb-4ea5-a81e-8850876bc0a8 | HostB | True | :-) |

+--------------------------------------+-------+----------------+-------+

To test the HA of DHCP agent:

1. Log in to the myserver4 VM, and run udhcpc, dhclient or other DHCP client.

2. Stop the DHCP agent on HostA. Besides stopping the neutron-dhcp-agent binary, you must stop the
dnsmasq processes.

3. Run a DHCP client in VM to see if it can get the wanted IP.

4. Stop the DHCP agent on HostB too.

5. Run udhcpc in the VM; it cannot get the wanted IP.

6. Start DHCP agent on HostB. The VM gets the wanted IP again.

Disabling and removing an agent

An administrator might want to disable an agent if a system hardware or software upgrade is planned. Some
agents that support scheduling also support disabling and enabling agents, such as L3 and DHCP agents. After
the agent is disabled, the scheduler does not schedule new resources to the agent.

After the agent is disabled, you can safely remove the agent. Even after disabling the agent, resources on the
agent are kept assigned. Ensure you remove the resources on the agent before you delete the agent.

Disable the DHCP agent on HostA before you stop it:

$ neutron agent-update a0c1c21c-d4f4-4577-9ec7-908f2d48622d --admin-state-up False

$ neutron agent-list

$ openstack network agent list

+--------------------------------------+--------------------+-------+-------------------+---

↪→----+-------+---------------------------+

| ID | Agent Type | Host | Availability Zone |�

↪→Alive | State | Binary |

+--------------------------------------+--------------------+-------+-------------------+---

↪→----+-------+---------------------------+

| 22467163-01ea-4231-ba45-3bd316f425e6 | Linux bridge agent | HostA | None |�

↪→True | UP | neutron-metering-agent |

| 2444c54d-0d28-460c-ab0f-cd1e6b5d3c7b | DHCP agent | HostA | None |�

↪→True | UP | neutron-openvswitch-agent |

| 3066d20c-9f8f-440c-ae7c-a40ffb4256b6 | Linux bridge agent | HostB | nova |�

↪→True | UP | neutron-l3-agent |

| 55569f4e-6f31-41a6-be9d-526efce1f7fe | DHCP agent | HostB | nova |�

↪→True | UP | neutron-l3-agent |

+--------------------------------------+--------------------+-------+-------------------+---

↪→----+-------+---------------------------+

After you stop the DHCP agent on HostA, you can delete it by the following command:

$ openstack network agent delete 2444c54d-0d28-460c-ab0f-cd1e6b5d3c7b

$ openstack network agent list

+--------------------------------------+--------------------+-------+-------------------+---

↪→----+-------+---------------------------+

| ID | Agent Type | Host | Availability Zone |�

↪→Alive | State | Binary |

+--------------------------------------+--------------------+-------+-------------------+---

↪→----+-------+---------------------------+

Configuration 69

Networking Guide (Release Version: 15.0.0)

| 22467163-01ea-4231-ba45-3bd316f425e6 | Linux bridge agent | HostA | None |�

↪→True | UP | neutron-metering-agent |

| 3066d20c-9f8f-440c-ae7c-a40ffb4256b6 | Linux bridge agent | HostB | nova |�

↪→True | UP | neutron-l3-agent |

| 55569f4e-6f31-41a6-be9d-526efce1f7fe | DHCP agent | HostB | nova |�

↪→True | UP | neutron-l3-agent |

+--------------------------------------+--------------------+-------+-------------------+---

↪→----+-------+---------------------------+

After deletion, if you restart the DHCP agent, it appears on the agent list again.

Enabling DHCP high availability by default

You can control the default number of DHCP agents assigned to a network by setting the following configuration
option in the file /etc/neutron/neutron.conf.

dhcp_agents_per_network = 3

DNS integration

This page serves as a guide for how to use the DNS integration functionality of the Networking service. The
functionality described covers DNS from two points of view:

• The internal DNS functionality offered by the Networking service and its interaction with the Compute
service.

• Integration of the Compute service and the Networking service with an external DNSaaS (DNS-as-a-
Service).

Users can control the behavior of the Networking service in regards to DNS using two attributes associated
with ports, networks, and floating IPs. The following table shows the attributes available for each one of these
resources:

Resource dns_name dns_domain

Ports Yes No
Networks No Yes
Floating IPs Yes Yes

The Networking service internal DNS resolution

The Networking service enables users to control the name assigned to ports by the internal DNS. To enable this
functionality, do the following:

1. Edit the /etc/neutron/neutron.conf file and assign a value different to openstacklocal (its default
value) to the dns_domain parameter in the [default] section. As an example:

dns_domain = example.org.

2. Add dns to extension_drivers in the [ml2] section of /etc/neutron/plugins/ml2/ml2_conf.
ini. The following is an example:

70 Configuration

Networking Guide (Release Version: 15.0.0)

[ml2]

extension_drivers = port_security,dns

After re-starting the neutron-server, users will be able to assign a dns_name attribute to their ports.

Note: The enablement of this functionality is prerequisite for the enablement of the Networking service inte-
gration with an external DNS service, which is described in detail in Configuring OpenStack Networking for
integration with an external DNS service.

The following illustrates the creation of a port with my-port in its dns_name attribute.

Note: The name assigned to the port by the Networking service internal DNS is now visible in the response
in the dns_assignment attribute.

$ neutron port-create my-net --dns_name my-port

Created a new port:

+-----------------------+---

↪→----------------+

| Field | Value �

↪→ |

+-----------------------+---

↪→----------------+

| admin_state_up | True �

↪→ |

| allowed_address_pairs | �

↪→ |

| binding:vnic_type | normal �

↪→ |

| device_id | �

↪→ |

| device_owner | �

↪→ |

| dns_assignment | {"hostname": "my-port", "ip_address": "10.0.1.3", "fqdn": "my-

↪→port.example.org."} |

| dns_name | my-port �

↪→ |

| fixed_ips | {"subnet_id":"6141b474-56cd-430f-b731-71660bb79b79", "ip_address

↪→": "10.0.1.3"} |

| id | fb3c10f4-017e-420c-9be1-8f8c557ae21f �

↪→ |

| mac_address | fa:16:3e:aa:9b:e1 �

↪→ |

| name | �

↪→ |

| network_id | bf2802a0-99a0-4e8c-91e4-107d03f158ea �

↪→ |

| port_security_enabled | True �

↪→ |

| security_groups | 1f0ddd73-7e3c-48bd-a64c-7ded4fe0e635 �

↪→ |

| status | DOWN �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

Configuration 71

Networking Guide (Release Version: 15.0.0)

+-----------------------+---

↪→----------------+

When this functionality is enabled, it is leveraged by the Compute service when creating instances. When
allocating ports for an instance during boot, the Compute service populates the dns_name attributes of these
ports with the hostname attribute of the instance, which is a DNS sanitized version of its display name. As
a consequence, at the end of the boot process, the allocated ports will be known in the dnsmasq associated to
their networks by their instance hostname.

The following is an example of an instance creation, showing how its hostname populates the dns_name

attribute of the allocated port:

$ openstack server create --image cirros --flavor 42 \

--nic net-id=37aaff3a-6047-45ac-bf4f-a825e56fd2b3 my_vm

+--------------------------------------+--

↪→------------+

| Field | Value �

↪→ |

+--------------------------------------+--

↪→------------+

| OS-DCF:diskConfig | MANUAL �

↪→ |

| OS-EXT-AZ:availability_zone | �

↪→ |

| OS-EXT-STS:power_state | 0 �

↪→ |

| OS-EXT-STS:task_state | scheduling �

↪→ |

| OS-EXT-STS:vm_state | building �

↪→ |

| OS-SRV-USG:launched_at | - �

↪→ |

| OS-SRV-USG:terminated_at | - �

↪→ |

| accessIPv4 | �

↪→ |

| accessIPv6 | �

↪→ |

| adminPass | dB45Zvo8Jpfe �

↪→ |

| config_drive | �

↪→ |

| created | 2016-02-05T21:35:04Z �

↪→ |

| flavor | m1.nano (42) �

↪→ |

| hostId | �

↪→ |

| id | 66c13cb4-3002-4ab3-8400-7efc2659c363 �

↪→ |

| image | cirros-0.3.5-x86_64-uec(b9d981eb-d21c-4ce2-9dbc-

↪→dd38f3d9015f) |

| key_name | - �

↪→ |

| locked | False �

↪→ |

| metadata | {} �

↪→ |

72 Configuration

Networking Guide (Release Version: 15.0.0)

| name | my_vm �

↪→ |

| os-extended-volumes:volumes_attached | [] �

↪→ |

| progress | 0 �

↪→ |

| security_groups | default �

↪→ |

| status | BUILD �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

| updated | 2016-02-05T21:35:04Z �

↪→ |

| user_id | 8bb6e578cba24e7db9d3810633124525 �

↪→ |

+--------------------------------------+--

↪→------------+

$ neutron port-list --device_id 66c13cb4-3002-4ab3-8400-7efc2659c363

+--------------------------------------+------+-------------------+-------------------------

↪→--+

| id | name | mac_address | fixed_ips �

↪→ |

+--------------------------------------+------+-------------------+-------------------------

↪→--+

| b3ecc464-1263-44a7-8c38-2d8a52751773 | | fa:16:3e:a8:ce:b8 | {"subnet_id": "277eca5d-

↪→9869-474b-960e-6da5951d09f7", "ip_address": "172.24.5.8"} |

| | | | {"subnet_id": "eab47748-

↪→3f0a-4775-a09f-b0c24bb64bc4", "ip_address":"2001:db8:10::8"} |

+--------------------------------------+------+-------------------+-------------------------

↪→--+

$ neutron port-show b3ecc464-1263-44a7-8c38-2d8a52751773

+-----------------------+---

↪→--------------------+

| Field | Value �

↪→ |

+-----------------------+---

↪→--------------------+

| admin_state_up | True �

↪→ |

| allowed_address_pairs | �

↪→ |

| binding:vnic_type | normal �

↪→ |

| device_id | 66c13cb4-3002-4ab3-8400-7efc2659c363 �

↪→ |

| device_owner | compute:None �

↪→ |

| dns_assignment | {"hostname": "my-vm", "ip_address": "172.24.5.8", "fqdn": "my-vm.

↪→example.org."} |

| | {"hostname": "my-vm", "ip_address": "2001:db8:10::8", "fqdn": "my-

↪→vm.example.org."} |

| dns_name | my-vm �

↪→ |

| extra_dhcp_opts | �

↪→ |

Configuration 73

Networking Guide (Release Version: 15.0.0)

| fixed_ips | {"subnet_id": "277eca5d-9869-474b-960e-6da5951d09f7", "ip_address

↪→": "172.24.5.8"} |

| | {"subnet_id": "eab47748-3f0a-4775-a09f-b0c24bb64bc4", "ip_address

↪→": "2001:db8:10::8"} |

| id | b3ecc464-1263-44a7-8c38-2d8a52751773 �

↪→ |

| mac_address | fa:16:3e:a8:ce:b8 �

↪→ |

| name | �

↪→ |

| network_id | 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 �

↪→ |

| port_security_enabled | True �

↪→ |

| security_groups | 1f0ddd73-7e3c-48bd-a64c-7ded4fe0e635 �

↪→ |

| status | ACTIVE �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

+-----------------------+---

↪→--------------------+

In the above example notice that:

• The name given to the instance by the user, my_vm, is sanitized by the Compute service and becomes
my-vm as the port’s dns_name.

• The port’s dns_assignment attribute shows that its FQDN is my-vm.example.org. in the Networking
service internal DNS, which is the result of concatenating the port’s dns_namewith the value configured
in the dns_domain parameter in neutron.conf, as explained previously.

• The dns_assignment attribute also shows that the port’s hostname in the Networking service internal
DNS is my-vm.

• Instead of having the Compute service create the port for the instance, the user might have created it and
assigned a value to its dns_name attribute. In this case, the value assigned to the dns_name attribute
must be equal to the value that Compute service will assign to the instance’s hostname, in this example
my-vm. Otherwise, the instance boot will fail.

Integration with an external DNS service

Users can also integrate the Networking and Compute services with an external DNS. To accomplish this, the
users have to:

1. Enable the functionality described in The Networking service internal DNS resolution.

2. Configure an external DNS driver. The Networking service provides a driver reference implementation
based on the OpenStack DNS service. It is expected that third party vendors will provide other imple-
mentations in the future. For detailed configuration instructions, seeConfiguring OpenStack Networking
for integration with an external DNS service.

Once the neutron-server has been configured and restarted, users will have functionality that covers three
use cases, described in the following sections. In each of the use cases described below:

• The examples assume the OpenStack DNS service as the external DNS.

74 Configuration

Networking Guide (Release Version: 15.0.0)

• A, AAAA and PTR records will be created in the DNS service.

• Before executing any of the use cases, the user must create in the DNS service under his project a DNS
zone where the A and AAAA records will be created. For the description of the use cases below, it is
assumed the zone example.org. was created previously.

• The PTR records will be created in zones owned by a project with admin privileges. See Configuring
OpenStack Networking for integration with an external DNS service for more details.

Use case 1: Ports are published directly in the external DNS service

In this case, the user is creating ports or booting instances on a network that is accessible externally. The steps
to publish the port in the external DNS service are the following:

1. Assign a valid domain name to the network’s dns_domain attribute. This name must end with a period
(.).

2. Boot an instance specifying the externally accessible network. Alternatively, create a port on the exter-
nally accessible network specifying a valid value to its dns_name attribute. If the port is going to be used
for an instance boot, the value assigned to dns_name must be equal to the hostname that the Compute
service will assign to the instance. Otherwise, the boot will fail.

Once these steps are executed, the port’s DNS data will be published in the external DNS service. This is an
example:

$ neutron net-list

+--------------------------------------+----------+---

↪→-----------------+

| id | name | subnets �

↪→ |

+--------------------------------------+----------+---

↪→-----------------+

| 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a | public | a67cfdf7-9d5d-406f-8a19-3f38e4fc3e74 �

↪→ |

| | | cbd8c6dc-ca81-457e-9c5d-f8ece7ef67f8 �

↪→ |

| 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 | external | 277eca5d-9869-474b-960e-6da5951d09f7�

↪→172.24.5.0/24 |

| | | eab47748-3f0a-4775-a09f-b0c24bb64bc4�

↪→2001:db8:10::/64 |

| bf2802a0-99a0-4e8c-91e4-107d03f158ea | my-net | 6141b474-56cd-430f-b731-71660bb79b79 10.

↪→0.1.0/24 |

| 38c5e950-b450-4c30-83d4-ee181c28aad3 | private | 43414c53-62ae-49bc-aa6c-c9dd7705818a�

↪→fda4:653e:71b0::/64 |

| | | 5b9282a1-0be1-4ade-b478-7868ad2a16ff 10.

↪→0.0.0/24 |

+--------------------------------------+----------+---

↪→-----------------+

$ neutron net-update 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 --dns_domain example.org.

Updated network: 37aaff3a-6047-45ac-bf4f-a825e56fd2b3

$ neutron net-show 37aaff3a-6047-45ac-bf4f-a825e56fd2b3

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | True |

Configuration 75

Networking Guide (Release Version: 15.0.0)

| availability_zone_hints | |

| availability_zones | nova |

| dns_domain | example.org. |

| id | 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 |

| mtu | 1450 |

| name | external |

| port_security_enabled | True |

| provider:network_type | vlan |

| provider:physical_network | |

| provider:segmentation_id | 2016 |

| router:external | False |

| shared | True |

| status | ACTIVE |

| subnets | eab47748-3f0a-4775-a09f-b0c24bb64bc4 |

| | 277eca5d-9869-474b-960e-6da5951d09f7 |

| tenant_id | 04fc2f83966245dba907efb783f8eab9 |

+---------------------------+--------------------------------------+

$ designate record-list example.org.

+--------------------------------------+------+--------------+------------------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------+------------------------------

↪→---+

| 10a36008-6ecf-47c3-b321-05652a929b04 | SOA | example.org. | ns1.devstack.org. malavall.

↪→us.ibm.com. 1454729414 3600 600 86400 3600 |

| 56ca0b88-e343-4c98-8faa-19746e169baf | NS | example.org. | ns1.devstack.org. �

↪→ |

+--------------------------------------+------+--------------+------------------------------

↪→---+

$ neutron port-create 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 --dns_name my-vm

Created a new port:

+-----------------------+---

↪→--------------------+

| Field | Value �

↪→ |

+-----------------------+---

↪→--------------------+

| admin_state_up | True �

↪→ |

| allowed_address_pairs | �

↪→ |

| binding:vnic_type | normal �

↪→ |

| device_id | �

↪→ |

| device_owner | �

↪→ |

| dns_assignment | {"hostname": "my-vm", "ip_address": "172.24.5.9", "fqdn": "my-vm.

↪→example.org."} |

| | {"hostname": "my-vm", "ip_address": "2001:db8:10::9", "fqdn": "my-

↪→vm.example.org."} |

| dns_name | my-vm �

↪→ |

| fixed_ips | {"subnet_id": "277eca5d-9869-474b-960e-6da5951d09f7", "ip_address

↪→": "172.24.5.9"} |

76 Configuration

Networking Guide (Release Version: 15.0.0)

| | {"subnet_id": "eab47748-3f0a-4775-a09f-b0c24bb64bc4", "ip_address

↪→": "2001:db8:10::9"} |

| id | 04be331b-dc5e-410a-9103-9c8983aeb186 �

↪→ |

| mac_address | fa:16:3e:0f:4b:e4 �

↪→ |

| name | �

↪→ |

| network_id | 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 �

↪→ |

| port_security_enabled | True �

↪→ |

| security_groups | 1f0ddd73-7e3c-48bd-a64c-7ded4fe0e635 �

↪→ |

| status | DOWN �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

+-----------------------+---

↪→--------------------+

$ designate record-list example.org.

+--------------------------------------+------+--------------------+------------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------------+------------------------

↪→---+

| 10a36008-6ecf-47c3-b321-05652a929b04 | SOA | example.org. | ns1.devstack.org.�

↪→malavall.us.ibm.com. 1455563035 3600 600 86400 3600 |

| 56ca0b88-e343-4c98-8faa-19746e169baf | NS | example.org. | ns1.devstack.org. �

↪→ |

| 3593591b-181f-4beb-9ab7-67fad7413b37 | A | my-vm.example.org. | 172.24.5.9 �

↪→ |

| 5649c68f-7a88-48f5-9f87-ccb1f6ae67ca | AAAA | my-vm.example.org. | 2001:db8:10::9 �

↪→ |

+--------------------------------------+------+--------------------+------------------------

↪→---+

$ openstack server create --image cirros --flavor 42 \

--nic port-id=04be331b-dc5e-410a-9103-9c8983aeb186 my_vm

+--------------------------------------+--

↪→------------+

| Field | Value �

↪→ |

+--------------------------------------+--

↪→------------+

| OS-DCF:diskConfig | MANUAL �

↪→ |

| OS-EXT-AZ:availability_zone | �

↪→ |

| OS-EXT-STS:power_state | 0 �

↪→ |

| OS-EXT-STS:task_state | scheduling �

↪→ |

| OS-EXT-STS:vm_state | building �

↪→ |

Configuration 77

Networking Guide (Release Version: 15.0.0)

| OS-SRV-USG:launched_at | - �

↪→ |

| OS-SRV-USG:terminated_at | - �

↪→ |

| accessIPv4 | �

↪→ |

| accessIPv6 | �

↪→ |

| adminPass | TDc9EpBT3B9W �

↪→ |

| config_drive | �

↪→ |

| created | 2016-02-15T19:10:43Z �

↪→ |

| flavor | m1.nano (42) �

↪→ |

| hostId | �

↪→ |

| id | 62c19691-d1c7-4d7b-a88e-9cc4d95d4f41 �

↪→ |

| image | cirros-0.3.5-x86_64-uec (b9d981eb-d21c-4ce2-9dbc-

↪→dd38f3d9015f) |

| key_name | - �

↪→ |

| locked | False �

↪→ |

| metadata | {} �

↪→ |

| name | my_vm �

↪→ |

| os-extended-volumes:volumes_attached | [] �

↪→ |

| progress | 0 �

↪→ |

| security_groups | default �

↪→ |

| status | BUILD �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

| updated | 2016-02-15T19:10:43Z �

↪→ |

| user_id | 8bb6e578cba24e7db9d3810633124525 �

↪→ |

+--------------------------------------+--

↪→------------+

$ openstack server list

+--------------------------------------+-------+--------+------------+-------------+--------

↪→-----------------------------+------------+

| ID | Name | Status | Task State | Power State |�

↪→Networks | Image Name |

+--------------------------------------+-------+--------+------------+-------------+--------

↪→-----------------------------+------------+

| 62c19691-d1c7-4d7b-a88e-9cc4d95d4f41 | my_vm | ACTIVE | - | Running |�

↪→external=172.24.5.9, 2001:db8:10::9 | cirros |

+--------------------------------------+-------+--------+------------+-------------+--------

↪→-----------------------------+------------+

78 Configuration

Networking Guide (Release Version: 15.0.0)

In this example the port is created manually by the user and then used to boot an instance. Notice that:

• The port’s data was visible in the DNS service as soon as it was created.

• See Performance considerations for an explanation of the potential performance impact associated with
this use case.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4_ptr_zone_prefix_size is 24. In the case of IPv6, the value of ipv6_ptr_zone_prefix_size is 116. For more
details, see Configuring OpenStack Networking for integration with an external DNS service:

$ designate record-list 5.24.172.in-addr.arpa.

+--------------------------------------+------+--------------------------+------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------------------+------------------

↪→---+

| ab7ada72-7e64-4bed-913e-04718a80fafc | NS | 5.24.172.in-addr.arpa. | ns1.devstack.org.

↪→ |

| 28346a94-790c-4ae1-9f7b-069d98d9efbd | SOA | 5.24.172.in-addr.arpa. | ns1.devstack.org.

↪→ admin.example.org. 1455563035 3600 600 86400 3600 |

| cfcaf537-844a-4c1b-9b5f-464ff07dca33 | PTR | 9.5.24.172.in-addr.arpa. | my-vm.example.

↪→org. |

+--------------------------------------+------+--------------------------+------------------

↪→---+

$ designate record-list 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.b.d.0.1.0.0.2.ip6.arpa.

+--------------------------------------+------+---

↪→------------------------------+---

↪→----------+

| id | type | name �

↪→ | data �

↪→ |

+--------------------------------------+------+---

↪→------------------------------+---

↪→----------+

| d8923354-13eb-4bd9-914a-0a2ae5f95989 | SOA | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.

↪→b.d.0.1.0.0.2.ip6.arpa. | ns1.devstack.org. admin.example.org. 1455563036 3600 600�

↪→86400 3600 |

| 72e60acd-098d-41ea-9771-5b6546c9c06f | NS | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.

↪→b.d.0.1.0.0.2.ip6.arpa. | ns1.devstack.org. �

↪→ |

| 877e0215-2ddf-4d01-a7da-47f1092dfd56 | PTR | 9.0.1.

↪→0.0.8.b.d.0.1.0.0.2.ip6.arpa. | my-vm.example.org. �

↪→ |

+--------------------------------------+------+---

↪→------------------------------+---

↪→----------+

See Configuring OpenStack Networking for integration with an external DNS service for detailed instructions
on how to create the externally accessible network.

Configuration 79

Networking Guide (Release Version: 15.0.0)

Use case 2: Floating IPs are published with associated port DNS attributes

In this use case, the address of a floating IP is published in the external DNS service in conjunction with the
dns_name of its associated port and the dns_domain of the port’s network. The steps to execute in this use
case are the following:

1. Assign a valid domain name to the network’s dns_domain attribute. This name must end with a period
(.).

2. Boot an instance or alternatively, create a port specifying a valid value to its dns_name attribute. If
the port is going to be used for an instance boot, the value assigned to dns_name must be equal to the
hostname that the Compute service will assign to the instance. Otherwise, the boot will fail.

3. Create a floating IP and associate it to the port.

Following is an example of these steps:

$ neutron net-update 38c5e950-b450-4c30-83d4-ee181c28aad3 --dns_domain example.org.

Updated network: 38c5e950-b450-4c30-83d4-ee181c28aad3

$ neutron net-show 38c5e950-b450-4c30-83d4-ee181c28aad3

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | nova |

| dns_domain | example.org. |

| id | 38c5e950-b450-4c30-83d4-ee181c28aad3 |

| mtu | 1450 |

| name | private |

| port_security_enabled | True |

| router:external | False |

| shared | False |

| status | ACTIVE |

| subnets | 43414c53-62ae-49bc-aa6c-c9dd7705818a |

| | 5b9282a1-0be1-4ade-b478-7868ad2a16ff |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 |

+-------------------------+--------------------------------------+

$ openstack server create --image cirros --flavor 42 \

--nic net-id=38c5e950-b450-4c30-83d4-ee181c28aad3 my_vm

+--------------------------------------+--

↪→------------+

| Field | Value �

↪→ |

+--------------------------------------+--

↪→------------+

| OS-DCF:diskConfig | MANUAL �

↪→ |

| OS-EXT-AZ:availability_zone | �

↪→ |

| OS-EXT-STS:power_state | 0 �

↪→ |

| OS-EXT-STS:task_state | scheduling �

↪→ |

| OS-EXT-STS:vm_state | building �

↪→ |

80 Configuration

Networking Guide (Release Version: 15.0.0)

| OS-SRV-USG:launched_at | - �

↪→ |

| OS-SRV-USG:terminated_at | - �

↪→ |

| accessIPv4 | �

↪→ |

| accessIPv6 | �

↪→ |

| adminPass | oTLQLR3Kezmt �

↪→ |

| config_drive | �

↪→ |

| created | 2016-02-15T19:27:34Z �

↪→ |

| flavor | m1.nano (42) �

↪→ |

| hostId | �

↪→ |

| id | 43f328bb-b2d1-4cf1-a36f-3b2593397cb1 �

↪→ |

| image | cirros-0.3.5-x86_64-uec (b9d981eb-d21c-4ce2-9dbc-

↪→dd38f3d9015f) |

| key_name | - �

↪→ |

| locked | False �

↪→ |

| metadata | {} �

↪→ |

| name | my_vm �

↪→ |

| os-extended-volumes:volumes_attached | [] �

↪→ |

| progress | 0 �

↪→ |

| security_groups | default �

↪→ |

| status | BUILD �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

| updated | 2016-02-15T19:27:34Z �

↪→ |

| user_id | 8bb6e578cba24e7db9d3810633124525 �

↪→ |

+--------------------------------------+--

↪→------------+

$ openstack server list

+--------------------------------------+-------+--------+------------+-------------+--------

↪→---+------------+

| ID | Name | Status | Task State | Power State |�

↪→Networks | Image Name |

+--------------------------------------+-------+--------+------------+-------------+--------

↪→---+------------+

| 43f328bb-b2d1-4cf1-a36f-3b2593397cb1 | my_vm | ACTIVE | - | Running |�

↪→private=fda4:653e:71b0:0:f816:3eff:fe16:b5f2, 10.0.0.15 | cirros |

+--------------------------------------+-------+--------+------------+-------------+--------

↪→---+------------+

Configuration 81

Networking Guide (Release Version: 15.0.0)

$ neutron port-list --device_id 43f328bb-b2d1-4cf1-a36f-3b2593397cb1

+--------------------------------------+------+-------------------+-------------------------

↪→--+

| id | name | mac_address | fixed_ips �

↪→ |

+--------------------------------------+------+-------------------+-------------------------

↪→--+

| da0b1f75-c895-460f-9fc1-4d6ec84cf85f | | fa:16:3e:16:b5:f2 | {"subnet_id": "5b9282a1-

↪→0be1-4ade-b478-7868ad2a16ff", "ip_address": "10.0.0.15"} |

| | | | {"subnet_id": "43414c53-

↪→62ae-49bc-aa6c-c9dd7705818a", "ip_address": "fda4:653e:71b0:0:f816:3eff:fe16:b5f2"} |

+--------------------------------------+------+-------------------+-------------------------

↪→--+

$ neutron port-show da0b1f75-c895-460f-9fc1-4d6ec84cf85f

+-----------------------+---

↪→--+

| Field | Value �

↪→ |

+-----------------------+---

↪→--+

| admin_state_up | True �

↪→ |

| allowed_address_pairs | �

↪→ |

| binding:vnic_type | normal �

↪→ |

| device_id | 43f328bb-b2d1-4cf1-a36f-3b2593397cb1 �

↪→ |

| device_owner | compute:None �

↪→ |

| dns_assignment | {"hostname": "my-vm", "ip_address": "10.0.0.15", "fqdn": "my-vm.

↪→example.org."} |

| | {"hostname": "my-vm", "ip_address":

↪→"fda4:653e:71b0:0:f816:3eff:fe16:b5f2", "fqdn": "my-vm.example.org."} |

| dns_name | my-vm �

↪→ |

| extra_dhcp_opts | �

↪→ |

| fixed_ips | {"subnet_id": "5b9282a1-0be1-4ade-b478-7868ad2a16ff", "ip_address

↪→": "10.0.0.15"} |

| | {"subnet_id": "43414c53-62ae-49bc-aa6c-c9dd7705818a", "ip_address

↪→": "fda4:653e:71b0:0:f816:3eff:fe16:b5f2"} |

| id | da0b1f75-c895-460f-9fc1-4d6ec84cf85f �

↪→ |

| mac_address | fa:16:3e:16:b5:f2 �

↪→ |

| name | �

↪→ |

| network_id | 38c5e950-b450-4c30-83d4-ee181c28aad3 �

↪→ |

| port_security_enabled | True �

↪→ |

| security_groups | 1f0ddd73-7e3c-48bd-a64c-7ded4fe0e635 �

↪→ |

| status | ACTIVE �

↪→ |

82 Configuration

Networking Guide (Release Version: 15.0.0)

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

+-----------------------+---

↪→--+

$ designate record-list example.org.

+--------------------------------------+------+--------------+------------------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------+------------------------------

↪→---+

| 10a36008-6ecf-47c3-b321-05652a929b04 | SOA | example.org. | ns1.devstack.org. malavall.

↪→us.ibm.com. 1455563783 3600 600 86400 3600 |

| 56ca0b88-e343-4c98-8faa-19746e169baf | NS | example.org. | ns1.devstack.org. �

↪→ |

+--------------------------------------+------+--------------+------------------------------

↪→---+

$ neutron floatingip-create 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a \

--port_id da0b1f75-c895-460f-9fc1-4d6ec84cf85f

Created a new floatingip:

+---------------------+--------------------------------------+

| Field | Value |

+---------------------+--------------------------------------+

| dns_domain | |

| dns_name | |

| fixed_ip_address | 10.0.0.15 |

| floating_ip_address | 172.24.4.4 |

| floating_network_id | 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a |

| id | e78f6eb1-a35f-4a90-941d-87c888d5fcc7 |

| port_id | da0b1f75-c895-460f-9fc1-4d6ec84cf85f |

| router_id | 970ebe83-c4a3-4642-810e-43ab7b0c2b5f |

| status | DOWN |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 |

+---------------------+--------------------------------------+

$ designate record-list example.org.

+--------------------------------------+------+--------------------+------------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------------+------------------------

↪→---+

| 10a36008-6ecf-47c3-b321-05652a929b04 | SOA | example.org. | ns1.devstack.org.�

↪→malavall.us.ibm.com. 1455564861 3600 600 86400 3600 |

| 56ca0b88-e343-4c98-8faa-19746e169baf | NS | example.org. | ns1.devstack.org. �

↪→ |

| 5ff53fd0-3746-48da-b9c9-77ed3004ec67 | A | my-vm.example.org. | 172.24.4.4 �

↪→ |

+--------------------------------------+------+--------------------+------------------------

↪→---+

In this example, notice that the data is published in the DNS service when the floating IP is associated to the
port.

Following are the PTR records created for this example. Note that for IPv4, the value of

Configuration 83

Networking Guide (Release Version: 15.0.0)

ipv4_ptr_zone_prefix_size is 24. For more details, see Configuring OpenStack Networking for integration
with an external DNS service:

$ designate record-list 4.24.172.in-addr.arpa.

+--------------------------------------+------+--------------------------+------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------------------+------------------

↪→---+

| 2dd0b894-25fa-4563-9d32-9f13bd67f329 | NS | 4.24.172.in-addr.arpa. | ns1.devstack.org.

↪→ |

| 47b920f1-5eff-4dfa-9616-7cb5b7cb7ca6 | SOA | 4.24.172.in-addr.arpa. | ns1.devstack.org.

↪→ admin.example.org. 1455564862 3600 600 86400 3600 |

| fb1edf42-abba-410c-8397-831f45fd0cd7 | PTR | 4.4.24.172.in-addr.arpa. | my-vm.example.

↪→org. |

+--------------------------------------+------+--------------------------+------------------

↪→---+

Use case 3: Floating IPs are published in the external DNS service

In this use case, the user assigns dns_name and dns_domain attributes to a floating IP when it is created. The
floating IP data becomes visible in the external DNS service as soon as it is created. The floating IP can be
associated with a port on creation or later on. The following example shows a user booting an instance and then
creating a floating IP associated to the port allocated for the instance:

$ neutron net-show 38c5e950-b450-4c30-83d4-ee181c28aad3

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | nova |

| dns_domain | example.org. |

| id | 38c5e950-b450-4c30-83d4-ee181c28aad3 |

| mtu | 1450 |

| name | private |

| port_security_enabled | True |

| router:external | False |

| shared | False |

| status | ACTIVE |

| subnets | 43414c53-62ae-49bc-aa6c-c9dd7705818a |

| | 5b9282a1-0be1-4ade-b478-7868ad2a16ff |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 |

+-------------------------+--------------------------------------+

$ openstack server create --image cirros --flavor 42 \

--nic net-id=38c5e950-b450-4c30-83d4-ee181c28aad3 my_vm

+--------------------------------------+--

↪→------------+

| Field | Value �

↪→ |

+--------------------------------------+--

↪→------------+

| OS-DCF:diskConfig | MANUAL �

↪→ |

84 Configuration

Networking Guide (Release Version: 15.0.0)

| OS-EXT-AZ:availability_zone | �

↪→ |

| OS-EXT-STS:power_state | 0 �

↪→ |

| OS-EXT-STS:task_state | scheduling �

↪→ |

| OS-EXT-STS:vm_state | building �

↪→ |

| OS-SRV-USG:launched_at | - �

↪→ |

| OS-SRV-USG:terminated_at | - �

↪→ |

| accessIPv4 | �

↪→ |

| accessIPv6 | �

↪→ |

| adminPass | HLXGznYqXM4J �

↪→ |

| config_drive | �

↪→ |

| created | 2016-02-15T19:42:44Z �

↪→ |

| flavor | m1.nano (42) �

↪→ |

| hostId | �

↪→ |

| id | 71fb4ac8-eed8-4644-8113-0641962bb125 �

↪→ |

| image | cirros-0.3.5-x86_64-uec (b9d981eb-d21c-4ce2-9dbc-

↪→dd38f3d9015f) |

| key_name | - �

↪→ |

| locked | False �

↪→ |

| metadata | {} �

↪→ |

| name | my_vm �

↪→ |

| os-extended-volumes:volumes_attached | [] �

↪→ |

| progress | 0 �

↪→ |

| security_groups | default �

↪→ |

| status | BUILD �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

| updated | 2016-02-15T19:42:44Z �

↪→ |

| user_id | 8bb6e578cba24e7db9d3810633124525 �

↪→ |

+--------------------------------------+--

↪→------------+

$ openstack server list

+--------------------------------------+-------+--------+------------+-------------+--------

↪→---+------------+

Configuration 85

Networking Guide (Release Version: 15.0.0)

| ID | Name | Status | Task State | Power State |�

↪→Networks | Image Name |

+--------------------------------------+-------+--------+------------+-------------+--------

↪→---+------------+

| 71fb4ac8-eed8-4644-8113-0641962bb125 | my_vm | ACTIVE | - | Running |�

↪→private=fda4:653e:71b0:0:f816:3eff:fe24:8614, 10.0.0.16 | cirros |

+--------------------------------------+-------+--------+------------+-------------+--------

↪→---+------------+

$ neutron port-list --device_id 71fb4ac8-eed8-4644-8113-0641962bb125

+--------------------------------------+------+-------------------+-------------------------

↪→--+

| id | name | mac_address | fixed_ips �

↪→ |

+--------------------------------------+------+-------------------+-------------------------

↪→--+

| 1e7033fb-8e9d-458b-89ed-8312cafcfdcb | | fa:16:3e:24:86:14 | {"subnet_id": "5b9282a1-

↪→0be1-4ade-b478-7868ad2a16ff", "ip_address": "10.0.0.16"} |

| | | | {"subnet_id": "43414c53-

↪→62ae-49bc-aa6c-c9dd7705818a", "ip_address": "fda4:653e:71b0:0:f816:3eff:fe24:8614"} |

+--------------------------------------+------+-------------------+-------------------------

↪→--+

$ neutron port-show 1e7033fb-8e9d-458b-89ed-8312cafcfdcb

+-----------------------+---

↪→--+

| Field | Value �

↪→ |

+-----------------------+---

↪→--+

| admin_state_up | True �

↪→ |

| allowed_address_pairs | �

↪→ |

| binding:vnic_type | normal �

↪→ |

| device_id | 71fb4ac8-eed8-4644-8113-0641962bb125 �

↪→ |

| device_owner | compute:None �

↪→ |

| dns_assignment | {"hostname": "my-vm", "ip_address": "10.0.0.16", "fqdn": "my-vm.

↪→example.org."} |

| | {"hostname": "my-vm", "ip_address":

↪→"fda4:653e:71b0:0:f816:3eff:fe24:8614", "fqdn": "my-vm.example.org."} |

| dns_name | my-vm �

↪→ |

| extra_dhcp_opts | �

↪→ |

| fixed_ips | {"subnet_id": "5b9282a1-0be1-4ade-b478-7868ad2a16ff", "ip_address

↪→": "10.0.0.16"} |

| | {"subnet_id": "43414c53-62ae-49bc-aa6c-c9dd7705818a", "ip_address

↪→": "fda4:653e:71b0:0:f816:3eff:fe24:8614"} |

| id | 1e7033fb-8e9d-458b-89ed-8312cafcfdcb �

↪→ |

| mac_address | fa:16:3e:24:86:14 �

↪→ |

| name | �

↪→ |

86 Configuration

Networking Guide (Release Version: 15.0.0)

| network_id | 38c5e950-b450-4c30-83d4-ee181c28aad3 �

↪→ |

| port_security_enabled | True �

↪→ |

| security_groups | 1f0ddd73-7e3c-48bd-a64c-7ded4fe0e635 �

↪→ |

| status | ACTIVE �

↪→ |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 �

↪→ |

+-----------------------+---

↪→--+

$ designate record-list example.org.

+--------------------------------------+------+--------------+------------------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------+------------------------------

↪→---+

| 10a36008-6ecf-47c3-b321-05652a929b04 | SOA | example.org. | ns1.devstack.org. malavall.

↪→us.ibm.com. 1455565110 3600 600 86400 3600 |

| 56ca0b88-e343-4c98-8faa-19746e169baf | NS | example.org. | ns1.devstack.org. �

↪→ |

+--------------------------------------+------+--------------+------------------------------

↪→---+

$ neutron floatingip-create 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a \

--dns_domain example.org. --dns_name my-floatingip

Created a new floatingip:

+---------------------+--------------------------------------+

| Field | Value |

+---------------------+--------------------------------------+

| dns_domain | example.org. |

| dns_name | my-floatingip |

| fixed_ip_address | |

| floating_ip_address | 172.24.4.5 |

| floating_network_id | 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a |

| id | 9f23a9c6-eceb-42eb-9f45-beb58c473728 |

| port_id | |

| router_id | |

| status | DOWN |

| tenant_id | d5660cb1e6934612a01b4fb2fb630725 |

+---------------------+--------------------------------------+

$ designate record-list example.org.

+--------------------------------------+------+----------------------------+----------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+----------------------------+----------------

↪→---+

| 10a36008-6ecf-47c3-b321-05652a929b04 | SOA | example.org. | ns1.devstack.

↪→org. malavall.us.ibm.com. 1455566486 3600 600 86400 3600 |

| 56ca0b88-e343-4c98-8faa-19746e169baf | NS | example.org. | ns1.devstack.

↪→org. |

| 8884c56f-3ef5-446e-ae4d-8053cc8bc2b4 | A | my-floatingip.example.org. | 172.24.4.5 �

↪→ |

Configuration 87

Networking Guide (Release Version: 15.0.0)

+--------------------------------------+------+----------------------------+----------------

↪→---+

Note that in this use case:

• The dns_name and dns_domain attributes of a floating IP must be specified together on creation. They
cannot be assigned to the floating IP separately.

• The dns_name and dns_domain of a floating IP have precedence, for purposes of being published in
the external DNS service, over the dns_name of its associated port and the dns_domain of the port’s
network, whether they are specified or not. Only the dns_name and the dns_domain of the floating IP
are published in the external DNS service.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4_ptr_zone_prefix_size is 24. For more details, see Configuring OpenStack Networking for integration
with an external DNS service:

$ designate record-list 4.24.172.in-addr.arpa.

+--------------------------------------+------+--------------------------+------------------

↪→---+

| id | type | name | data �

↪→ |

+--------------------------------------+------+--------------------------+------------------

↪→---+

| 2dd0b894-25fa-4563-9d32-9f13bd67f329 | NS | 4.24.172.in-addr.arpa. | ns1.devstack.org.

↪→ |

| 47b920f1-5eff-4dfa-9616-7cb5b7cb7ca6 | SOA | 4.24.172.in-addr.arpa. | ns1.devstack.org.

↪→ admin.example.org. 1455566487 3600 600 86400 3600 |

| 589a0171-e77a-4ab6-ba6e-23114f2b9366 | PTR | 5.4.24.172.in-addr.arpa. | my-floatingip.

↪→example.org. |

+--------------------------------------+------+--------------------------+------------------

↪→---+

Performance considerations

Only for Use case 1: Ports are published directly in the external DNS service, if the port binding extension
is enabled in the Networking service, the Compute service will execute one additional port update operation
when allocating the port for the instance during the boot process. This may have a noticeable adverse effect in
the performance of the boot process that must be evaluated before adoption of this use case.

Configuring OpenStack Networking for integration with an external DNS service

The first step to configure the integration with an external DNS service is to enable the functionality described
in The Networking service internal DNS resolution. Once this is done, the user has to take the following steps
and restart neutron-server.

1. Edit the [default] section of /etc/neutron/neutron.conf and specify the external DNS service
driver to be used in parameter external_dns_driver. The valid options are defined in namespace
neutron.services.external_dns_drivers. The following example shows how to set up the driver
for the OpenStack DNS service:

external_dns_driver = designate

88 Configuration

Networking Guide (Release Version: 15.0.0)

2. If the OpenStack DNS service is the target external DNS, the [designate] section of /etc/neutron/
neutron.conf must define the following parameters:

• url: the OpenStack DNS service public endpoint URL.

• allow_reverse_dns_lookup: a boolean value specifying whether to enable or not the creation
of reverse lookup (PTR) records.

• admin_auth_url: the Identity service admin authorization endpoint url. This endpoint will be
used by the Networking service to authenticate as an admin user to create and update reverse lookup
(PTR) zones.

• admin_username: the admin user to be used by the Networking service to create and update
reverse lookup (PTR) zones.

• admin_password: the password of the admin user to be used by Networking service to create and
update reverse lookup (PTR) zones.

• admin_tenant_name: the project of the admin user to be used by the Networking service to create
and update reverse lookup (PTR) zones.

• ipv4_ptr_zone_prefix_size: the size in bits of the prefix for the IPv4 reverse lookup (PTR)
zones.

• ipv6_ptr_zone_prefix_size: the size in bits of the prefix for the IPv6 reverse lookup (PTR)
zones.

• insecure: Disable SSL certificate validation. By default, certificates are validated.

• cafile: Path to a valid Certificate Authority (CA) certificate.

The following is an example:

[designate]

url = http://55.114.111.93:9001/v2

admin_auth_url = http://55.114.111.93:35357/v2.0

admin_username = neutron

admin_password = x5G90074

admin_tenant_name = service

allow_reverse_dns_lookup = True

ipv4_ptr_zone_prefix_size = 24

ipv6_ptr_zone_prefix_size = 116

cafile = /etc/ssl/certs/my_ca_cert

Configuration of the externally accessible network for use case 1

In Use case 1: Ports are published directly in the external DNS service, the externally accessible network must
meet the following requirements:

• The network cannot have attribute router:external set to True.

• The network type can be FLAT, VLAN, GRE, VXLAN or GENEVE.

• For network types VLAN, GRE, VXLAN or GENEVE, the segmentation ID must be outside the ranges
assigned to tenant networks.

Configuration 89

Networking Guide (Release Version: 15.0.0)

Name resolution for instances

The Networking service offers several methods to configure name resolution (DNS) for instances. Most de-
ployments should implement case 1 or 2. Case 3 requires security considerations to prevent leaking internal
DNS information to instances.

Case 1: Each virtual network uses unique DNS resolver(s)

In this case, the DHCP agent offers one or more unique DNS resolvers to instances via DHCP on each virtual
network. You can configure a DNS resolver when creating or updating a subnet. To configure more than one
DNS resolver, use a comma between each value.

• Configure a DNS resolver when creating a subnet.

$ neutron subnet-create --dns-nameserver DNS_RESOLVER

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from the virtual network. For
example:

$ neutron subnet-create --dns-nameserver 8.8.8.8,8.8.4.4

Note: This command requires other options outside the scope of this content.

• Configure a DNS resolver on an existing subnet.

$ neutron subnet-update --dns-nameserver DNS_RESOLVER SUBNET_ID_OR_NAME

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from the virtual network and
SUBNET_ID_OR_NAME with the UUID or name of the subnet. For example, using the selfservice

subnet:

$ neutron subnet-update --dns-nameserver 8.8.8.8,8.8.4.4 selfservice

Case 2: All virtual networks use same DNS resolver(s)

In this case, the DHCP agent offers the same DNS resolver(s) to instances via DHCP on all virtual networks.

• In the dhcp_agent.ini file, configure one or more DNS resolvers. To configure more than one DNS
resolver, use a comma between each value.

[DEFAULT]

dnsmasq_dns_servers = DNS_RESOLVER

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from all virtual networks. For
example:

[DEFAULT]

dnsmasq_dns_servers = 8.8.8.8, 8.8.4.4

90 Configuration

Networking Guide (Release Version: 15.0.0)

Note: You must configure this option for all eligible DHCP agents and restart them to activate the
values.

Case 3: All virtual networks use DNS resolver(s) on the host

In this case, the DHCP agent offers the DNS resolver(s) in the resolv.conf file on the host running the DHCP
agent via DHCP to instances on all virtual networks.

• In the dhcp_agent.ini file, enable advertisement of the DNS resolver(s) on the host.

[DEFAULT]

dnsmasq_local_resolv = True

Note: You must configure this option for all eligible DHCP agents and restart them to activate the
values.

Distributed Virtual Routing with VRRP

Open vSwitch: High availability using DVR supports augmentation using Virtual Router Redundancy Protocol
(VRRP). Using this configuration, virtual routers support both the --distributed and --ha options.

Similar to legacy HA routers, DVR/SNATHA routers provide a quick fail over of the SNAT service to a backup
DVR/SNAT router on an l3-agent running on a different node.

SNAT high availability is implemented in a manner similar to the Linux bridge: High availability using VRRP
and Open vSwitch: High availability using VRRP examples where keepalived uses VRRP to provide quick
failover of SNAT services.

During normal operation, the master router periodically transmits heartbeat packets over a hidden project net-
work that connects all HA routers for a particular project.

If the DVR/SNAT backup router stops receiving these packets, it assumes failure of the master DVR/SNAT
router and promotes itself to master router by configuring IP addresses on the interfaces in the snat namespace.
In environments with more than one backup router, the rules of VRRP are followed to select a newmaster router.

Warning: There is a known bug with keepalived v1.2.15 and earlier which can cause packet loss
when max_l3_agents_per_router is set to 3 or more. Therefore, we recommend that you upgrade to
keepalived v1.2.16 or greater when using this feature.

Note: Experimental feature or incomplete documentation.

Configuration example

The basic deploymentmodel consists of one controller node, two ormore network nodes, andmultiple computes
nodes.

Configuration 91

Networking Guide (Release Version: 15.0.0)

Controller node configuration

1. Add the following to /etc/neutron/neutron.conf:

[DEFAULT]

core_plugin = ml2

service_plugins = router

allow_overlapping_ips = True

router_distributed = True

l3_ha = True

l3_ha_net_cidr = 169.254.192.0/18

max_l3_agents_per_router = 3

When the router_distributed = True flag is configured, routers created by all users are distributed.
Without it, only privileged users can create distributed routers by using --distributed True.

Similarly, when the l3_ha = True flag is configured, routers created by all users default to HA.

It follows that with these two flags set to True in the configuration file, routers created by all users will
default to distributed HA routers (DVR HA).

The same can explicitly be accomplished by a user with administrative credentials setting the flags in the
neutron router-create command:

$ neutron router-create name-of-router --distributed=True --ha=True

Note: The max_l3_agents_per_router determine the number of backup DVR/SNAT routers which will
be instantiated.

2. Add the following to /etc/neutron/plugins/ml2/ml2_conf.ini:

[ml2]

type_drivers = flat,vxlan

tenant_network_types = vxlan

mechanism_drivers = openvswitch,l2population

extension_drivers = port_security

[ml2_type_flat]

flat_networks = external

[ml2_type_vxlan]

vni_ranges = MIN_VXLAN_ID:MAX_VXLAN_ID

Replace MIN_VXLAN_ID and MAX_VXLAN_ID with VXLAN ID minimum and maximum values suitable
for your environment.

Note: The first value in the tenant_network_types option becomes the default project network type
when a regular user creates a network.

92 Configuration

Networking Guide (Release Version: 15.0.0)

Network nodes

1. Configure the Open vSwitch agent. Add the following to /etc/neutron/plugins/ml2/ml2_conf.

ini:

[ovs]

local_ip = TUNNEL_INTERFACE_IP_ADDRESS

bridge_mappings = external:br-ex

[agent]

enable_distributed_routing = True

tunnel_types = vxlan

l2_population = True

Replace TUNNEL_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
project networks.

2. Configure the L3 agent. Add the following to /etc/neutron/l3_agent.ini:

[DEFAULT]

ha_vrrp_auth_password = password

interface_driver = openvswitch

external_network_bridge =

agent_mode = dvr_snat

Note: The external_network_bridge option intentionally contains no value.

Compute nodes

1. Configure the Open vSwitch agent. Add the following to /etc/neutron/plugins/ml2/ml2_conf.

ini:

[ovs]

local_ip = TUNNEL_INTERFACE_IP_ADDRESS

bridge_mappings = external:br-ex

[agent]

enable_distributed_routing = True

tunnel_types = vxlan

l2_population = True

[securitygroup]

firewall_driver = neutron.agent.linux.iptables_firewall.

↪→OVSHybridIptablesFirewallDriver

2. Configure the L3 agent. Add the following to /etc/neutron/l3_agent.ini:

[DEFAULT]

interface_driver = openvswitch

external_network_bridge =

agent_mode = dvr

Configuration 93

Networking Guide (Release Version: 15.0.0)

Replace TUNNEL_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
project networks.

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies con-
nectivity to all available and configured gateway addresses. In the event that connectivity is lost, the master
router is rescheduled to another node.

If all routers lose connectivity simultaneously, the process of selecting a new master router will be repeated in
a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the l3_agent.ini file:

ha_vrrp_health_check_interval = 30

Where ha_vrrp_health_check_interval indicates how often in seconds the health check should run. The
default value is 0, which indicates that the check should not run at all.

Known limitations

• Migrating a router from distributed only, HA only, or legacy to distributed HA is not supported at this
time. The router must be created as distributed HA. The reverse direction is also not supported. You
cannot reconfigure a distributed HA router to be only distributed, only HA, or legacy.

• There are certain scenarios where l2pop and distributed HA routers do not interact in an expected manner.
These situations are the same that affect HA only routers and l2pop.

IPAM configuration

Note: Experimental feature or incomplete documentation.

Starting with the Liberty release, OpenStack Networking includes a pluggable interface for the IP Address
Management (IPAM) function. This interface creates a driver framework for the allocation and de-allocation of
subnets and IP addresses, enabling the integration of alternate IPAM implementations or third-party IP Address
Management systems.

The basics

In Liberty and Mitaka, the IPAM implementation within OpenStack Networking provided a pluggable and
non-pluggable flavor. As of Newton, the non-pluggable flavor is no longer available. Instead, it is completely
replaced with a reference driver implementation of the pluggable framework. All data will be automatically
migrated during the upgrade process, unless you have previously configured a pluggable IPAM driver. In that
case, no migration is necessary.

To configure a driver other than the reference driver, specify it in the neutron.conf file. Do this after the
migration is complete. There is no need to specify any value if you wish to use the reference driver.

94 Configuration

Networking Guide (Release Version: 15.0.0)

ipam_driver = ipam-driver-name

There is no need to specify any value if you wish to use the reference driver, though specifying internal will
explicitly choose the reference driver. The documentation for any alternate drivers will include the value to use
when specifying that driver.

Known limitations

• The driver interface is designed to allow separate drivers for each subnet pool. However, the current
implementation allows only a single IPAM driver system-wide.

• Third-party drivers must provide their own migration mechanisms to convert existing OpenStack instal-
lations to their IPAM.

IPv6

This section describes the following items:

• How to enable dual-stack (IPv4 and IPv6 enabled) instances.

• How those instances receive an IPv6 address.

• How those instances communicate across a router to other subnets or the internet.

• How those instances interact with other OpenStack services.

Enabling a dual-stack network in OpenStack Networking simply requires creating a subnet with the
ip_version field set to 6, then the IPv6 attributes (ipv6_ra_mode and ipv6_address_mode) set. The
ipv6_ra_mode and ipv6_address_mode will be described in detail in the next section. Finally, the subnets
cidr needs to be provided.

This section does not include the following items:

• Single stack IPv6 project networking

• OpenStack control communication between servers and services over an IPv6 network.

• Connection to the OpenStack APIs via an IPv6 transport network

• IPv6 multicast

• IPv6 support in conjunction with any out of tree routers, switches, services or agents whether in physical
or virtual form factors.

Neutron subnets and the IPv6 API attributes

As of Juno, the OpenStack Networking service (neutron) provides two new attributes to the subnet object, which
allows users of the API to configure IPv6 subnets.

There are two IPv6 attributes:

• ipv6_ra_mode

• ipv6_address_mode

These attributes can be set to the following values:

Configuration 95

Networking Guide (Release Version: 15.0.0)

• slaac

• dhcpv6-stateful

• dhcpv6-stateless

The attributes can also be left unset.

IPv6 addressing

The ipv6_address_mode attribute is used to control how addressing is handled by OpenStack. There are
a number of different ways that guest instances can obtain an IPv6 address, and this attribute exposes these
choices to users of the Networking API.

Router advertisements

The ipv6_ra_mode attribute is used to control router advertisements for a subnet.

The IPv6 Protocol uses Internet Control Message Protocol packets (ICMPv6) as a way to distribute information
about networking. ICMPv6 packets with the type flag set to 134 are called “Router Advertisement” packets,
which contain information about the router and the route that can be used by guest instances to send network
traffic.

The ipv6_ra_mode is used to specify if the Networking service should generate Router Advertisement packets
for a subnet.

96 Configuration

Networking Guide (Release Version: 15.0.0)

ipv6_ra_mode and ipv6_address_mode combinations

ipv6 ra

mode

ipv6

address

mode

radvd

A,M,O

External

Router

A,M,O

Description

N/S N/S Off Not
Defined

Backwards compatibility with pre-Juno IPv6 behavior.

N/S slaac Off 1,0,0 Guest instance obtains IPv6 address from non-OpenStack
router using SLAAC.

N/S dhcpv6-
stateful

Off 0,1,1 Not currently implemented in the reference implementation.

N/S dhcpv6-
stateless

Off 1,0,1 Not currently implemented in the reference implementation.

slaac N/S 1,0,0 Off Not currently implemented in the reference implementation.
dhcpv6-
stateful

N/S 0,1,1 Off Not currently implemented in the reference implementation.

dhcpv6-
stateless

N/S 1,0,1 Off Not currently implemented in the reference implementation.

slaac slaac 1,0,0 Off Guest instance obtains IPv6 address from OpenStack managed
radvd using SLAAC.

dhcpv6-
stateful

dhcpv6-
stateful

0,1,1 Off Guest instance obtains IPv6 address from dnsmasq using
DHCPv6 stateful and optional info from dnsmasq using
DHCPv6.

dhcpv6-
stateless

dhcpv6-
stateless

1,0,1 Off Guest instance obtains IPv6 address from OpenStack managed
radvd using SLAAC and optional info from dnsmasq using
DHCPv6.

slaac dhcpv6-
stateful

Invalid combination.

slaac dhcpv6-
stateless

Invalid combination.

dhcpv6-
stateful

slaac Invalid combination.

dhcpv6-
stateful

dhcpv6-
stateless

Invalid combination.

dhcpv6-
stateless

slaac Invalid combination.

dhcpv6-
stateless

dhcpv6-
stateful

Invalid combination.

Project network considerations

Dataplane

Both the Linux bridge and the Open vSwitch dataplane modules support forwarding IPv6 packets amongst the
guests and router ports. Similar to IPv4, there is no special configuration or setup required to enable the data-
plane to properly forward packets from the source to the destination using IPv6. Note that these dataplanes will
forward Link-local Address (LLA) packets between hosts on the same network just fine without any participa-
tion or setup by OpenStack components after the ports are all connected and MAC addresses learned.

Configuration 97

Networking Guide (Release Version: 15.0.0)

Addresses for subnets

There are three methods currently implemented for a subnet to get its cidr in OpenStack:

1. Direct assignment during subnet creation via command line or Horizon

2. Referencing a subnet pool during subnet creation

3. Using a Prefix Delegation (PD) client to request a prefix for a subnet from a PD server

In the future, additional techniques could be used to allocate subnets to projects, for example, use of an external
IPAM module.

Address modes for ports

Note: An external DHCPv6 server in theory could override the full address OpenStack assigns based on the
EUI-64 address, but that would not be wise as it would not be consistent through the system.

IPv6 supports three different addressing schemes for address configuration and for providing optional network
information.

Stateless Address Auto Configuration (SLAAC) Address configuration using Router Advertisement (RA).

DHCPv6-stateless Address configuration using RA and optional information using DHCPv6.

DHCPv6-stateful Address configuration and optional information using DHCPv6.

OpenStack can be setup such that OpenStack Networking directly provides RA, DHCP relay and DHCPv6
address and optional information for their networks or this can be delegated to external routers and ser-
vices based on the drivers that are in use. There are two neutron subnet attributes - ipv6_ra_mode and
ipv6_address_mode – that determine how IPv6 addressing and network information is provided to project
instances:

• ipv6_ra_mode: Determines who sends RA.

• ipv6_address_mode: Determines how instances obtain IPv6 address, default gateway, or optional in-
formation.

For the above two attributes to be effective, enable_dhcp of the subnet object must be set to True.

Using SLAAC for addressing

When using SLAAC, the currently supported combinations for ipv6_ra_mode and ipv6_address_mode are
as follows.

ipv6_ra_mode ipv6_address_modeResult

Not
specified.

SLAAC Addresses are assigned using EUI-64, and an external router will be
used for routing.

SLAAC SLAAC Address are assigned using EUI-64, and OpenStack Networking
provides routing.

Setting ipv6_ra_mode to slaac will result in OpenStack Networking routers being configured to send RA
packets, when they are created. This results in the following values set for the address configuration flags in
the RA messages:

98 Configuration

Networking Guide (Release Version: 15.0.0)

• Auto Configuration Flag = 1

• Managed Configuration Flag = 0

• Other Configuration Flag = 0

New or existing neutron networks that contain a SLAAC enabled IPv6 subnet will result in all neutron ports
attached to the network receiving IPv6 addresses. This is because when RA broadcast messages are sent out on
a neutron network, they are received by all IPv6 capable ports on the network, and each port will then configure
an IPv6 address based on the information contained in the RA packet. In some cases, an IPv6 SLAAC address
will be added to a port, in addition to other IPv4 and IPv6 addresses that the port already has been assigned.

DHCPv6

For DHCPv6, the currently supported combinations are as follows:

ipv6_ra_mode ipv6_address_modeResult

DHCPv6-
stateless

DHCPv6-
stateless

Addresses are assigned through RAs (see SLAAC above) and optional
information is delivered through DHCPv6.

DHCPv6-
stateful

DHCPv6-
stateful

Addresses and optional information are assigned using DHCPv6.

Setting DHCPv6-stateless for ipv6_ra_mode configures the neutron router with radvd agent to send RAs. The
list below captures the values set for the address configuration flags in the RA packet in this scenario. Similarly,
setting DHCPv6-stateless for ipv6_address_mode configures neutron DHCP implementation to provide the
additional network information.

• Auto Configuration Flag = 1

• Managed Configuration Flag = 0

• Other Configuration Flag = 1

Setting DHCPv6-stateful for ipv6_ra_mode configures the neutron router with radvd agent to send RAs. The
list below captures the values set for the address configuration flags in the RA packet in this scenario. Simi-
larly, setting DHCPv6-stateful for ipv6_address_mode configures neutron DHCP implementation to provide
addresses and additional network information through DHCPv6.

• Auto Configuration Flag = 0

• Managed Configuration Flag = 1

• Other Configuration Flag = 1

Router support

The behavior of the neutron router for IPv6 is different than for IPv4 in a few ways.

Internal router ports, that act as default gateway ports for a network, will share a common port for all IPv6
subnets associated with the network. This implies that there will be an IPv6 internal router interface with
multiple IPv6 addresses from each of the IPv6 subnets associated with the network and a separate IPv4 internal
router interface for the IPv4 subnet. On the other hand, external router ports are allowed to have a dual-stack
configuration with both an IPv4 and an IPv6 address assigned to them.

Neutron project networks that are assigned Global Unicast Address (GUA) prefixes and addresses don’t require
NAT on the neutron router external gateway port to access the outside world. As a consequence of the lack of
NAT the external router port doesn’t require a GUA to send and receive to the external networks. This implies

Configuration 99

Networking Guide (Release Version: 15.0.0)

a GUA IPv6 subnet prefix is not necessarily needed for the neutron external network. By default, a IPv6
LLA associated with the external gateway port can be used for routing purposes. To handle this scenario, the
implementation of router-gateway-set API in neutron has been modified so that an IPv6 subnet is not required
for the external network that is associated with the neutron router. The LLA address of the upstream router can
be learned in two ways.

1. In the absence of an upstreamRA support, ipv6_gateway flag can be set with the external router gateway
LLA in the neutron L3 agent configuration file. This also requires that no subnet is associated with that
port.

2. The upstream router can send an RA and the neutron router will automatically learn the next-hop LLA,
provided again that no subnet is assigned and the ipv6_gateway flag is not set.

Effectively the ipv6_gateway flag takes precedence over an RA that is received from the upstream router. If
it is desired to use a GUA next hop that is accomplished by allocating a subnet to the external router port and
assigning the upstream routers GUA address as the gateway for the subnet.

Note: It should be possible for projects to communicate with each other on an isolated network (a network
without a router port) using LLA with little to no participation on the part of OpenStack. The authors of this
section have not proven that to be true for all scenarios.

Note: When using the neutron L3 agent in a configuration where it is auto-configuring an IPv6 address via
SLAAC, and the agent is learning its default IPv6 route from the ICMPv6 Router Advertisement, it may be
necessary to set the net.ipv6.conf.<physical_interface>.accept_ra sysctl to the value 2 in order for
routing to function correctly. For a more detailed description, please see the bug.

Neutron’s Distributed Router feature and IPv6

IPv6 does work when the Distributed Virtual Router functionality is enabled, but all ingress/egress traffic is via
the centralized router (hence, not distributed). More work is required to fully enable this functionality.

Advanced services

VPNaaS

VPNaaS supports IPv6, but support in Kilo and prior releases will have some bugs that may limit how it can
be used. More thorough and complete testing and bug fixing is being done as part of the Liberty release. IPv6-
based VPN-as-a-Service is configured similar to the IPv4 configuration. Either or both the peer_address and
the peer_cidr can specified as an IPv6 address. The choice of addressing modes and router modes described
above should not impact support.

LBaaS

TODO

100 Configuration

https://bugs.launchpad.net/neutron/+bug/1616282

Networking Guide (Release Version: 15.0.0)

FWaaS

FWaaS allows creation of IPv6 based rules.

NAT & Floating IPs

At the current time OpenStack Networking does not provide any facility to support any flavor of NAT with
IPv6. Unlike IPv4 there is no current embedded support for floating IPs with IPv6. It is assumed that the IPv6
addressing amongst the projects is using GUAs with no overlap across the projects.

Security considerations

Configuring interfaces of the guest

OpenStack currently doesn’t support the privacy extensions defined by RFC 4941. The interface identifier and
DUID used must be directly derived from the MAC as described in RFC 2373. The compute hosts must not be
setup to utilize the privacy extensions when generating their interface identifier.

There is no provisions for an IPv6-based metadata service similar to what is provided for IPv4. In the case of
dual stacked guests though it is always possible to use the IPv4 metadata service instead.

Unlike IPv4 the MTU of a given network can be conveyed in the RA messages sent by the router as well as in
the DHCP messages.

OpenStack control & management network considerations

As of the Kilo release, considerable effort has gone in to ensuring the project network can handle dual stack
IPv6 and IPv4 transport across the variety of configurations described above. OpenStack control network can
be run in a dual stack configuration and OpenStack API endpoints can be accessed via an IPv6 network. At this
time, Open vSwitch (OVS) tunnel types - STT, VXLAN, GRE, support both IPv4 and IPv6 endpoints.

Prefix delegation

From the Liberty release onwards, OpenStack Networking supports IPv6 prefix delegation. This section de-
scribes the configuration and workflow steps necessary to use IPv6 prefix delegation to provide automatic
allocation of subnet CIDRs. This allows you as the OpenStack administrator to rely on an external (to the
OpenStack Networking service) DHCPv6 server to manage your project network prefixes.

Note: Prefix delegation became available in the Liberty release, it is not available in the Kilo release. HA and
DVR routers are not currently supported by this feature.

Configuring OpenStack Networking for prefix delegation

To enable prefix delegation, edit the /etc/neutron/neutron.conf file. If you are running OpenStack Lib-
erty, make the following change:

Configuration 101

Networking Guide (Release Version: 15.0.0)

default_ipv6_subnet_pool = prefix_delegation

Otherwise if you are running OpenStack Mitaka, make this change:

ipv6_pd_enabled = True

Note: If you are not using the default dibbler-based driver for prefix delegation, then you also need to set the
driver in /etc/neutron/neutron.conf:

pd_dhcp_driver = <class path to driver>

Drivers other than the default one may require extra configuration, please refer to Extra configuration

This tells OpenStack Networking to use the prefix delegation mechanism for subnet allocation when the user
does not provide a CIDR or subnet pool id when creating a subnet.

Requirements

To use this feature, you need a prefix delegation capable DHCPv6 server that is reachable from your OpenStack
Networking node(s). This could be software running on the OpenStack Networking node(s) or elsewhere, or a
physical router. For the purposes of this guide we are using the open-source DHCPv6 server, Dibbler. Dibbler
is available in many Linux package managers, or from source at tomaszmrugalski/dibbler.

When using the reference implementation of the OpenStack Networking prefix delegation driver, Dibbler must
also be installed on your OpenStack Networking node(s) to serve as a DHCPv6 client. Version 1.0.1 or higher
is required.

This guide assumes that you are running a Dibbler server on the network node where the external network
bridge exists. If you already have a prefix delegation capable DHCPv6 server in place, then you can skip the
following section.

Configuring the Dibbler server

After installing Dibbler, edit the /etc/dibbler/server.conf file:

script "/var/lib/dibbler/pd-server.sh"

iface "br-ex" {

pd-class {

pd-pool 2001:db8:2222::/48

pd-length 64

}

}

The options used in the configuration file above are:

• script Points to a script to be run when a prefix is delegated or released. This is only needed if you
want instances on your subnets to have external network access. More on this below.

• iface The name of the network interface on which to listen for prefix delegation messages.

102 Configuration

https://github.com/tomaszmrugalski/dibbler

Networking Guide (Release Version: 15.0.0)

• pd-pool The larger prefix from which you want your delegated prefixes to come. The example given
is sufficient if you do not need external network access, otherwise a unique globally routable prefix is
necessary.

• pd-length The length that delegated prefixes will be. This must be 64 to work with the current Open-
Stack Networking reference implementation.

To provide external network access to your instances, your Dibbler server also needs to create new routes for
each delegated prefix. This is done using the script file named in the config file above. Edit the /var/lib/
dibbler/pd-server.sh file:

if ["$PREFIX1" != ""]; then

if ["$1" == "add"]; then

sudo ip -6 route add ${PREFIX1}/64 via $REMOTE_ADDR dev $IFACE

fi

if ["$1" == "delete"]; then

sudo ip -6 route del ${PREFIX1}/64 via $REMOTE_ADDR dev $IFACE

fi

fi

The variables used in the script file above are:

• $PREFIX1 The prefix being added/deleted by the Dibbler server.

• $1 The operation being performed.

• $REMOTE_ADDR The IP address of the requesting Dibbler client.

• $IFACE The network interface upon which the request was received.

The above is all you need in this scenario, but more information on installing, configuring, and running Dibbler
is available in the Dibbler user guide, at Dibbler – a portable DHCPv6.

To start your Dibbler server, run:

dibbler-server run

Or to run in headless mode:

dibbler-server start

When using DevStack, it is important to start your server after the stack.sh script has finished to ensure that
the required network interfaces have been created.

User workflow

First, create a network and IPv6 subnet:

$ openstack network create ipv6-pd

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-25T19:26:01Z |

| description | |

Configuration 103

http://klub.com.pl/dhcpv6/doc/dibbler-user.pdf

Networking Guide (Release Version: 15.0.0)

| headers | |

| id | 4b782725-6abe-4a2d-b061-763def1bb029 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | ipv6-pd |

| port_security_enabled | True |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 46 |

| revision_number | 3 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

| updated_at | 2017-01-25T19:26:01Z |

+---------------------------+--------------------------------------+

$ openstack subnet create --ip-version 6 --ipv6-ra-mode slaac \

--ipv6-address-mode slaac --use-default-subnet-pool \

--network ipv6-pd ipv6-pd-1

+------------------------+--------------------------------------+

| Field | Value |

+------------------------+--------------------------------------+

| allocation_pools | ::2-::ffff:ffff:ffff:ffff |

| cidr | ::/64 |

| created_at | 2017-01-25T19:31:53Z |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | ::1 |

| headers | |

| host_routes | |

| id | 1319510d-c92c-4532-bf5d-8bcf3da761a1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | ipv6-pd-1 |

| network_id | 4b782725-6abe-4a2d-b061-763def1bb029 |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| revision_number | 2 |

| service_types | |

| subnetpool_id | prefix_delegation |

| updated_at | 2017-01-25T19:31:53Z |

| use_default_subnetpool | True |

+------------------------+--------------------------------------+

The subnet is initially created with a temporary CIDR before one can be assigned by prefix delegation. Any
number of subnets with this temporary CIDR can exist without raising an overlap error. The subnetpool_id is
automatically set to prefix_delegation.

To trigger the prefix delegation process, create a router interface between this subnet and a router with an active
interface on the external network:

104 Configuration

Networking Guide (Release Version: 15.0.0)

$ openstack router add subnet router1 ipv6-pd-1

The prefix delegation mechanism then sends a request via the external network to your prefix delegation server,
which replies with the delegated prefix. The subnet is then updated with the new prefix, including issuing new
IP addresses to all ports:

$ openstack subnet show ipv6-pd-1

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 2001:db8:2222:6977::2-2001:db8:2222: |

| | 6977:ffff:ffff:ffff:ffff |

| cidr | 2001:db8:2222:6977::/64 |

| created_at | 2017-01-25T19:31:53Z |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 2001:db8:2222:6977::1 |

| host_routes | |

| id | 1319510d-c92c-4532-bf5d-8bcf3da761a1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | ipv6-pd-1 |

| network_id | 4b782725-6abe-4a2d-b061-763def1bb029 |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| revision_number | 4 |

| service_types | |

| subnetpool_id | prefix_delegation |

| updated_at | 2017-01-25T19:35:26Z |

+-------------------+--------------------------------------+

If the prefix delegation server is configured to delegate globally routable prefixes and setup routes, then any
instance with a port on this subnet should now have external network access.

Deleting the router interface causes the subnet to be reverted to the temporary CIDR, and all ports have their
IPs updated. Prefix leases are released and renewed automatically as necessary.

References

The following link provides a great step by step tutorial on setting up IPv6 with OpenStack: Tenant IPV6
deployment in OpenStack Kilo release.

Extra configuration

Neutron dhcpv6_pd_agent

To enable the driver for the dhcpv6_pd_agent, set pd_dhcp_driver to this in /etc/neutron/neutron.conf:

pd_dhcp_driver = neutron_pd_agent

To allow the neutron-pd-agent to communicate with prefix delegation servers, you must set which network
interface to use for external communication. In DevStack the default for this is br-ex:

Configuration 105

http://www.debug-all.com/?p=52
http://www.debug-all.com/?p=52

Networking Guide (Release Version: 15.0.0)

pd_interface = br-ex

Once you have stacked run the command below to start the neutron-pd-agent:

neutron-pd-agent --config-file /etc/neutron/neutron.conf

Load Balancer as a Service (LBaaS)

The Networking service offers a load balancer feature called “LBaaS v2” through the neutron-lbaas service
plug-in.

LBaaS v2 adds the concept of listeners to the LBaaS v1 load balancers. LBaaS v2 allows you to configure
multiple listener ports on a single load balancer IP address.

There are two reference implementations of LBaaS v2. The one is an agent based implementation with
HAProxy. The agents handle the HAProxy configuration and manage the HAProxy daemon. Another LBaaS
v2 implementation, Octavia, has a separate API and separate worker processes that build load balancers within
virtual machines on hypervisors that aremanaged by the Compute service. You do not need an agent for Octavia.

Note: LBaaS v1 was removed in the Newton release. These links provide more details about how LBaaS v1
works and how to configure it:

• Load-Balancer-as-a-Service (LBaaS) overview

• Basic Load-Balancer-as-a-Service operations

Warning: Currently, no migration path exists between v1 and v2 load balancers. If you choose to switch
from v1 to v2, you must recreate all load balancers, pools, and health monitors.

LBaaS v2 Concepts

LBaaS v2 has several new concepts to understand:

106 Configuration

https://docs.openstack.org/developer/octavia/
https://docs.openstack.org/admin-guide/networking-introduction.html#load-balancer-as-a-service-lbaas-overview
https://docs.openstack.org/admin-guide/networking-adv-features.html#basic-load-balancer-as-a-service-operations

Networking Guide (Release Version: 15.0.0)

Load balancer The load balancer occupies a neutron network port and has an IP address assigned from a
subnet.

Listener Load balancers can listen for requests on multiple ports. Each one of those ports is specified by a
listener.

Pool A pool holds a list of members that serve content through the load balancer.

Member Members are servers that serve traffic behind a load balancer. Each member is specified by the IP
address and port that it uses to serve traffic.

Health monitor Members may go offline from time to time and health monitors divert traffic away frommem-
bers that are not responding properly. Health monitors are associated with pools.

LBaaS v2 has multiple implementations via different service plug-ins. The two most common implementations
use either an agent or the Octavia services. Both implementations use the LBaaS v2 API.

Configurations

Configuring LBaaS v2 with an agent

1. Add the LBaaS v2 service plug-in to the service_plugins configuration directive in /etc/neutron/
neutron.conf. The plug-in list is comma-separated:

service_plugins = [existing service plugins],neutron_lbaas.services.loadbalancer.

↪→plugin.LoadBalancerPluginv2

2. Add the LBaaS v2 service provider to the service_provider configuration directive within the
[service_providers] section in /etc/neutron/neutron_lbaas.conf:

service_provider = LOADBALANCERV2:Haproxy:neutron_lbaas.drivers.haproxy.plugin_driver.

↪→HaproxyOnHostPluginDriver:default

Configuration 107

https://developer.openstack.org/api-ref/networking/v2/#lbaas-2-0-stable

Networking Guide (Release Version: 15.0.0)

If you have existing service providers for other networking service plug-ins, such as VPNaaS or FWaaS,
add the service_provider line shown above in the [service_providers] section as a separate line.
These configuration directives are repeatable and are not comma-separated.

3. Select the driver that manages virtual interfaces in /etc/neutron/lbaas_agent.ini:

[DEFAULT]

interface_driver = INTERFACE_DRIVER

Replace INTERFACE_DRIVER with the interface driver that the layer-2 agent in your environment uses.
For example, openvswitch for Open vSwitch or linuxbridge for Linux bridge.

4. Run the neutron-lbaas database migration:

neutron-db-manage --subproject neutron-lbaas upgrade head

5. If you have deployed LBaaS v1, stop the LBaaS v1 agent now. The v1 and v2 agents cannot run
simultaneously.

6. Start the LBaaS v2 agent:

neutron-lbaasv2-agent \

--config-file /etc/neutron/neutron.conf \

--config-file /etc/neutron/lbaas_agent.ini

7. Restart the Network service to activate the new configuration. You are now ready to create load balancers
with the LBaaS v2 agent.

Configuring LBaaS v2 with Octavia

Octavia provides additional capabilities for load balancers, including using a compute driver to build instances
that operate as load balancers. The Hands on Lab - Install and Configure OpenStack Octavia session at the
OpenStack Summit in Tokyo provides an overview of Octavia.

The DevStack documentation offers a simple method to deploy Octavia and test the service with redundant
load balancer instances. If you already have Octavia installed and configured within your environment, you
can configure the Network service to use Octavia:

1. Add the LBaaS v2 service plug-in to the service_plugins configuration directive in /etc/neutron/
neutron.conf. The plug-in list is comma-separated:

service_plugins = [existing service plugins],neutron_lbaas.services.loadbalancer.

↪→plugin.LoadBalancerPluginv2

2. Add the Octavia service provider to the service_provider configuration directive within the
[service_providers] section in /etc/neutron/neutron_lbaas.conf:

service_provider = LOADBALANCERV2:Octavia:neutron_lbaas.drivers.octavia.driver.

↪→OctaviaDriver:default

Ensure that the LBaaS v1 and v2 service providers are removed from the [service_providers] sec-
tion. They are not used with Octavia. Verify that all LBaaS agents are stopped.

3. Restart the Network service to activate the new configuration. You are now ready to create and manage
load balancers with Octavia.

108 Configuration

https://www.openstack.org/summit/tokyo-2015/videos/presentation/rsvp-required-hands-on-lab-install-and-configure-openstack-octavia
https://docs.openstack.org/developer/devstack/guides/devstack-with-lbaas-v2.html

Networking Guide (Release Version: 15.0.0)

Add LBaaS panels to Dashboard

The Dashboard panels for managing LBaaS v2 are available starting with the Mitaka release.

1. Clone the neutron-lbaas-dashboard repository and check out the release branch that matches the installed
version of Dashboard:

$ git clone https://git.openstack.org/openstack/neutron-lbaas-dashboard

$ cd neutron-lbaas-dashboard

$ git checkout OPENSTACK_RELEASE

2. Install the Dashboard panel plug-in:

$ python setup.py install

3. Copy the _1481_project_ng_loadbalancersv2_panel.py file from the
neutron-lbaas-dashboard/enabled directory into the Dashboard openstack_dashboard/

local/enabled directory.

This step ensures that Dashboard can find the plug-in when it enumerates all of its available panels.

4. Enable the plug-in in Dashboard by editing the local_settings.py file and setting enable_lb to True
in the OPENSTACK_NEUTRON_NETWORK dictionary.

5. If Dashboard is configured to compress static files for better performance (usually set through
COMPRESS_OFFLINE in local_settings.py), optimize the static files again:

$./manage.py collectstatic

$./manage.py compress

6. Restart Apache to activate the new panel:

$ sudo service apache2 restart

To find the panel, click on Project in Dashboard, then click the Network drop-down menu and select Load
Balancers.

LBaaS v2 operations

The same neutron commands are used for LBaaS v2 with an agent or with Octavia.

Building an LBaaS v2 load balancer

1. Start by creating a load balancer on a network. In this example, the private network is an isolated
network with two web server instances:

$ neutron lbaas-loadbalancer-create --name test-lb private-subnet

2. You can view the load balancer status and IP address with the neutron lbaas-loadbalancer-show

command:

$ neutron lbaas-loadbalancer-show test-lb

+---------------------+--+

| Field | Value |

Configuration 109

https://git.openstack.org/cgit/openstack/neutron-lbaas-dashboard/

Networking Guide (Release Version: 15.0.0)

+---------------------+--+

| admin_state_up | True |

| description | |

| id | 7780f9dd-e5dd-43a9-af81-0d2d1bd9c386 |

| listeners | {"id": "23442d6a-4d82-40ee-8d08-243750dbc191"} |

| | {"id": "7e0d084d-6d67-47e6-9f77-0115e6cf9ba8"} |

| name | test-lb |

| operating_status | ONLINE |

| provider | haproxy |

| provisioning_status | ACTIVE |

| tenant_id | fbfce4cb346c4f9097a977c54904cafd |

| vip_address | 192.0.2.22 |

| vip_port_id | 9f8f8a75-a731-4a34-b622-864907e1d556 |

| vip_subnet_id | f1e7827d-1bfe-40b6-b8f0-2d9fd946f59b |

+---------------------+--+

3. Update the security group to allow traffic to reach the new load balancer. Create a new security group
along with ingress rules to allow traffic into the new load balancer. The neutron port for the load balancer
is shown as vip_port_id above.

Create a security group and rules to allow TCP port 80, TCP port 443, and all ICMP traffic:

$ neutron security-group-create lbaas

$ neutron security-group-rule-create \

--direction ingress \

--protocol tcp \

--port-range-min 80 \

--port-range-max 80 \

--remote-ip-prefix 0.0.0.0/0 \

lbaas

$ neutron security-group-rule-create \

--direction ingress \

--protocol tcp \

--port-range-min 443 \

--port-range-max 443 \

--remote-ip-prefix 0.0.0.0/0 \

lbaas

$ neutron security-group-rule-create \

--direction ingress \

--protocol icmp \

lbaas

Apply the security group to the load balancer’s network port using vip_port_id from the neutron
lbaas-loadbalancer-show command:

$ neutron port-update \

--security-group lbaas \

9f8f8a75-a731-4a34-b622-864907e1d556

Adding an HTTP listener

1. With the load balancer online, you can add a listener for plaintext HTTP traffic on port 80:

$ neutron lbaas-listener-create \

--name test-lb-http \

110 Configuration

Networking Guide (Release Version: 15.0.0)

--loadbalancer test-lb \

--protocol HTTP \

--protocol-port 80

This load balancer is active and ready to serve traffic on 192.0.2.22.

2. Verify that the load balancer is responding to pings before moving further:

$ ping -c 4 192.0.2.22

PING 192.0.2.22 (192.0.2.22) 56(84) bytes of data.

64 bytes from 192.0.2.22: icmp_seq=1 ttl=62 time=0.410 ms

64 bytes from 192.0.2.22: icmp_seq=2 ttl=62 time=0.407 ms

64 bytes from 192.0.2.22: icmp_seq=3 ttl=62 time=0.396 ms

64 bytes from 192.0.2.22: icmp_seq=4 ttl=62 time=0.397 ms

--- 192.0.2.22 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2997ms

rtt min/avg/max/mdev = 0.396/0.402/0.410/0.020 ms

3. You can begin building a pool and adding members to the pool to serve HTTP content on port 80. For
this example, the web servers are 192.0.2.16 and 192.0.2.17:

$ neutron lbaas-pool-create \

--name test-lb-pool-http \

--lb-algorithm ROUND_ROBIN \

--listener test-lb-http \

--protocol HTTP

$ neutron lbaas-member-create \

--name test-lb-http-member-1 \

--subnet private-subnet \

--address 192.0.2.16 \

--protocol-port 80 \

test-lb-pool-http

$ neutron lbaas-member-create \

--name test-lb-http-member-2 \

--subnet private-subnet \

--address 192.0.2.17 \

--protocol-port 80 \

test-lb-pool-http

4. You can use curl to verify connectivity through the load balancers to your web servers:

$ curl 192.0.2.22

web2

$ curl 192.0.2.22

web1

$ curl 192.0.2.22

web2

$ curl 192.0.2.22

web1

In this example, the load balancer uses the round robin algorithm and the traffic alternates between the
web servers on the backend.

5. You can add a health monitor so that unresponsive servers are removed from the pool:

Configuration 111

Networking Guide (Release Version: 15.0.0)

$ neutron lbaas-healthmonitor-create \

--name test-lb-http-monitor \

--delay 5 \

--max-retries 2 \

--timeout 10 \

--type HTTP \

--pool test-lb-pool-http

In this example, the health monitor removes the server from the pool if it fails a health check at two five-
second intervals. When the server recovers and begins responding to health checks again, it is added to
the pool once again.

Adding an HTTPS listener

You can add another listener on port 443 for HTTPS traffic. LBaaS v2 offers SSL/TLS termination at the load
balancer, but this example takes a simpler approach and allows encrypted connections to terminate at each
member server.

1. Start by creating a listener, attaching a pool, and then adding members:

$ neutron lbaas-listener-create \

--name test-lb-https \

--loadbalancer test-lb \

--protocol HTTPS \

--protocol-port 443

$ neutron lbaas-pool-create \

--name test-lb-pool-https \

--lb-algorithm LEAST_CONNECTIONS \

--listener test-lb-https \

--protocol HTTPS

$ neutron lbaas-member-create \

--name test-lb-https-member-1 \

--subnet private-subnet \

--address 192.0.2.16 \

--protocol-port 443 \

test-lb-pool-https

$ neutron lbaas-member-create \

--name test-lb-https-member-2 \

--subnet private-subnet \

--address 192.0.2.17 \

--protocol-port 443 \

test-lb-pool-https

2. You can also add a health monitor for the HTTPS pool:

$ neutron lbaas-healthmonitor-create \

--name test-lb-https-monitor \

--delay 5 \

--max-retries 2 \

--timeout 10 \

--type HTTPS \

--pool test-lb-pool-https

The load balancer now handles traffic on ports 80 and 443.

112 Configuration

Networking Guide (Release Version: 15.0.0)

Associating a floating IP address

Load balancers that are deployed on a public or provider network that are accessible to external clients do not
need a floating IP address assigned. External clients can directly access the virtual IP address (VIP) of those
load balancers.

However, load balancers deployed onto private or isolated networks need a floating IP address assigned if they
must be accessible to external clients. To complete this step, you must have a router between the private and
public networks and an available floating IP address.

You can use the neutron lbaas-loadbalancer-show command from the beginning of this section to locate
the vip_port_id. The vip_port_id is the ID of the network port that is assigned to the load balancer. You
can associate a free floating IP address to the load balancer using neutron floatingip-associate:

$ neutron floatingip-associate FLOATINGIP_ID LOAD_BALANCER_PORT_ID

Setting quotas for LBaaS v2

Quotas are available for limiting the number of load balancers and load balancer pools. By default, both quotas
are set to 10.

You can adjust quotas using the neutron quota-update command:

$ neutron quota-update --tenant-id TENANT_UUID --loadbalancer 25

$ neutron quota-update --tenant-id TENANT_UUID --pool 50

A setting of -1 disables the quota for a tenant.

Retrieving load balancer statistics

The LBaaS v2 agent collects four types of statistics for each load balancer every six seconds. Users can query
these statistics with the neutron lbaas-loadbalancer-stats command:

$ neutron lbaas-loadbalancer-stats test-lb

+--------------------+----------+

| Field | Value |

+--------------------+----------+

| active_connections | 0 |

| bytes_in | 40264557 |

| bytes_out | 71701666 |

| total_connections | 384601 |

+--------------------+----------+

The active_connections count is the total number of connections that were active at the time the agent
polled the load balancer. The other three statistics are cumulative since the load balancer was last started. For
example, if the load balancer restarts due to a system error or a configuration change, these statistics will be
reset.

Macvtap mechanism driver

The Macvtap mechanism driver for the ML2 plug-in generally increases network performance of instances.

Configuration 113

Networking Guide (Release Version: 15.0.0)

Consider the following attributes of this mechanism driver to determine practicality in your environment:

• Supports only instance ports. Ports for DHCP and layer-3 (routing) services must use another mechanism
driver such as Linux bridge or Open vSwitch (OVS).

• Supports only untagged (flat) and tagged (VLAN) networks.

• Lacks support for security groups including basic (sanity) and anti-spoofing rules.

• Lacks support for layer-3 high-availability mechanisms such as Virtual Router Redundancy Protocol
(VRRP) and Distributed Virtual Routing (DVR).

• Only compute resources can be attached via macvtap. Attaching other resources like DHCP, Routers and
others is not supported. Therefore run either OVS or linux bridge in VLAN or flat mode on the controller
node.

• Instance migration requires the same values for the physical_interface_mapping configuration
option on each compute node. For more information, see https://bugs.launchpad.net/neutron/+bug/
1550400.

Prerequisites

You can add this mechanism driver to an existing environment using either the Linux bridge or OVSmechanism
drivers with only provider networks or provider and self-service networks. You can change the configuration
of existing compute nodes or add compute nodes with the Macvtap mechanism driver. The example configura-
tion assumes addition of compute nodes with the Macvtap mechanism driver to the Linux bridge: Self-service
networks or Open vSwitch: Self-service networks deployment examples.

Add one or more compute nodes with the following components:

• Three network interfaces: management, provider, and overlay.

• OpenStack Networking Macvtap layer-2 agent and any dependencies.

Note: To support integration with the deployment examples, this content configures the Macvtap mechanism
driver to use the overlay network for untagged (flat) or tagged (VLAN) networks in addition to overlay networks
such as VXLAN. Your physical network infrastructure must support VLAN (802.1q) tagging on the overlay
network.

Architecture

The Macvtap mechanism driver only applies to compute nodes. Otherwise, the environment resembles the
prerequisite deployment example.

114 Configuration

https://bugs.launchpad.net/neutron/+bug/1550400
https://bugs.launchpad.net/neutron/+bug/1550400

Networking Guide (Release Version: 15.0.0)

Configuration 115

Networking Guide (Release Version: 15.0.0)

Example configuration

Use the following example configuration as a template to add support for the Macvtap mechanism driver to an
existing operational environment.

Controller node

1. In the ml2_conf.ini file:

• Add macvtap to mechanism drivers.

[ml2]

mechanism_drivers = macvtap

• Configure network mappings.

116 Configuration

Networking Guide (Release Version: 15.0.0)

[ml2_type_flat]

flat_networks = provider,macvtap

[ml2_type_vlan]

network_vlan_ranges = provider,macvtap:VLAN_ID_START:VLAN_ID_END

Note: Use of macvtap is arbitrary. Only the self-service deployment examples require VLAN ID
ranges. Replace VLAN_ID_START and VLAN_ID_END with appropriate numerical values.

2. Restart the following services:

• Server

Network nodes

No changes.

Compute nodes

1. Install the Networking service Macvtap layer-2 agent.

2. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the macvtap_agent.ini file, configure the layer-2 agent.

[macvtap]

physical_interface_mappings = macvtap:MACVTAP_INTERFACE

[securitygroup]

firewall_driver = noop

Configuration 117

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

Replace MACVTAP_INTERFACE with the name of the underlying interface that handles Macvtap mecha-
nism driver interfaces. If using a prerequisite deployment example, replace MACVTAP_INTERFACE with
the name of the underlying interface that handles overlay networks. For example, eth1.

4. Start the following services:

• Macvtap agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 31e1bc1b-c872-4429-8fc3-2c8eba52634e | Metadata agent | compute1 | None �

↪→ | True | UP | neutron-metadata-agent |

| 378f5550-feee-42aa-a1cb-e548b7c2601f | Open vSwitch agent | compute1 | None �

↪→ | True | UP | neutron-openvswitch-agent |

| 7d2577d0-e640-42a3-b303-cb1eb077f2b6 | L3 agent | compute1 | nova �

↪→ | True | UP | neutron-l3-agent |

| d5d7522c-ad14-4c63-ab45-f6420d6a81dd | Metering agent | compute1 | None �

↪→ | True | UP | neutron-metering-agent |

| e838ef5c-75b1-4b12-84da-7bdbd62f1040 | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

This mechanism driver simply changes the virtual network interface driver for instances. Thus, you can refer-
ence the Create initial networks content for the prerequisite deployment example.

Verify network operation

This mechanism driver simply changes the virtual network interface driver for instances. Thus, you can refer-
ence the Verify network operation content for the prerequisite deployment example.

Network traffic flow

This mechanism driver simply removes the Linux bridge handling security groups on the compute nodes. Thus,
you can reference the network traffic flow scenarios for the prerequisite deployment example.

118 Configuration

Networking Guide (Release Version: 15.0.0)

MTU considerations

The Networking service uses the MTU of the underlying physical network to calculate the MTU for virtual
network components including instance network interfaces. By default, it assumes a standard 1500-byte MTU
for the underlying physical network.

The Networking service only references the underlying physical network MTU. Changing the underlying phys-
ical network device MTU requires configuration of physical network devices such as switches and routers.

Jumbo frames

The Networking service supports underlying physical networks using jumbo frames and also enables instances
to use jumbo frames minus any overlay protocol overhead. For example, an underlying physical network with
a 9000-byte MTU yields a 8950-byte MTU for instances using a VXLAN network with IPv4 endpoints. Using
IPv6 endpoints for overlay networks adds 20 bytes of overhead for any protocol.

The Networking service supports the following underlying physical network architectures. Case 1 refers to the
most common architecture. In general, architectures should avoid cases 2 and 3.

Note: You can trigger MTU recalculation for existing networks by changing the MTU configuration and
restarting the neutron-server service. However, propagatingMTU calculations to the data plane may require
users to delete and recreate ports on the network.

When using the Open vSwitch or Linux bridge drivers, newMTU calculations will be propogated automatically
after restarting the l3-agent service.

Case 1

For typical underlying physical network architectures that implement a single MTU value, you can leverage
jumbo frames using two options, one in the neutron.conf file and the other in the ml2_conf.ini file. Most
environments should use this configuration.

For example, referencing an underlying physical network with a 9000-byte MTU:

1. In the neutron.conf file:

[DEFAULT]

global_physnet_mtu = 9000

2. In the ml2_conf.ini file:

[ml2]

path_mtu = 9000

Case 2

Some underlying physical network architectures contain multiple layer-2 networks with different MTU values.
You can configure each flat or VLAN provider network in the bridge or interface mapping options of the layer-2
agent to reference a unique MTU value.

Configuration 119

Networking Guide (Release Version: 15.0.0)

For example, referencing a 4000-byteMTU for provider2, a 1500-byteMTU for provider3, and a 9000-byte
MTU for other networks using the Open vSwitch agent:

1. In the neutron.conf file:

[DEFAULT]

global_physnet_mtu = 9000

2. In the openvswitch_agent.ini file:

[ovs]

bridge_mappings = provider1:eth1,provider2:eth2,provider3:eth3

3. In the ml2_conf.ini file:

[ml2]

physical_network_mtus = provider2:4000,provider3:1500

path_mtu = 9000

Case 3

Some underlying physical network architectures contain a unique layer-2 network for overlay networks using
protocols such as VXLAN and GRE.

For example, referencing a 4000-byte MTU for overlay networks and a 9000-byte MTU for other networks:

1. In the neutron.conf file:

[DEFAULT]

global_physnet_mtu = 9000

2. In the ml2_conf.ini file:

[ml2]

path_mtu = 4000

Note: Other networks including provider networks and flat or VLAN self-service networks assume the
value of the global_physnet_mtu option.

Instance network interfaces (VIFs)

The DHCP agent provides an appropriate MTU value to instances using IPv4, while the L3 agent provides an
appropriate MTU value to instances using IPv6. IPv6 uses RA via the L3 agent because the DHCP agent only
supports IPv4. Instances using IPv4 and IPv6 should obtain the same MTU value regardless of method.

Open vSwitch with DPDK datapath

This page serves as a guide for how to use the OVS with DPDK datapath functionality available in the Net-
working service as of the Mitaka release.

120 Configuration

Networking Guide (Release Version: 15.0.0)

The basics

Open vSwitch (OVS) provides support for a Data Plane Development Kit (DPDK) datapath since OVS 2.2, and
a DPDK-backed vhost-user virtual interface since OVS 2.4. The DPDK datapath provides lower latency and
higher performance than the standard kernel OVS datapath, while DPDK-backed vhost-user interfaces can
connect guests to this datapath. For more information on DPDK, refer to the DPDK website.

OVS with DPDK, or OVS-DPDK, can be used to provide high-performance networking between instances on
OpenStack compute nodes.

Prerequisites

Using DPDK in OVS requires the following minimum software versions:

• OVS 2.4

• DPDK 2.0

• QEMU 2.1.0

• libvirt 1.2.13

Multiqueue support is available if the following newer versions are used:

• OVS 2.5

• DPDK 2.2

• QEMU 2.5

• libvirt 1.2.17

In both cases, install and configure Open vSwitch with DPDK support for each node. For more information,
see the OVS-DPDK installation guide.

Using vhost-user interfaces

Once OVS is correctly configured with DPDK support, vhost-user interfaces are completely transparent to
the guest. However, guests must request large pages. This can be done through flavors. For example:

$ openstack flavor set m1.large --property hw:mem_page_size=large

For more information about the syntax for hw:mem_page_size, refer to the Flavors guide.

Note: vhost-user requires file descriptor-backed shared memory. Currently, the only way to request this
is by requesting large pages. This is why instances spawned on hosts with OVS-DPDK must request large
pages. The aggregate flavor affinity filter can be used to associate flavors with large page support to hosts with
OVS-DPDK support.

Create and add vhost-user network interfaces to instances in the same fashion as conventional interfaces.
These interfaces can use the kernel virtio-net driver or a DPDK-compatible driver in the guest

$ openstack server create --nic net-id=$net_id ... testserver

Configuration 121

http://dpdk.org/
https://github.com/openvswitch/ovs/blob/v2.5.0/INSTALL.DPDK.md
https://docs.openstack.org/admin-guide/compute-flavors.html

Networking Guide (Release Version: 15.0.0)

Known limitations

• This feature is only supported when using the libvirt compute driver, and the KVM/QEMU hypervisor.

• Large pages are required for each instance running on hosts with OVS-DPDK. If large pages are not
present in the guest, the interface will appear but will not function.

• Expect performance degradation of services using tap devices: these devices do not support DPDK.
Example services include DVR, FWaaS, or LBaaS.

Native Open vSwitch firewall driver

Note: Experimental feature or incomplete documentation.

Historically, Open vSwitch (OVS) could not interact directly with iptables to implement security groups. Thus,
the OVS agent and Compute service use a Linux bridge between each instance (VM) and the OVS integration
bridge br-int to implement security groups. The Linux bridge device contains the iptables rules pertaining to
the instance. In general, additional components between instances and physical network infrastructure cause
scalability and performance problems. To alleviate such problems, the OVS agent includes an optional firewall
driver that natively implements security groups as flows in OVS rather than Linux bridge and iptables, thus
increasing scalability and performance.

Prerequisites

The native OVS firewall implementation requires kernel and user space support for conntrack, thus requiring
minimum versions of the Linux kernel and Open vSwitch. All cases require Open vSwitch version 2.5 or newer.

• Kernel version 4.3 or newer includes conntrack support.

• Kernel version 3.3, but less than 4.3, does not include conntrack support and requires building the OVS
modules.

Enable the native OVS firewall driver

• On nodes running the Open vSwitch agent, edit the openvswitch_agent.ini file and enable the fire-
wall driver.

[securitygroup]

firewall_driver = openvswitch

For more information, see the developer documentation and the video.

Quality of Service (QoS)

QoS is defined as the ability to guarantee certain network requirements like bandwidth, latency, jitter, and
reliability in order to satisfy a Service Level Agreement (SLA) between an application provider and end users.

Network devices such as switches and routers can mark traffic so that it is handled with a higher priority to fulfill
the QoS conditions agreed under the SLA. In other cases, certain network traffic such as Voice over IP (VoIP)
and video streaming needs to be transmitted with minimal bandwidth constraints. On a system without network

122 Configuration

https://docs.openstack.org/developer/neutron/devref/openvswitch_firewall.html
https://www.youtube.com/watch?v=SOHeZ3g9yxM

Networking Guide (Release Version: 15.0.0)

QoS management, all traffic will be transmitted in a “best-effort” manner making it impossible to guarantee
service delivery to customers.

QoS is an advanced service plug-in. QoS is decoupled from the rest of the OpenStack Networking code on
multiple levels and it is available through the ml2 extension driver.

Details about the DB models, API extension, and use cases are out of the scope of this guide but can be found
in the Neutron QoS specification.

Supported QoS rule types

Any plug-in or ml2 mechanism driver can claim support for some QoS rule types by providing a plug-in/driver
class property called supported_qos_rule_types that returns a list of strings that correspond to QoS rule
types.

Note: Bandwidth limit is supported on OVS, Linux bridge, and SR-IOV mechanism drivers. For the Newton
release onward DSCPmarking is supported on the OVS and Linux bridge mechanism drivers, and the minimum
bandwidth rules on the SR-IOV NIC mechanism driver.

In the most simple case, the property can be represented by a simple Python list defined on the class.

For an ml2 plug-in, the list of supported QoS rule types is defined as a common subset of rules supported by
all active mechanism drivers.

Note: The list of supported rule types reported by core plug-in is not enforced when accessing QoS rule
resources. This is mostly because then we would not be able to create any rules while at least one ml2 driver
lacks support for QoS (at the moment of writing, only macvtap is such a driver).

Configuration

To enable the service, follow the steps below:

On network nodes:

1. Add the QoS service to the service_plugins setting in /etc/neutron/neutron.conf. For example:

service_plugins = \

neutron.services.l3_router.l3_router_plugin.L3RouterPlugin,

neutron.services.metering.metering_plugin.MeteringPlugin,

neutron.services.qos.qos_plugin.QoSPlugin

2. Optionally, set the needed notification_drivers in the [qos] section in /etc/neutron/neutron.
conf (message_queue is the default).

3. In /etc/neutron/plugins/ml2/ml2_conf.ini, add qos to extension_drivers in the [ml2] sec-
tion. For example:

[ml2]

extension_drivers = port_security, qos

4. If the Open vSwitch agent is being used, set extensions to qos in the [agent] section of /etc/
neutron/plugins/ml2/openvswitch_agent.ini. For example:

Configuration 123

https://specs.openstack.org/openstack/neutron-specs/specs/liberty/qos-api-extension.html
https://git.openstack.org/cgit/openstack/neutron/tree/neutron/services/qos/qos_consts.py
https://git.openstack.org/cgit/openstack/neutron/tree/neutron/services/qos/qos_consts.py

Networking Guide (Release Version: 15.0.0)

[agent]

extensions = qos

On compute nodes:

1. In /etc/neutron/plugins/ml2/openvswitch_agent.ini, add qos to the extensions setting in
the [agent] section. For example:

[agent]

extensions = qos

Note: QoS currently works with ml2 only (SR-IOV, Open vSwitch, and linuxbridge are drivers that are enabled
for QoS in Mitaka release).

Trusted projects policy.json configuration

If projects are trusted to administrate their own QoS policies in your cloud, neutron’s file policy.json can be
modified to allow this.

Modify /etc/neutron/policy.json policy entries as follows:

"get_policy": "rule:regular_user",

"create_policy": "rule:regular_user",

"update_policy": "rule:regular_user",

"delete_policy": "rule:regular_user",

"get_rule_type": "rule:regular_user",

To enable bandwidth limit rule:

"get_policy_bandwidth_limit_rule": "rule:regular_user",

"create_policy_bandwidth_limit_rule": "rule:regular_user",

"delete_policy_bandwidth_limit_rule": "rule:regular_user",

"update_policy_bandwidth_limit_rule": "rule:regular_user",

To enable DSCP marking rule:

"get_policy_dscp_marking_rule": "rule:regular_user",

"create_dscp_marking_rule": "rule:regular_user",

"delete_dscp_marking_rule": "rule:regular_user",

"update_dscp_marking_rule": "rule:regular_user",

To enable minimum bandwidth rule:

"get_policy_minimum_bandwidth_rule": "rule:regular_user",

"create_policy_minimum_bandwidth_rule": "rule:regular_user",

"delete_policy_minimum_bandwidth_rule": "rule:regular_user",

"update_policy_minimum_bandwidth_rule": "rule:regular_user",

User workflow

QoS policies are only created by admins with the default policy.json. Therefore, you should have the cloud
operator set them up on behalf of the cloud projects.

124 Configuration

Networking Guide (Release Version: 15.0.0)

If projects are trusted to create their own policies, check the trusted projects policy.json configuration section.

First, create a QoS policy and its bandwidth limit rule:

$ neutron qos-policy-create bw-limiter

Created a new policy:

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| description | |

| id | 0ee1c673-5671-40ca-b55f-4cd4bbd999c7 |

| name | bw-limiter |

| rules | |

| shared | False |

| tenant_id | 85b859134de2428d94f6ee910dc545d8 |

+-------------+--------------------------------------+

$ neutron qos-bandwidth-limit-rule-create bw-limiter --max-kbps 3000 \

--max-burst-kbps 300

Created a new bandwidth_limit_rule:

+----------------+--------------------------------------+

| Field | Value |

+----------------+--------------------------------------+

| id | 92ceb52f-170f-49d0-9528-976e2fee2d6f |

| max_burst_kbps | 300 |

| max_kbps | 3000 |

+----------------+--------------------------------------+

Note: The burst value is given in kilobits, not in kilobits per second as the name of the parameter might suggest.
This is an amount of data which can be sent before the bandwidth limit applies.

Note: The QoS implementation requires a burst value to ensure proper behavior of bandwidth limit rules in
the Open vSwitch and Linux bridge agents. If you do not provide a value, it defaults to 80% of the bandwidth
limit which works for typical TCP traffic.

Second, associate the created policy with an existing neutron port. In order to do this, user extracts the port id
to be associated to the already created policy. In the next example, we will assign the bw-limiter policy to
the VM with IP address 192.0.2.1.

$ neutron port-list

+--------------------------------------+-----------------------------------+

| id | fixed_ips |

+--------------------------------------+-----------------------------------+

| 0271d1d9-1b16-4410-bd74-82cdf6dcb5b3 | { ... , "ip_address": "192.0.2.1"}|

| 88101e57-76fa-4d12-b0e0-4fc7634b874a | { ... , "ip_address": "192.0.2.3"}|

| e04aab6a-5c6c-4bd9-a600-33333551a668 | { ... , "ip_address": "192.0.2.2"}|

+--------------------------------------+-----------------------------------+

$ neutron port-update 88101e57-76fa-4d12-b0e0-4fc7634b874a --qos-policy bw-limiter

Updated port: 88101e57-76fa-4d12-b0e0-4fc7634b874a

Configuration 125

Networking Guide (Release Version: 15.0.0)

In order to detach a port from the QoS policy, simply update again the port configuration.

$ neutron port-update 88101e57-76fa-4d12-b0e0-4fc7634b874a --no-qos-policy

Updated port: 88101e57-76fa-4d12-b0e0-4fc7634b874a

Ports can be created with a policy attached to them too.

$ neutron port-create private --qos-policy-id bw-limiter

Created a new port:

+-----------------------+--+

| Field | Value |

+-----------------------+--+

| admin_state_up | True |

| allowed_address_pairs | |

| binding:vnic_type | normal |

| device_id | |

| device_owner | |

| dns_assignment | {"hostname": "host-192-0-2-4", ... } |

| dns_name | |

| fixed_ips | {"subnet_id": |

| | "fabaf9b6-7a84-43b6-9d23-543591b531b8", |

| | "ip_address": "192.0.2.4"} |

| id | c3cb8faa-db36-429d-bd25-6003fafe63c5 |

| mac_address | fa:16:3e:02:65:15 |

| name | |

| network_id | 4920548d-1a6c-4d67-8de4-06501211587c |

| port_security_enabled | True |

| qos_policy_id | 0ee1c673-5671-40ca-b55f-4cd4bbd999c7 |

| security_groups | b9cecbc5-a136-4032-b196-fb3eb091fff2 |

| status | DOWN |

| tenant_id | 85b859134de2428d94f6ee910dc545d8 |

+-----------------------+--+

You can attach networks to a QoS policy. The meaning of this is that any compute port connected to the network
will use the network policy by default unless the port has a specific policy attached to it. Network owned ports
like DHCP and router ports are excluded from network policy application.

In order to attach a QoS policy to a network, update an existing network, or initially create the network attached
to the policy.

$ neutron net-update private --qos-policy bw-limiter

Updated network: private

Note: Configuring the proper burst value is very important. If the burst value is set too low, bandwidth usage
will be throttled even with a proper bandwidth limit setting. This issue is discussed in various documentation
sources, for example in Juniper’s documentation. Burst value for TCP traffic can be set as 80% of desired
bandwidth limit value. For example, if the bandwidth limit is set to 1000kbps then enough burst value will be
800kbit. If the configured burst value is too low, achieved bandwidth limit will be lower than expected. If the
configured burst value is too high, too few packets could be limited and achieved bandwidth limit would be
higher than expected.

126 Configuration

http://www.juniper.net/documentation/en_US/junos12.3/topics/concept/policer-mx-m120-m320-burstsize-determining.html

Networking Guide (Release Version: 15.0.0)

Administrator enforcement

Administrators are able to enforce policies on project ports or networks. As long as the policy is not shared, the
project is not be able to detach any policy attached to a network or port.

If the policy is shared, the project is able to attach or detach such policy from its own ports and networks.

Rule modification

You can modify rules at runtime. Rule modifications will be propagated to any attached port.

$ neutron qos-bandwidth-limit-rule-update \

92ceb52f-170f-49d0-9528-976e2fee2d6f bw-limiter \

--max-kbps 2000 --max-burst-kbps 200

Updated bandwidth_limit_rule: 92ceb52f-170f-49d0-9528-976e2fee2d6f

$ neutron qos-bandwidth-limit-rule-show \

92ceb52f-170f-49d0-9528-976e2fee2d6f bw-limiter

+----------------+--------------------------------------+

| Field | Value |

+----------------+--------------------------------------+

| id | 92ceb52f-170f-49d0-9528-976e2fee2d6f |

| max_burst_kbps | 200 |

| max_kbps | 2000 |

+----------------+--------------------------------------+

Just like with bandwidth limiting, create a policy for DSCP marking rule:

$ neutron qos-policy-create dscp-marking

Created a new policy:

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| description | |

| id | 8569fb4d-3d63-483e-b49a-9f9290d794f4 |

| name | dscp-marking |

| rules | |

| shared | False |

| tenant_id | 85b859134de2428d94f6ee910dc545d8 |

+-------------+--------------------------------------+

You can create, update, list, delete, and show DSCP markings with the neutron client:

$ neutron qos-dscp-marking-rule-create dscp-marking --dscp-mark 26

Created a new dscp marking rule

+----------------+--------------------------------------+

| Field | Value |

+----------------+--------------------------------------+

| id | 115e4f70-8034-4176-8fe9-2c47f8878a7d |

| dscp_mark | 26 |

+----------------+--------------------------------------+

Configuration 127

Networking Guide (Release Version: 15.0.0)

$ neutron qos-dscp-marking-rule-update \

115e4f70-8034-4176-8fe9-2c47f8878a7d dscp-marking --dscp-mark 22

Updated dscp_rule: 115e4f70-8034-4176-8fe9-2c47f8878a7d

$ neutron qos-dscp-marking-rule-list dscp-marking

+--------------------------------------+----------------------------------+

| id | dscp_mark |

+--------------------------------------+----------------------------------+

| 115e4f70-8034-4176-8fe9-2c47f8878a7d | 22 |

+--------------------------------------+----------------------------------+

$ neutron qos-dscp-marking-rule-show \

115e4f70-8034-4176-8fe9-2c47f8878a7d dscp-marking

+----------------+--------------------------------------+

| Field | Value |

+----------------+--------------------------------------+

| id | 115e4f70-8034-4176-8fe9-2c47f8878a7d |

| dscp_mark | 22 |

+----------------+--------------------------------------+

$ neutron qos-dscp-marking-rule-delete \

115e4f70-8034-4176-8fe9-2c47f8878a7d dscp-marking

Deleted dscp_rule: 115e4f70-8034-4176-8fe9-2c47f8878a7d

You can also include minimum bandwidth rules in your policy:

$ openstack network qos policy create bandwidth-control

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| description | |

| id | 8491547e-add1-4c6c-a50e-42121237256c |

| name | bandwidth-control |

| project_id | 7cc5a84e415d48e69d2b06aa67b317d8 |

| rules | [] |

| shared | False |

+-------------+--------------------------------------+

$ openstack network qos rule create bandwidth-control \

--type minimum-bandwidth --min-kbps 1000 --egress

+------------+--------------------------------------+

| Field | Value |

+------------+--------------------------------------+

| direction | egress |

| id | da858b32-44bc-43c9-b92b-cf6e2fa836ab |

| min_kbps | 1000 |

| name | None |

| project_id | |

+------------+--------------------------------------+

A policy with a minimum bandwidth ensures best efforts are made to provide no less than the specified band-
width to each port on which the rule is applied. However, as this feature is not yet integrated with the Compute
scheduler, minimum bandwidth cannot be guaranteed.

It is also possible to combine several rules in one policy:

128 Configuration

Networking Guide (Release Version: 15.0.0)

$ openstack network qos rule create bandwidth-control \

--type bandwidth-limit --max-kbps 50000 --max-burst-kbits 50000

+----------------+--------------------------------------+

| Field | Value |

+----------------+--------------------------------------+

| id | 0db48906-a762-4d32-8694-3f65214c34a6 |

| max_burst_kbps | 50000 |

| max_kbps | 50000 |

| name | None |

| project_id | |

+----------------+--------------------------------------+

$ openstack network qos policy show bandwidth-control

+-------------+---+

| Field | Value |

+-------------+---+

| description | |

| id | 8491547e-add1-4c6c-a50e-42121237256c |

| name | bandwidth-control |

| project_id | 7cc5a84e415d48e69d2b06aa67b317d8 |

| rules | [{u'max_kbps': 50000, u'type': u'bandwidth_limit', |

| | u'id': u'0db48906-a762-4d32-8694-3f65214c34a6', |

| | u'max_burst_kbps': 50000, |

| | u'qos_policy_id': u'8491547e-add1-4c6c-a50e-42121237256c'}, |

| | {u'direction': |

| | u'egress', u'min_kbps': 1000, u'type': u'minimum_bandwidth', |

| | u'id': u'da858b32-44bc-43c9-b92b-cf6e2fa836ab', |

| | u'qos_policy_id': u'8491547e-add1-4c6c-a50e-42121237256c'}] |

| shared | False |

+-------------+---+

Role-Based Access Control (RBAC)

The Role-Based Access Control (RBAC) policy framework enables both operators and users to grant access to
resources for specific projects.

Supported objects for sharing with specific projects

Currently, the access that can be granted using this feature is supported by:

• Regular port creation permissions on networks (since Liberty).

• Binding QoS policies permissions to networks or ports (since Mitaka).

• Attaching router gateways to networks (since Mitaka).

Sharing an object with specific projects

Sharing an object with a specific project is accomplished by creating a policy entry that permits the target project
the access_as_shared action on that object.

Configuration 129

Networking Guide (Release Version: 15.0.0)

Sharing a network with specific projects

Create a network to share:

$ openstack network create secret_network

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-25T20:16:40Z |

| description | |

| dns_domain | None |

| id | f55961b9-3eb8-42eb-ac96-b97038b568de |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| is_default | None |

| mtu | 1450 |

| name | secret_network |

| port_security_enabled | True |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 9 |

| qos_policy_id | None |

| revision_number | 3 |

| router:external | Internal |

| segments | None |

| shared | False |

| status | ACTIVE |

| subnets | |

| updated_at | 2017-01-25T20:16:40Z |

+---------------------------+--------------------------------------+

Create the policy entry using the openstack network rbac create command (in this example, the ID of
the project we want to share with is b87b2fc13e0248a4a031d38e06dc191d):

$ openstack network rbac create --target-project \

b87b2fc13e0248a4a031d38e06dc191d --action access_as_shared \

--type network f55961b9-3eb8-42eb-ac96-b97038b568de

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| action | access_as_shared |

| id | f93efdbf-f1e0-41d2-b093-8328959d469e |

| name | None |

| object_id | f55961b9-3eb8-42eb-ac96-b97038b568de |

| object_type | network |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| target_project_id | b87b2fc13e0248a4a031d38e06dc191d |

+-------------------+--------------------------------------+

The target-project parameter specifies the project that requires access to the network. The action param-
eter specifies what the project is allowed to do. The type parameter says that the target object is a network.
The final parameter is the ID of the network we are granting access to.

130 Configuration

Networking Guide (Release Version: 15.0.0)

Project b87b2fc13e0248a4a031d38e06dc191dwill now be able to see the networkwhen running openstack
network list and openstack network show and will also be able to create ports on that network. No other
users (other than admins and the owner) will be able to see the network.

To remove access for that project, delete the policy that allows it using the openstack network rbac delete

command:

$ openstack network rbac delete f93efdbf-f1e0-41d2-b093-8328959d469e

If that project has ports on the network, the server will prevent the policy from being deleted until the ports
have been deleted:

$ openstack network rbac delete f93efdbf-f1e0-41d2-b093-8328959d469e

RBAC policy on object f93efdbf-f1e0-41d2-b093-8328959d469e

cannot be removed because other objects depend on it.

This process can be repeated any number of times to share a network with an arbitrary number of projects.

Sharing a QoS policy with specific projects

Create a QoS policy to share:

$ openstack network qos policy create secret_policy

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| description | |

| id | 1f730d69-1c45-4ade-a8f2-89070ac4f046 |

| name | secret_policy |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| rules | [] |

| shared | False |

+-------------+--------------------------------------+

Create the RBAC policy entry using the openstack network rbac create command (in this example, the
ID of the project we want to share with is be98b82f8fdf46b696e9e01cebc33fd9):

$ openstack network rbac create --target-project \

be98b82f8fdf46b696e9e01cebc33fd9 --action access_as_shared \

--type qos_policy 1f730d69-1c45-4ade-a8f2-89070ac4f046

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| action | access_as_shared |

| id | 8828e38d-a0df-4c78-963b-e5f215d3d550 |

| name | None |

| object_id | 1f730d69-1c45-4ade-a8f2-89070ac4f046 |

| object_type | qos_policy |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| target_project_id | be98b82f8fdf46b696e9e01cebc33fd9 |

+-------------------+--------------------------------------+

The target-project parameter specifies the project that requires access to the QoS policy. The action

parameter specifies what the project is allowed to do. The type parameter says that the target object is a QoS
policy. The final parameter is the ID of the QoS policy we are granting access to.

Configuration 131

Networking Guide (Release Version: 15.0.0)

Project be98b82f8fdf46b696e9e01cebc33fd9 will now be able to see the QoS policy when running
openstack network qos policy list and openstack network qos policy show and will also be
able to bind it to its ports or networks. No other users (other than admins and the owner) will be able to
see the QoS policy.

To remove access for that project, delete the RBAC policy that allows it using the openstack network rbac

delete command:

$ openstack network rbac delete 8828e38d-a0df-4c78-963b-e5f215d3d550

If that project has ports or networks with the QoS policy applied to them, the server will not delete the RBAC
policy until the QoS policy is no longer in use:

$ openstack network rbac delete 8828e38d-a0df-4c78-963b-e5f215d3d550

RBAC policy on object 8828e38d-a0df-4c78-963b-e5f215d3d550

cannot be removed because other objects depend on it.

This process can be repeated any number of times to share a qos-policy with an arbitrary number of projects.

How the ‘shared’ flag relates to these entries

As introduced in other guide entries, neutron provides a means of making an object (network, qos-policy)
available to every project. This is accomplished using the shared flag on the supported object:

$ openstack network create global_network --share

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-25T20:32:06Z |

| description | |

| dns_domain | None |

| id | 84a7e627-573b-49da-af66-c9a65244f3ce |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| is_default | None |

| mtu | 1450 |

| name | global_network |

| port_security_enabled | True |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 7 |

| qos_policy_id | None |

| revision_number | 3 |

| router:external | Internal |

| segments | None |

| shared | True |

| status | ACTIVE |

| subnets | |

| updated_at | 2017-01-25T20:32:07Z |

+---------------------------+--------------------------------------+

132 Configuration

Networking Guide (Release Version: 15.0.0)

This is the equivalent of creating a policy on the network that permits every project to perform the action
access_as_shared on that network. Neutron treats them as the same thing, so the policy entry for that network
should be visible using the openstack network rbac list command:

$ openstack network rbac list

+-------------------------------+-------------+--------------------------------+

| ID | Object Type | Object ID |

+-------------------------------+-------------+--------------------------------+

| 58a5ee31-2ad6-467d- | qos_policy | 1f730d69-1c45-4ade- |

| 8bb8-8c2ae3dd1382 | | a8f2-89070ac4f046 |

| 27efbd79-f384-4d89-9dfc- | network | 84a7e627-573b-49da- |

| 6c4a606ceec6 | | af66-c9a65244f3ce |

+-------------------------------+-------------+--------------------------------+

Use the neutron rbac-show command to see the details:

$ openstack network rbac show 27efbd79-f384-4d89-9dfc-6c4a606ceec6

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| action | access_as_shared |

| id | 27efbd79-f384-4d89-9dfc-6c4a606ceec6 |

| name | None |

| object_id | 84a7e627-573b-49da-af66-c9a65244f3ce |

| object_type | network |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| target_project_id | * |

+-------------------+--------------------------------------+

The output shows that the entry allows the action access_as_shared on object
84a7e627-573b-49da-af66-c9a65244f3ce of type network to target_tenant *, which is a wildcard
that represents all projects.

Currently, the shared flag is just a mapping to the underlying RBAC policies for a network. Setting the flag
to True on a network creates a wildcard RBAC entry. Setting it to False removes the wildcard entry.

When you run openstack network list or openstack network show, the shared flag is calculated by
the server based on the calling project and the RBAC entries for each network. For QoS objects use openstack
network qos policy list or openstack network qos policy show respectively. If there is a wildcard
entry, the shared flag is always set to True. If there are only entries that share with specific projects, only the
projects the object is shared to will see the flag as True and the rest will see the flag as False.

Allowing a network to be used as an external network

To make a network available as an external network for specific projects rather than all projects, use the
access_as_external action.

1. Create a network that you want to be available as an external network:

$ openstack network create secret_external_network

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

Configuration 133

Networking Guide (Release Version: 15.0.0)

| created_at | 2017-01-25T20:36:59Z |

| description | |

| dns_domain | None |

| id | 802d4e9e-4649-43e6-9ee2-8d052a880cfb |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| is_default | None |

| mtu | 1450 |

| name | secret_external_network |

| port_security_enabled | True |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| proider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 21 |

| qos_policy_id | None |

| revision_number | 3 |

| router:external | Internal |

| segments | None |

| shared | False |

| status | ACTIVE |

| subnets | |

| updated_at | 2017-01-25T20:36:59Z |

+---------------------------+--------------------------------------+

2. Create a policy entry using the openstack network rbac create command (in this example, the ID
of the project we want to share with is 838030a7bf3c4d04b4b054c0f0b2b17c):

$ openstack network rbac create --target-project \

838030a7bf3c4d04b4b054c0f0b2b17c --action access_as_external \

--type network 802d4e9e-4649-43e6-9ee2-8d052a880cfb

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| action | access_as_external |

| id | afdd5b8d-b6f5-4a15-9817-5231434057be |

| name | None |

| object_id | 802d4e9e-4649-43e6-9ee2-8d052a880cfb |

| object_type | network |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| target_project_id | 838030a7bf3c4d04b4b054c0f0b2b17c |

+-------------------+--------------------------------------+

The target-project parameter specifies the project that requires access to the network. The action param-
eter specifies what the project is allowed to do. The type parameter indicates that the target object is a network.
The final parameter is the ID of the network we are granting external access to.

Now project 838030a7bf3c4d04b4b054c0f0b2b17c is able to see the network when running openstack

network list and openstack network show and can attach router gateway ports to that network. No other
users (other than admins and the owner) are able to see the network.

To remove access for that project, delete the policy that allows it using the openstack network rbac delete

command:

$ openstack network rbac delete afdd5b8d-b6f5-4a15-9817-5231434057be

If that project has router gateway ports attached to that network, the server prevents the policy from being
deleted until the ports have been deleted:

134 Configuration

Networking Guide (Release Version: 15.0.0)

$ openstack network rbac delete afdd5b8d-b6f5-4a15-9817-5231434057be

RBAC policy on object afdd5b8d-b6f5-4a15-9817-5231434057be

cannot be removed because other objects depend on it.

This process can be repeated any number of times to make a network available as external to an arbitrary number
of projects.

If a network is marked as external during creation, it now implicitly creates a wildcard RBAC policy granting
everyone access to preserve previous behavior before this feature was added.

$ openstack network create global_external_network --external

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| created_at | 2017-01-25T20:41:44Z |

| description | |

| dns_domain | None |

| id | 72a257a2-a56e-4ac7-880f-94a4233abec6 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| is_default | None |

| mtu | 1450 |

| name | global_external_network |

| port_security_enabled | True |

| project_id | 61b7eba037fd41f29cfba757c010faff |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 69 |

| qos_policy_id | None |

| revision_number | 4 |

| router:external | External |

| segments | None |

| shared | False |

| status | ACTIVE |

| subnets | |

| updated_at | 2017-01-25T20:41:44Z |

+---------------------------+--------------------------------------+

In the output above the standard router:external attribute is External as expected. Now a wildcard policy
is visible in the RBAC policy listings:

$ openstack network rbac list --long -c ID -c Action

+--------------------------------------+--------------------+

| ID | Action |

+--------------------------------------+--------------------+

| b694e541-bdca-480d-94ec-eda59ab7d71a | access_as_external |

+--------------------------------------+--------------------+

You can modify or delete this policy with the same constraints as any other RBAC access_as_external

policy.

Configuration 135

Networking Guide (Release Version: 15.0.0)

Preventing regular users from sharing objects with each other

The default policy.json file will not allow regular users to share objects with every other project using a
wildcard; however, it will allow them to share objects with specific project IDs.

If an operator wants to prevent normal users from doing this, the "create_rbac_policy": entry in policy.
json can be adjusted from "" to "rule:admin_only".

Routed provider networks

Note: Experimental feature. Use of this feature requires the OpenStack client version 3.3 or newer.

Before routed provider networks, the Networking service could not present a multi-segment layer-3 network as
a single entity. Thus, each operator typically chose one of the following architectures:

• Single large layer-2 network

• Multiple smaller layer-2 networks

Single large layer-2 networks become complex at scale and involve significant failure domains.

Multiple smaller layer-2 networks scale better and shrink failure domains, but leave network selection to the
user. Without additional information, users cannot easily differentiate these networks.

A routed provider network enables a single provider network to represent multiple layer-2 networks (broadcast
domains) or segments and enables the operator to present one network to users. However, the particular IP
addresses available to an instance depend on the segment of the network available on the particular compute
node.

Similar to conventional networking, layer-2 (switching) handles transit of traffic between ports on the same
segment and layer-3 (routing) handles transit of traffic between segments.

Each segment requires at least one subnet that explicitly belongs to that segment. The association between a
segment and a subnet distinguishes a routed provider network from other types of networks. The Networking
service enforces that either zero or all subnets on a particular network associate with a segment. For example,
attempting to create a subnet without a segment on a network containing subnets with segments generates an
error.

The Networking service does not provide layer-3 services between segments. Instead, it relies on physical
network infrastructure to route subnets. Thus, both the Networking service and physical network infrastructure
must contain configuration for routed provider networks, similar to conventional provider networks. In the
future, implementation of dynamic routing protocols may ease configuration of routed networks.

Limitations

The Newton implementation contains the following limitations:

• The Compute scheduler lacks awareness of IP address resources on a routed network. Thus, the scheduler
could exhaust the IP addresses in one segment before assigning IP addresses from another segment. The
Ocata release of the Compute scheduler should provide the capability of scheduling around segments
without available IP addresses. In Newton, the Compute scheduler selects any compute node on the
provider network. If the segment on that compute node lacks available IP addresses, port binding fails
and the Compute scheduler chooses another compute node without regard to segments. Rescheduling

136 Configuration

Networking Guide (Release Version: 15.0.0)

continues up to the maximum number of retries. Operators should monitor IP usage and add subnets to
segments prior to exhaustion of IP addresses. For more information, see the blueprint.

• A routed provider network cannot also function as a router:external networks which prevents com-
patibility with floating IPv4 addresses. Additional routing, possibly using BGP dynamic routing, could
address this issue in the future.

Prerequisites

Routed provider networks require additional prerequisites over conventional provider networks. We recom-
mend using the following procedure:

1. Begin with segments. The Networking service defines a segment using the following components:

• Unique physical network name

• Segmentation type

• Segmentation ID

For example, provider1, VLAN, and 2016. See the API reference for more information.

Within a network, use a unique physical network name for each segment which enables reuse of the same
segmentation details between subnets. For example, using the same VLAN ID across all segments of a
particular provider network. Similar to conventional provider networks, the operator must provision the
layer-2 physical network infrastructure accordingly.

2. Implement routing between segments.

The Networking service does not provision routing among segments. The operator must implement
routing among segments of a provider network. Each subnet on a segment must contain the gateway
address of the router interface on that particular subnet. For example:

Segment Version Addresses Gateway

segment1 4 203.0.113.0/24 203.0.113.1
segment1 6 fd00:203:0:113::/64 fd00:203:0:113::1
segment2 4 198.51.100.0/24 198.51.100.1
segment2 6 fd00:198:51:100::/64 fd00:198:51:100::1

3. Map segments to compute nodes.

Routed provider networks imply that compute nodes reside on different segments. The operator must
ensure that every compute host that is supposed to participate in a router provider network has direct
connectivity to one of its segments.

Host Rack Physical Network

compute0001 rack 1 segment 1
compute0002 rack 1 segment 1
...
compute0101 rack 2 segment 2
compute0102 rack 2 segment 2
compute0102 rack 2 segment 2
...

4. Deploy DHCP agents.

Unlike conventional provider networks, a DHCP agent cannot support more than one segment within a
network. The operator must deploy at least one DHCP agent per segment. Consider deploying DHCP

Configuration 137

https://blueprints.launchpad.net/neutron/+spec/routed-networks
https://developer.openstack.org/api-ref/networking/v2/#segments

Networking Guide (Release Version: 15.0.0)

agents on compute nodes containing the segments rather than one or more network nodes to reduce node
count.

Host Rack Physical Network

network0001 rack 1 segment 1
network0002 rack 2 segment 2
...

5. Configure communication of the Networking service with the Compute scheduler.

An instance with an interface with an IPv4 address in a routed provider network must be placed by
the Compute scheduler in a host that has access to a segment with available IPv4 addresses. To make
this possible, the Networking service communicates to the Compute scheduler the inventory of IPv4
addresses associated with each segment of a routed provider network. The operator must configure
the authentication credentials that the Networking service will use to communicate with the Compute
scheduler’s placement API. Please see below an example configuration.

Note: Coordination between the Networking service and the Compute scheduler is not necessary for
IPv6 subnets as a consequence of their large address spaces.

Note: The coordination between the Networking service and the Compute scheduler requires the fol-
lowing minimum API micro-versions.

• Compute service API: 2.41

• Placement API: 1.1

Example configuration

Controller node

1. Enable the segments service plug-in by appending segments to the list of service_plugins in the
neutron.conf file on all nodes running the neutron-server service:

[DEFAULT]

...

service_plugins = ..., segments

2. Add a placement section to the neutron.conf file with authentication credentials for the Compute
service placement API:

[placement]

auth_uri = http://192.0.2.72/identity

project_domain_name = Default

project_name = service

user_domain_name = Default

password = apassword

username = nova

auth_url = http://192.0.2.72/identity_admin

auth_type = password

region_name = RegionOne

138 Configuration

Networking Guide (Release Version: 15.0.0)

3. Restart the neutron-server service.

Network or compute nodes

• Configure the layer-2 agent on each node to map one or more segments to the appropriate physical
network bridge or interface and restart the agent.

Create a routed provider network

The following steps create a routed provider network with two segments. Each segment contains one IPv4
subnet and one IPv6 subnet.

1. Source the administrative project credentials.

2. Create a VLAN provider network which includes a default segment. In this example, the network uses
the provider1 physical network with VLAN ID 2016.

$ openstack network create --share --provider-physical-network provider1 \

--provider-network-type vlan --provider-segment 2016 multisegment1

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| l2_adjacency | True |

| mtu | 1500 |

| name | multisegment1 |

| port_security_enabled | True |

| provider:network_type | vlan |

| provider:physical_network | provider1 |

| provider:segmentation_id | 2016 |

| router:external | Internal |

| shared | True |

| status | ACTIVE |

| subnets | |

| tags | [] |

+---------------------------+--------------------------------------+

3. Rename the default segment to segment1.

$ openstack network segment list --network multisegment1

+--------------------------------------+----------+-----------------------------------

↪→---+--------------+---------+

| ID | Name | Network �

↪→ | Network Type | Segment |

+--------------------------------------+----------+-----------------------------------

↪→---+--------------+---------+

| 43e16869-ad31-48e4-87ce-acf756709e18 | None | 6ab19caa-dda9-4b3d-abc4-

↪→5b8f435b98d9 | vlan | 2016 |

+--------------------------------------+----------+-----------------------------------

↪→---+--------------+---------+

Configuration 139

Networking Guide (Release Version: 15.0.0)

$ openstack network segment set --name segment1 43e16869-ad31-48e4-87ce-acf756709e18

Note: This command provides no output.

4. Create a second segment on the provider network. In this example, the segment uses the provider2
physical network with VLAN ID 2016.

$ openstack network segment create --physical-network provider2 \

--network-type vlan --segment 2016 --network multisegment1 segment2

+------------------+--------------------------------------+

| Field | Value |

+------------------+--------------------------------------+

| description | None |

| headers | |

| id | 053b7925-9a89-4489-9992-e164c8cc8763 |

| name | segment2 |

| network_id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| network_type | vlan |

| physical_network | provider2 |

| segmentation_id | 2016 |

+------------------+--------------------------------------+

5. Verify that the network contains the segment1 and segment2 segments.

$ openstack network segment list --network multisegment1

+--------------------------------------+----------+-----------------------------------

↪→---+--------------+---------+

| ID | Name | Network �

↪→ | Network Type | Segment |

+--------------------------------------+----------+-----------------------------------

↪→---+--------------+---------+

| 053b7925-9a89-4489-9992-e164c8cc8763 | segment2 | 6ab19caa-dda9-4b3d-abc4-

↪→5b8f435b98d9 | vlan | 2016 |

| 43e16869-ad31-48e4-87ce-acf756709e18 | segment1 | 6ab19caa-dda9-4b3d-abc4-

↪→5b8f435b98d9 | vlan | 2016 |

+--------------------------------------+----------+-----------------------------------

↪→---+--------------+---------+

6. Create subnets on the segment1 segment. In this example, the IPv4 subnet uses 203.0.113.0/24 and the
IPv6 subnet uses fd00:203:0:113::/64.

$ openstack subnet create \

--network multisegment1 --network-segment segment1 \

--ip-version 4 --subnet-range 203.0.113.0/24 \

multisegment1-segment1-v4

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 203.0.113.2-203.0.113.254 |

| cidr | 203.0.113.0/24 |

| enable_dhcp | True |

| gateway_ip | 203.0.113.1 |

| id | c428797a-6f8e-4cb1-b394-c404318a2762 |

| ip_version | 4 |

| name | multisegment1-segment1-v4 |

140 Configuration

Networking Guide (Release Version: 15.0.0)

| network_id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| segment_id | 43e16869-ad31-48e4-87ce-acf756709e18 |

+-------------------+--------------------------------------+

$ openstack subnet create \

--network multisegment1 --network-segment segment1 \

--ip-version 6 --subnet-range fd00:203:0:113::/64 \

--ipv6-address-mode slaac multisegment1-segment1-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:203:0:113::2-fd00:203:0:113:ffff:ffff:ffff:ffff |

| cidr | fd00:203:0:113::/64 |

| enable_dhcp | True |

| gateway_ip | fd00:203:0:113::1 |

| id | e41cb069-9902-4c01-9e1c-268c8252256a |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | None |

| name | multisegment1-segment1-v6 |

| network_id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| segment_id | 43e16869-ad31-48e4-87ce-acf756709e18 |

+-------------------+--+

Note: By default, IPv6 subnets on provider networks rely on physical network infrastructure for stateless
address autoconfiguration (SLAAC) and router advertisement.

7. Create subnets on the segment2 segment. In this example, the IPv4 subnet uses 198.51.100.0/24 and
the IPv6 subnet uses fd00:198:51:100::/64.

$ openstack subnet create \

--network multisegment1 --network-segment segment2 \

--ip-version 4 --subnet-range 198.51.100.0/24 \

multisegment1-segment2-v4

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 198.51.100.2-198.51.100.254 |

| cidr | 198.51.100.0/24 |

| enable_dhcp | True |

| gateway_ip | 198.51.100.1 |

| id | 242755c2-f5fd-4e7d-bd7a-342ca95e50b2 |

| ip_version | 4 |

| name | multisegment1-segment2-v4 |

| network_id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| segment_id | 053b7925-9a89-4489-9992-e164c8cc8763 |

+-------------------+--------------------------------------+

$ openstack subnet create \

--network multisegment1 --network-segment segment2 \

--ip-version 6 --subnet-range fd00:198:51:100::/64 \

--ipv6-address-mode slaac multisegment1-segment2-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

Configuration 141

Networking Guide (Release Version: 15.0.0)

| allocation_pools | fd00:198:51:100::2-fd00:198:51:100:ffff:ffff:ffff:ffff |

| cidr | fd00:198:51:100::/64 |

| enable_dhcp | True |

| gateway_ip | fd00:198:51:100::1 |

| id | b884c40e-9cfe-4d1b-a085-0a15488e9441 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | None |

| name | multisegment1-segment2-v6 |

| network_id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| segment_id | 053b7925-9a89-4489-9992-e164c8cc8763 |

+-------------------+--+

8. Verify that each IPv4 subnet associates with at least one DHCP agent.

$ neutron dhcp-agent-list-hosting-net multisegment1

+--------------------------------------+-------------+----------------+-------+

| id | host | admin_state_up | alive |

+--------------------------------------+-------------+----------------+-------+

| c904ed10-922c-4c1a-84fd-d928abaf8f55 | compute0001 | True | :-) |

| e0b22cc0-d2a6-4f1c-b17c-27558e20b454 | compute0101 | True | :-) |

+--------------------------------------+-------------+----------------+-------+

9. Verify that inventories were created for each segment IPv4 subnet in the Compute service placement API
(for the sake of brevity, only one of the segments is shown in this example).

Note: URLs differ depending on your OpenStack deployment. You can discover the URL by executing
the openstack endpoint list | grep placement command.

$ SEGMENT_ID=053b7925-9a89-4489-9992-e164c8cc8763

$ curl -s -X GET \

http://localhost/placement/resource_providers/$SEGMENT_ID/inventories \

-H "Content-type: application/json" \

-H "X-Auth-Token: $TOKEN" \

-H "Openstack-Api-Version: placement 1.1"

{

"resource_provider_generation": 1,

"inventories": {

"allocation_ratio": 1,

"total": 254,

"reserved": 2,

"step_size": 1,

"min_unit": 1,

"max_unit": 1

}

}

Note: As of the writing of this guide, there is not placement API CLI client, so the curl command is
used for this example.

10. Verify that host aggregates were created for each segment in the Compute service (for the sake of brevity,
only one of the segments is shown in this example).

142 Configuration

Networking Guide (Release Version: 15.0.0)

$ nova aggregate-list

+----+---+-------------------+

| Id | Name | Availability Zone |

+----+---+-------------------+

| 10 | Neutron segment id 053b7925-9a89-4489-9992-e164c8cc8763 | |

+----+---+-------------------+

11. Launch one or more instances. Each instance obtains IP addresses according to the segment it uses on
the particular compute node.

Note: If a fixed IP is specified by the user in the port create request, that particular IP is allocated
immediately to the port. However, creating a port and passing it to an instance yields a different behavior
than conventional networks. The Networking service defers assignment of IP addresses to the port until
the particular compute node becomes apparent. For example:

$ openstack port create --network multisegment1 port1

+-----------------------+--------------------------------------+

| Field | Value |

+-----------------------+--------------------------------------+

| admin_state_up | UP |

| binding_vnic_type | normal |

| id | 6181fb47-7a74-4add-9b6b-f9837c1c90c4 |

| ip_allocation | deferred |

| mac_address | fa:16:3e:34:de:9b |

| name | port1 |

| network_id | 6ab19caa-dda9-4b3d-abc4-5b8f435b98d9 |

| port_security_enabled | True |

| security_groups | e4fcef0d-e2c5-40c3-a385-9c33ac9289c5 |

| status | DOWN |

+-----------------------+--------------------------------------+

Service function chaining

Service function chain (SFC) essentially refers to the software-defined networking (SDN) version of policy-
based routing (PBR). In many cases, SFC involves security, although it can include a variety of other features.

Fundamentally, SFC routes packets through one or more service functions instead of conventional routing that
routes packets using destination IP address. Service functions essentially emulate a series of physical network
devices with cables linking them together.

A basic example of SFC involves routing packets from one location to another through a firewall that lacks a
“next hop” IP address from a conventional routing perspective. A more complex example involves an ordered
series of service functions, each implemented using multiple instances (VMs). Packets must flow through one
instance and a hashing algorithm distributes flows across multiple instances at each hop.

Architecture

All OpenStack Networking services and OpenStack Compute instances connect to a virtual network via ports
making it possible to create a traffic steering model for service chaining using only ports. Including these ports
in a port chain enables steering of traffic through one or more instances providing service functions.

A port chain, or service function path, consists of the following:

Configuration 143

Networking Guide (Release Version: 15.0.0)

• A set of ports that define the sequence of service functions.

• A set of flow classifiers that specify the classified traffic flows entering the chain.

If a service function involves a pair of ports, the first port acts as the ingress port of the service function and the
second port acts as the egress port. If both ports use the same value, they function as a single virtual bidirectional
port.

A port chain is a unidirectional service chain. The first port acts as the head of the service function chain and
the second port acts as the tail of the service function chain. A bidirectional service function chain consists of
two unidirectional port chains.

A flow classifier can only belong to one port chain to prevent ambiguity as to which chain should handle packets
in the flow. A check prevents such ambiguity. However, you can associate multiple flow classifiers with a port
chain because multiple flows can request the same service function path.

Currently, SFC lacks support for multi-project service functions.

The port chain plug-in supports backing service providers including the OVS driver and a variety of SDN
controller drivers. The common driver API enables different drivers to provide different implementations for
the service chain path rendering.

See the developer documentation for more information.

Resources

Port chain

• id - Port chain ID

• tenant_id - Project ID

144 Configuration

https://docs.openstack.org/developer/networking-sfc/

Networking Guide (Release Version: 15.0.0)

• name - Readable name

• description - Readable description

• port_pair_groups - List of port pair group IDs

• flow_classifiers - List of flow classifier IDs

• chain_parameters - Dictionary of chain parameters

A port chain consists of a sequence of port pair groups. Each port pair group is a hop in the port chain. A group
of port pairs represents service functions providing equivalent functionality. For example, a group of firewall
service functions.

A flow classifier identifies a flow. A port chain can containmultiple flow classifiers. Omitting the flow classifier
effectively prevents steering of traffic through the port chain.

The chain_parameters attribute contains one or more parameters for the port chain. Currently, it only sup-
ports a correlation parameter that defaults to mpls for consistencywithOpen vSwitch (OVS) capabilities. Future
values for the correlation parameter may include the network service header (NSH).

Port pair group

• id - Port pair group ID

• tenant_id - Project ID

• name - Readable name

• description - Readable description

• port_pairs - List of service function port pairs

A port pair group may contain one or more port pairs. Multiple port pairs enable load balancing/distribution
over a set of functionally equivalent service functions.

Port pair

• id - Port pair ID

• tenant_id - Project ID

• name - Readable name

• description - Readable description

• ingress - Ingress port

• egress - Egress port

• service_function_parameters - Dictionary of service function parameters

A port pair represents a service function instance that includes an ingress and egress port. A service function
containing a bidirectional port uses the same ingress and egress port.

The service_function_parameters attribute includes one or more parameters for the service function. Cur-
rently, it only supports a correlation parameter that determines association of a packet with a chain. This pa-
rameter defaults to none for legacy service functions that lack support for correlation such as the NSH. If set to
none, the data plane implementation must provide service function proxy functionality.

Configuration 145

Networking Guide (Release Version: 15.0.0)

Flow classifier

• id - Flow classifier ID

• tenant_id - Project ID

• name - Readable name

• description - Readable description

• ethertype - Ethertype (IPv4/IPv6)

• protocol - IP protocol

• source_port_range_min - Minimum source protocol port

• source_port_range_max - Maximum source protocol port

• destination_port_range_min - Minimum destination protocol port

• destination_port_range_max - Maximum destination protocol port

• source_ip_prefix - Source IP address or prefix

• destination_ip_prefix - Destination IP address or prefix

• logical_source_port - Source port

• logical_destination_port - Destination port

• l7_parameters - Dictionary of L7 parameters

A combination of the source attributes defines the source of the flow. A combination of the destination at-
tributes defines the destination of the flow. The l7_parameters attribute is a place holder that may be used
to support flow classification using layer 7 fields, such as a URL. If unspecified, the logical_source_port
and logical_destination_port attributes default to none, the ethertype attribute defaults to IPv4, and
all other attributes default to a wildcard value.

Operations

Create a port chain

The following example uses the neutron command-line interface (CLI) to create a port chain consisting of three
service function instances to handle HTTP (TCP) traffic flows from 192.0.2.11:1000 to 198.51.100.11:80.

• Instance 1

– Name: vm1

– Function: Firewall

– Port pair: [p1, p2]

• Instance 2

– Name: vm2

– Function: Firewall

– Port pair: [p3, p4]

• Instance 3

146 Configuration

Networking Guide (Release Version: 15.0.0)

– Name: vm3

– Function: Intrusion detection system (IDS)

– Port pair: [p5, p6]

Note: The example network net1 must exist before creating ports on it.

1. Source the credentials of the project that owns the net1 network.

2. Create ports on network net1 and record the UUID values.

$ openstack port create p1 --network net1

$ openstack port create p2 --network net1

$ openstack port create p3 --network net1

$ openstack port create p4 --network net1

$ openstack port create p5 --network net1

$ openstack port create p6 --network net1

3. Launch service function instance vm1 using ports p1 and p2, vm2 using ports p3 and p4, and vm3 using
ports p5 and p6.

$ openstack server create --nic port-id=P1_ID --nic port-id=P2_ID vm1

$ openstack server create --nic port-id=P3_ID --nic port-id=P4_ID vm2

$ openstack server create --nic port-id=P5_ID --nic port-id=P6_ID vm3

Replace P1_ID, P2_ID, P3_ID, P4_ID, P5_ID, and P6_ID with the UUIDs of the respective ports.

Note: This command requires additional options to successfully launch an instance. See the CLI refer-
ence for more information.

Alternatively, you can launch each instance with one network interface and attach additional ports later.

4. Create flow classifier FC1 that matches the appropriate packet headers.

$ neutron flow-classifier-create \

--description "HTTP traffic from 192.0.2.11 to 198.51.100.11" \

--ethertype IPv4 \

--source-ip-prefix 192.0.2.11/32 \

--destination-ip-prefix 198.51.100.11/32 \

--protocol tcp \

--source-port 1000:1000 \

--destination-port 80:80 FC1

5. Create port pair PP1 with ports p1 and p2, PP2 with ports p3 and p4, and PP3 with ports p5 and p6.

$ neutron port-pair-create \

--description "Firewall SF instance 1" \

--ingress p1 \

--egress p2 PP1

$ neutron port-pair-create \

--description "Firewall SF instance 2" \

--ingress p3 \

--egress p4 PP2

Configuration 147

https://docs.openstack.org/cli-reference/openstack.html
https://docs.openstack.org/cli-reference/openstack.html

Networking Guide (Release Version: 15.0.0)

$ neutron port-pair-create \

--description "IDS SF instance" \

--ingress p5 \

--egress p6 PP3

6. Create port pair group PPG1 with port pair PP1 and PP2 and PPG2 with port pair PP3.

$ neutron port-pair-group-create \

--port-pair PP1 --port-pair PP2 PPG1

$ neutron port-pair-group-create \

--port-pair PP3 PPG2

Note: You can repeat the --port-pair option for multiple port pairs of functionally equivalent service
functions.

7. Create port chain PC1 with port pair groups PPG1 and PPG2 and flow classifier FC1.

$ neutron port-chain-create \

--port-pair-group PPG1 --port-pair-group PPG2 \

--flow-classifier FC1 PC1

Note: You can repeat the --port-pair-group option to specify additional port pair groups in the port
chain. A port chain must contain at least one port pair group.

You can repeat the --flow-classifier option to specify multiple flow classifiers for a port chain.
Each flow classifier identifies a flow.

Update a port chain or port pair group

• Use the neutron port-chain-update command to dynamically add or remove port pair groups or
flow classifiers on a port chain.

– For example, add port pair group PPG3 to port chain PC1:

$ neutron port-chain-update \

--port-pair-group PPG1 --port-pair-group PPG2 --port-pair-group PPG3 \

--flow-classifier FC1 PC1

– For example, add flow classifier FC2 to port chain PC1:

$ neutron port-chain-update \

--port-pair-group PPG1 --port-pair-group PPG2 \

--flow-classifier FC1 --flow-classifier FC2 PC1

SFC steers traffic matching the additional flow classifier to the port pair groups in the port chain.

• Use the neutron port-pair-group-update command to perform dynamic scale-out or scale-in op-
erations by adding or removing port pairs on a port pair group.

148 Configuration

Networking Guide (Release Version: 15.0.0)

$ neutron port-pair-group-update \

--port-pair PP1 --port-pair PP2 --port-pair PP4 PPG1

SFC performs load balancing/distribution over the additional service functions in the port pair group.

SR-IOV

The purpose of this page is to describe how to enable SR-IOV functionality available in OpenStack (using
OpenStack Networking). This functionality was first introduced in the OpenStack Juno release. This page
intends to serve as a guide for how to configure OpenStack Networking and OpenStack Compute to create
SR-IOV ports.

The basics

PCI-SIG Single Root I/O Virtualization and Sharing (SR-IOV) functionality is available in OpenStack since
the Juno release. The SR-IOV specification defines a standardized mechanism to virtualize PCIe devices. This
mechanism can virtualize a single PCIe Ethernet controller to appear as multiple PCIe devices. Each device
can be directly assigned to an instance, bypassing the hypervisor and virtual switch layer. As a result, users are
able to achieve low latency and near-line wire speed.

The following terms are used throughout this document:

Term Definition

PF Physical Function. The physical Ethernet controller that supports SR-IOV.
VF Virtual Function. The virtual PCIe device created from a physical Ethernet controller.

SR-IOV agent

The SR-IOV agent allows you to set the admin state of ports, configure port security (enable and disable spoof
checking), and configure QoS rate limiting. You must include the SR-IOV agent on each compute node using
SR-IOV ports.

Note: The SR-IOV agent was optional before Mitaka, and was not enabled by default before Liberty.

Note: The ability to control port security and QoS rate limit settings was added in Liberty.

Supported Ethernet controllers

The following manufacturers are known to work:

• Intel

• Mellanox

• QLogic

Configuration 149

Networking Guide (Release Version: 15.0.0)

For information onMellanox SR-IOV Ethernet ConnectX-3/ConnectX-3 Pro cards, see Mellanox: How To
Configure SR-IOV VFs.

For information on QLogic SR-IOV Ethernet cards, see User’s Guide OpenStack Deployment with SR-IOV
Configuration.

Using SR-IOV interfaces

In order to enable SR-IOV, the following steps are required:

1. Create Virtual Functions (Compute)

2. Whitelist PCI devices in nova-compute (Compute)

3. Configure neutron-server (Controller)

4. Configure nova-scheduler (Controller)

5. Enable neutron sriov-agent (Compute)

We recommend using VLAN provider networks for segregation. This way you can combine instances without
SR-IOV ports and instances with SR-IOV ports on a single network.

Note: Throughout this guide, eth3 is used as the PF and physnet2 is used as the provider network configured
as a VLAN range. These ports may vary in different environments.

Create Virtual Functions (Compute)

Create the VFs for the network interface that will be used for SR-IOV. We use eth3 as PF, which is also used
as the interface for the VLAN provider network and has access to the private networks of all machines.

Note: The steps detail how to create VFs using Mellanox ConnectX-4 and newer/Intel SR-IOV Ethernet cards
on an Intel system. Steps may differ for different hardware configurations.

1. Ensure SR-IOV and VT-d are enabled in BIOS.

2. Enable IOMMU in Linux by adding intel_iommu=on to the kernel parameters, for example, using
GRUB.

3. On each compute node, create the VFs via the PCI SYS interface:

echo '8' > /sys/class/net/eth3/device/sriov_numvfs

Note: On some PCI devices, observe that when changing the amount of VFs you receive the error
Device or resource busy. In this case, you must first set sriov_numvfs to 0, then set it to your
new value.

150 Configuration

https://community.mellanox.com/docs/DOC-1484
https://community.mellanox.com/docs/DOC-1484
http://www.qlogic.com/solutions/Documents/UsersGuide_OpenStack_SR-IOV.pdf
http://www.qlogic.com/solutions/Documents/UsersGuide_OpenStack_SR-IOV.pdf

Networking Guide (Release Version: 15.0.0)

Warning: Alternatively, you can create VFs by passing the max_vfs to the kernel module of your
network interface. However, the max_vfs parameter has been deprecated, so the PCI SYS interface
is the preferred method.

You can determine the maximum number of VFs a PF can support:

cat /sys/class/net/eth3/device/sriov_totalvfs

63

4. Verify that the VFs have been created and are in up state:

lspci | grep Ethernet

82:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network�

↪→Connection (rev 01)

82:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network�

↪→Connection (rev 01)

82:10.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:10.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:10.4 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:10.6 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:11.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:11.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:11.4 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

82:11.6 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual�

↪→Function (rev 01)

ip link show eth3

8: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT�

↪→qlen 1000

link/ether a0:36:9f:8f:3f:b8 brd ff:ff:ff:ff:ff:ff

vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 1 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 2 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 3 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 4 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 5 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 6 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

vf 7 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

If the interfaces are down, set them to up before launching a guest, otherwise the instance will fail to
spawn:

ip link set eth3 up

5. Persist created VFs on reboot:

echo "echo '7' > /sys/class/net/eth3/device/sriov_numvfs" >> /etc/rc.local

Configuration 151

Networking Guide (Release Version: 15.0.0)

Note: The suggested way of making PCI SYS settings persistent is through the sysfsutils tool.
However, this is not available by default on many major distributions.

Whitelist PCI devices nova-compute (Compute)

1. Configure which PCI devices the nova-compute service may use. Edit the nova.conf file:

[default]

pci_passthrough_whitelist = { "devname": "eth3", "physical_network": "physnet2"}

This tells the Compute service that all VFs belonging to eth3 are allowed to be passed through to in-
stances and belong to the provider network physnet2.

Alternatively the pci_passthrough_whitelist parameter also supports whitelisting by:

• PCI address: The address uses the same syntax as in lspci and an asterisk (*) can be used to match
anything.

pci_passthrough_whitelist = { "address": "[[[[<domain>]:]<bus>]:][<slot>][.[

↪→<function>]]", "physical_network": "physnet2" }

For example, to match any domain, bus 0a, slot 00, and all functions:

pci_passthrough_whitelist = { "address": "*:0a:00.*", "physical_network":

↪→"physnet2" }

• PCI vendor_id and product_id as displayed by the Linux utility lspci.

pci_passthrough_whitelist = { "vendor_id": "<id>", "product_id": "<id>",

↪→"physical_network": "physnet2" }

If the device defined by the PCI address or devname corresponds to an SR-IOV PF, all VFs under the PF
will match the entry. Multiple pci_passthrough_whitelist entries per host are supported.

2. Restart the nova-compute service for the changes to go into effect.

Configure neutron-server (Controller)

1. Add sriovnicswitch as mechanism driver. Edit the ml2_conf.ini file on each controller:

mechanism_drivers = openvswitch,sriovnicswitch

2. Add the ml2_conf_sriov.ini file as parameter to the neutron-server service. Edit the appropriate
initialization script to configure the neutron-server service to load the SR-IOV configuration file:

--config-file /etc/neutron/neutron.conf

--config-file /etc/neutron/plugin.ini

--config-file /etc/neutron/plugins/ml2/ml2_conf_sriov.ini

3. Restart the neutron-server service.

152 Configuration

Networking Guide (Release Version: 15.0.0)

Configure nova-scheduler (Controller)

1. On every controller node running the nova-scheduler service, add PciPassthroughFilter

to scheduler_default_filters to enable PciPassthroughFilter by default. Also ensure
scheduler_available_filters parameter under the [DEFAULT] section in nova.conf is set to
all_filters to enable all filters provided by the Compute service.

[DEFAULT]

scheduler_default_filters = RetryFilter, AvailabilityZoneFilter, RamFilter,�

↪→ComputeFilter, ComputeCapabilitiesFilter, ImagePropertiesFilter,�

↪→ServerGroupAntiAffinityFilter, ServerGroupAffinityFilter, PciPassthroughFilter

scheduler_available_filters = nova.scheduler.filters.all_filters

2. Restart the nova-scheduler service.

Enable neutron sriov-agent (Compute)

1. Install the SR-IOV agent.

2. Edit the sriov_agent.ini file on each compute node. For example:

[securitygroup]

firewall_driver = neutron.agent.firewall.NoopFirewallDriver

[sriov_nic]

physical_device_mappings = physnet2:eth3

exclude_devices =

Note: The physical_device_mappings parameter is not limited to be a 1-1 mapping between phys-
ical networks and NICs. This enables you to map the same physical network to more than one NIC. For
example, if physnet2 is connected to eth3 and eth4, then physnet2:eth3,physnet2:eth4 is a valid
option.

The exclude_devices parameter is empty, therefore, all the VFs associated with eth3 may be config-
ured by the agent. To exclude specific VFs, add them to the exclude_devices parameter as follows:

exclude_devices = eth1:0000:07:00.2;0000:07:00.3,eth2:0000:05:00.1;0000:05:00.2

3. Ensure the neutron sriov-agent runs successfully:

neutron-sriov-nic-agent \

--config-file /etc/neutron/neutron.conf \

--config-file /etc/neutron/plugins/ml2/sriov_agent.ini

4. Enable the neutron sriov-agent service.

If installing from source, you must configure a daemon file for the init system manually.

(Optional) FDB L2 agent extension

Forwarding DataBase (FDB) population is an L2 agent extension to OVS agent or Linux bridge. Its objective is
to update the FDB table for existing instance using normal port. This enables communication between SR-IOV

Configuration 153

Networking Guide (Release Version: 15.0.0)

instances and normal instances. The use cases of the FDB population extension are:

• Direct port and normal port instances reside on the same compute node.

• Direct port instance that uses floating IP address and network node are located on the same host.

For additional information describing the problem, refer to: Virtual switching technologies and Linux bridge.

1. Edit the ovs_agent.ini or linuxbridge_agent.ini file on each compute node. For example:

[agent]

extensions = fdb

2. Add the FDB section and the shared_physical_device_mappings parameter. This parameter maps
each physical port to its physical network name. Each physical network can be mapped to several ports:

[FDB]

shared_physical_device_mappings = physnet1:p1p1, physnet1:p1p2

Launching instances with SR-IOV ports

Once configuration is complete, you can launch instances with SR-IOV ports.

1. Get the id of the network where you want the SR-IOV port to be created:

$ net_id=`neutron net-show net04 | grep "\ id\ " | awk '{ print $4 }'`

2. Create the SR-IOV port. vnic_type=direct is used here, but other options include normal,
direct-physical, and macvtap:

$ port_id=`neutron port-create $net_id --name sriov_port --binding:vnic_type direct |�

↪→grep "\ id\ " | awk '{ print $4 }'`

3. Create the instance. Specify the SR-IOV port created in step two for the NIC:

$ openstack server create --flavor m1.large --image ubuntu_14.04 --nic port-id=$port_

↪→id test-sriov

Note: There are two ways to attach VFs to an instance. You can create an SR-IOV port or use the
pci_alias in the Compute service. For more information about using pci_alias, refer to nova-api
configuration.

SR-IOV with InfiniBand

The support for SR-IOV with InfiniBand allows a Virtual PCI device (VF) to be directly mapped to the guest,
allowing higher performance and advanced features such as RDMA (remote direct memory access). To use this
feature, you must:

1. Use InfiniBand enabled network adapters.

2. Run InfiniBand subnet managers to enable InfiniBand fabric.

154 Configuration

http://events.linuxfoundation.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf
https://docs.openstack.org/admin-guide/compute-pci-passthrough.html#configure-nova-api-controller
https://docs.openstack.org/admin-guide/compute-pci-passthrough.html#configure-nova-api-controller

Networking Guide (Release Version: 15.0.0)

All InfiniBand networks must have a subnet manager running for the network to function. This is true
even when doing a simple network of two machines with no switch and the cards are plugged in back-
to-back. A subnet manager is required for the link on the cards to come up. It is possible to have more
than one subnet manager. In this case, one of them will act as the master, and any other will act as a slave
that will take over when the master subnet manager fails.

3. Install the ebrctl utility on the compute nodes.

Check that ebrctl is listed somewhere in /etc/nova/rootwrap.d/*:

$ grep 'ebrctl' /etc/nova/rootwrap.d/*

If ebrctl does not appear in any of the rootwrap files, add this to the /etc/nova/rootwrap.d/

compute.filters file in the [Filters] section.

[Filters]

ebrctl: CommandFilter, ebrctl, root

Known limitations

• When using Quality of Service (QoS), max_burst_kbps (burst over max_kbps) is not supported. In
addition, max_kbps is rounded to Mbps.

• Security groups are not supported when using SR-IOV, thus, the firewall driver must be disabled. This
can be done in the neutron.conf file.

[securitygroup]

firewall_driver = neutron.agent.firewall.NoopFirewallDriver

• SR-IOV is not integrated into the OpenStack Dashboard (horizon). Users must use the CLI or API to
configure SR-IOV interfaces.

• Live migration is not supported for instances with SR-IOV ports.

Note: SR-IOV features may require a specific NIC driver version, depending on the vendor. Intel NICs,
for example, require ixgbe version 4.4.6 or greater, and ixgbevf version 3.2.2 or greater.

Subnet pools

Subnet pools have been made available since the Kilo release. It is a simple feature that has the potential to
improve your workflow considerably. It also provides a building block from which other new features will be
built in to OpenStack Networking.

To see if your cloud has this feature available, you can check that it is listed in the supported aliases. You can
do this with the OpenStack client.

$ openstack extension list | grep subnet_allocation

| Subnet Allocation | subnet_allocation | Enables allocation of subnets

from a subnet pool �

↪→ |

Configuration 155

Networking Guide (Release Version: 15.0.0)

Why you need them

Before Kilo, Networking had no automation around the addresses used to create a subnet. To create one, you
had to come up with the addresses on your own without any help from the system. There are valid use cases
for this but if you are interested in the following capabilities, then subnet pools might be for you.

First, would not it be nice if you could turn your pool of addresses over to Neutron to take care of? When you
need to create a subnet, you just ask for addresses to be allocated from the pool. You do not have to worry about
what you have already used and what addresses are in your pool. Subnet pools can do this.

Second, subnet pools can manage addresses across projects. The addresses are guaranteed not to overlap. If the
addresses come from an externally routable pool then you know that all of the projects have addresses which
are routable and unique. This can be useful in the following scenarios.

1. IPv6 since OpenStack Networking has no IPv6 floating IPs.

2. Routing directly to a project network from an external network.

How they work

A subnet pool manages a pool of addresses from which subnets can be allocated. It ensures that there is no
overlap between any two subnets allocated from the same pool.

As a regular project in an OpenStack cloud, you can create a subnet pool of your own and use it to manage your
own pool of addresses. This does not require any admin privileges. Your pool will not be visible to any other
project.

If you are an admin, you can create a pool which can be accessed by any regular project. Being a shared
resource, there is a quota mechanism to arbitrate access.

Quotas

Subnet pools have a quota system which is a little bit different than other quotas in Neutron. Other quotas in
Neutron count discrete instances of an object against a quota. Each time you create something like a router,
network, or a port, it uses one from your total quota.

With subnets, the resource is the IP address space. Some subnets take more of it than others. For example,
203.0.113.0/24 uses 256 addresses in one subnet but 198.51.100.224/28 uses only 16. If address space is limited,
the quota system can encourage efficient use of the space.

With IPv4, the default_quota can be set to the number of absolute addresses any given project is allowed to
consume from the pool. For example, with a quota of 128, I might get 203.0.113.128/26, 203.0.113.224/28,
and still have room to allocate 48 more addresses in the future.

With IPv6 it is a little different. It is not practical to count individual addresses. To avoid ridiculously large
numbers, the quota is expressed in the number of /64 subnets which can be allocated. For example, with
a default_quota of 3, I might get 2001:db8:c18e:c05a::/64, 2001:db8:221c:8ef3::/64, and still have room to
allocate one more prefix in the future.

Default subnet pools

Beginning with Mitaka, a subnet pool can be marked as the default. This is handled with a new extension.

156 Configuration

Networking Guide (Release Version: 15.0.0)

$ openstack extension list | grep default-subnetpools

| Default Subnetpools | default-subnetpools | Provides ability to mark

and use a subnetpool as the default �

↪→ |

An administrator can mark a pool as default. Only one pool from each address family can be marked default.

$ openstack subnet pool set --default 74348864-f8bf-4fc0-ab03-81229d189467

If there is a default, it can be requested by passing --use-default-subnetpool instead of --subnet-pool
SUBNETPOOL.

Demo

If you have access to an OpenStack Kilo or later based neutron, you can play with this feature now. Give it a
try. All of the following commands work equally as well with IPv6 addresses.

First, as admin, create a shared subnet pool:

$ openstack subnet pool create --share --pool-prefix 203.0.113.0/24 \

--default-prefix-length 26 demo-subnetpool4

+-------------------+--------------------------------+

| Field | Value |

+-------------------+--------------------------------+

| address_scope_id | None |

| created_at | 2016-12-14T07:21:26Z |

| default_prefixlen | 26 |

| default_quota | None |

| description | |

| headers | |

| id | d3aefb76-2527-43d4-bc21-0ec253 |

| | 908545 |

| ip_version | 4 |

| is_default | False |

| max_prefixlen | 32 |

| min_prefixlen | 8 |

| name | demo-subnetpool4 |

| prefixes | 203.0.113.0/24 |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d |

| | 7c |

| revision_number | 1 |

| shared | True |

| updated_at | 2016-12-14T07:21:26Z |

+-------------------+--------------------------------+

The default_prefix_length defines the subnet size you will get if you do not specify --prefix-length
when creating a subnet.

Do essentially the same thing for IPv6 and there are now two subnet pools. Regular projects can see them. (the
output is trimmed a bit for display)

$ openstack subnet pool list

+------------------+------------------+--------------------+

| ID | Name | Prefixes |

+------------------+------------------+--------------------+

Configuration 157

Networking Guide (Release Version: 15.0.0)

| 2b7cc19f-0114-4e | demo-subnetpool | 2001:db8:a583::/48 |

| f4-ad86-c1bb91fc | | |

| d1f9 | | |

| d3aefb76-2527-43 | demo-subnetpool4 | 203.0.113.0/24 |

| d4-bc21-0ec25390 | | |

| 8545 | | |

+------------------+------------------+--------------------+

Now, use them. It is easy to create a subnet from a pool:

$ openstack subnet create --ip-version 4 --subnet-pool \

demo-subnetpool4 --network demo-network1 demo-subnet1

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 203.0.113.194-203.0.113.254 |

| cidr | 203.0.113.192/26 |

| created_at | 2016-12-14T07:33:13Z |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 203.0.113.193 |

| headers | |

| host_routes | |

| id | 8d4fbae3-076c-4c08-b2dd-2d6175115a5e |

| ip_version | 4 |

| ipv6_address_mode | None |

| ipv6_ra_mode | None |

| name | demo-subnet1 |

| network_id | 6b377f77-ce00-4ff6-8676-82343817470d |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| revision_number | 2 |

| service_types | |

| subnetpool_id | d3aefb76-2527-43d4-bc21-0ec253908545 |

| updated_at | 2016-12-14T07:33:13Z |

+-------------------+--------------------------------------+

You can request a specific subnet from the pool. You need to specify a subnet that falls within the pool’s
prefixes. If the subnet is not already allocated, the request succeeds. You can leave off the IP version because
it is deduced from the subnet pool.

$ openstack subnet create --subnet-pool demo-subnetpool4 \

--network demo-network1 --subnet-range 203.0.113.128/26 subnet2

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| allocation_pools | 203.0.113.130-203.0.113.190 |

| cidr | 203.0.113.128/26 |

| created_at | 2016-12-14T07:27:40Z |

| description | |

| dns_nameservers | |

| enable_dhcp | True |

| gateway_ip | 203.0.113.129 |

| headers | |

| host_routes | |

| id | d32814e3-cf46-4371-80dd-498a80badfba |

| ip_version | 4 |

158 Configuration

Networking Guide (Release Version: 15.0.0)

| ipv6_address_mode | None |

| ipv6_ra_mode | None |

| name | subnet2 |

| network_id | 6b377f77-ce00-4ff6-8676-82343817470d |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| revision_number | 2 |

| service_types | |

| subnetpool_id | d3aefb76-2527-43d4-bc21-0ec253908545 |

| updated_at | 2016-12-14T07:27:40Z |

+-------------------+--------------------------------------+

If the pool becomes exhausted, load some more prefixes:

$ openstack subnet pool set --pool-prefix \

198.51.100.0/24 demo-subnetpool4

$ openstack subnet pool show demo-subnetpool4

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| address_scope_id | None |

| created_at | 2016-12-14T07:21:26Z |

| default_prefixlen | 26 |

| default_quota | None |

| description | |

| id | d3aefb76-2527-43d4-bc21-0ec253908545 |

| ip_version | 4 |

| is_default | False |

| max_prefixlen | 32 |

| min_prefixlen | 8 |

| name | demo-subnetpool4 |

| prefixes | 198.51.100.0/24, 203.0.113.0/24 |

| project_id | cfd1889ac7d64ad891d4f20aef9f8d7c |

| revision_number | 2 |

| shared | True |

| updated_at | 2016-12-14T07:30:32Z |

+-------------------+--------------------------------------+

Service subnets

Service subnets enable operators to define valid port types for each subnet on a network without limiting net-
works to one subnet or manually creating ports with a specific subnet ID. Using this feature, operators can
ensure that ports for instances and router interfaces, for example, always use different subnets.

Operation

Define one or more service types for one or more subnets on a particular network. Each service type must
correspond to a valid device owner within the port model in order for it to be used.

During IP allocation, the IPAM driver returns an address from a subnet with a service type matching the port
device owner. If no subnets match, or all matching subnets lack available IP addresses, the IPAMdriver attempts
to use a subnet without any service types to preserve compatibility. If all subnets on a network have a service
type, the IPAM driver cannot preserve compatibility. However, this feature enables strict IP allocation from
subnets with a matching device owner. If multiple subnets contain the same service type, or a subnet without

Configuration 159

Networking Guide (Release Version: 15.0.0)

a service type exists, the IPAM driver selects the first subnet with a matching service type. For example, a
floating IP agent gateway port uses the following selection process:

• network:floatingip_agent_gateway

• None

Note: Ports with the device owner network:dhcp are exempt from the above IPAM logic for subnets with
dhcp_enabled set to True. This preserves the existing automatic DHCP port creation behaviour for DHCP-
enabled subnets.

Creating or updating a port with a specific subnet skips this selection process and explicitly uses the given
subnet.

Usage

Note: Creating a subnet with a service type requires administrative privileges.

Example 1 - Proof-of-concept

This following example is not typical of an actual deployment. It is shown to allow users to experiment with
configuring service subnets.

1. Create a network.

$ openstack network create demo-net1

+---------------------------+--------------------------------------+

| Field | Value |

+---------------------------+--------------------------------------+

| admin_state_up | UP |

| availability_zone_hints | |

| availability_zones | |

| description | |

| headers | |

| id | b5b729d8-31cc-4d2c-8284-72b3291fec02 |

| ipv4_address_scope | None |

| ipv6_address_scope | None |

| mtu | 1450 |

| name | demo-net1 |

| port_security_enabled | True |

| project_id | a3db43cd0f224242a847ab84d091217d |

| provider:network_type | vxlan |

| provider:physical_network | None |

| provider:segmentation_id | 110 |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | [] |

+---------------------------+--------------------------------------+

160 Configuration

Networking Guide (Release Version: 15.0.0)

2. Create a subnet on the network with one or more service types. For example, the compute:nova service
type enables instances to use this subnet.

$ openstack subnet create demo-subnet1 --subnet-range 192.0.2.0/24 \

--service-type 'compute:nova' --network demo-net1

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| id | 6e38b23f-0b27-4e3c-8e69-fd23a3df1935 |

| ip_version | 4 |

| cidr | 192.0.2.0/24 |

| name | demo-subnet1 |

| network_id | b5b729d8-31cc-4d2c-8284-72b3291fec02 |

| service_types | ['compute:nova'] |

| tenant_id | a8b3054cc1214f18b1186b291525650f |

+-------------------+--------------------------------------+

3. Optionally, create another subnet on the network with a different service type. For example, the
compute:foo arbitrary service type.

$ openstack subnet create demo-subnet2 --subnet-range 198.51.100.0/24 \

--service-type 'compute:foo' --network demo-net1

+-------------------+--------------------------------------+

| Field | Value |

+-------------------+--------------------------------------+

| id | ea139dcd-17a3-4f0a-8cca-dff8b4e03f8a |

| ip_version | 4 |

| cidr | 198.51.100.0/24 |

| name | demo-subnet2 |

| network_id | b5b729d8-31cc-4d2c-8284-72b3291fec02 |

| service_types | ['compute:foo'] |

| tenant_id | a8b3054cc1214f18b1186b291525650f |

+-------------------+--------------------------------------+

4. Launch an instance using the network. For example, using the cirros image and m1.tiny flavor.

$ openstack server create demo-instance1 --flavor m1.tiny \

--image cirros --nic net-id=b5b729d8-31cc-4d2c-8284-72b3291fec02

+--------------------------------------+--

↪→-+

| Field | Value �

↪→ |

+--------------------------------------+--

↪→-+

| OS-DCF:diskConfig | MANUAL �

↪→ |

| OS-EXT-AZ:availability_zone | �

↪→ |

| OS-EXT-SRV-ATTR:host | None �

↪→ |

| OS-EXT-SRV-ATTR:hypervisor_hostname | None �

↪→ |

| OS-EXT-SRV-ATTR:instance_name | instance-00000009 �

↪→ |

| OS-EXT-STS:power_state | 0 �

↪→ |

| OS-EXT-STS:task_state | scheduling �

↪→ |

Configuration 161

Networking Guide (Release Version: 15.0.0)

| OS-EXT-STS:vm_state | building �

↪→ |

| OS-SRV-USG:launched_at | None �

↪→ |

| OS-SRV-USG:terminated_at | None �

↪→ |

| accessIPv4 | �

↪→ |

| accessIPv6 | �

↪→ |

| addresses | �

↪→ |

| adminPass | Fn85skabdxBL �

↪→ |

| config_drive | �

↪→ |

| created | 2016-09-19T15:07:42Z �

↪→ |

| flavor | m1.tiny (1) �

↪→ |

| hostId | �

↪→ |

| id | 04222b73-1a6e-4c2a-9af4-ef3d17d521ff �

↪→ |

| image | cirros (4aaec87d-c655-4856-8618-

↪→b2dada3a2b11) |

| key_name | None �

↪→ |

| name | demo-instance1 �

↪→ |

| os-extended-volumes:volumes_attached | [] �

↪→ |

| progress | 0 �

↪→ |

| project_id | d44c19e056674381b86430575184b167 �

↪→ |

| properties | �

↪→ |

| security_groups | [{u'name': u'default'}] �

↪→ |

| status | BUILD �

↪→ |

| updated | 2016-09-19T15:07:42Z �

↪→ |

| user_id | 331afbeb322d4c559a181e19051ae362 �

↪→ |

+--------------------------------------+--

↪→-+

5. Check the instance status. The Networks field contains an IP address from the subnet having the
compute:nova service type.

$ openstack server list

+--------------------------------------+-----------------+---------+------------------

↪→---+

| ID | Name | Status | Networks �

↪→ |

162 Configuration

Networking Guide (Release Version: 15.0.0)

+--------------------------------------+-----------------+---------+------------------

↪→---+

| 20181f46-5cd2-4af8-9af0-f4cf5c983008 | demo-instance1 | ACTIVE | demo-net1=192.0.

↪→2.3 |

+--------------------------------------+-----------------+---------+------------------

↪→---+

Example 2 - DVR configuration

The following example outlines how you can configure service subnets in a DVR-enabled deployment, with
the goal of minimizing public IP address consumption. This example uses three subnets on the same external
network:

• 192.0.2.0/24 for instance floating IP addresses

• 198.51.100.0/24 for floating IP agent gateway IPs configured on compute nodes

• 203.0.113.0/25 for all other IP allocations on the external network

This example uses again the private network, demo-net1 (b5b729d8-31cc-4d2c-8284-72b3291fec02) which
was created in Example 1 - Proof-of-concept.

1. Create an external network:

$ openstack network create --external demo-ext-net

2. Create a subnet on the external network for the instance floating IP addresses. This uses the
network:floatingip service type.

$ openstack subnet create demo-floating-ip-subnet \

--subnet-range 192.0.2.0/24 --no-dhcp \

--service-type 'network:floatingip' --network demo-ext-net

3. Create a subnet on the external network for the floating IP agent gateway IP addresses, which are con-
figured by DVR on compute nodes. This will use the network:floatingip_agent_gateway service
type.

$ openstack subnet create demo-floating-ip-agent-gateway-subnet \

--subnet-range 198.51.100.0/24 --no-dhcp \

--service-type 'network:floatingip_agent_gateway' \

--network demo-ext-net

4. Create a subnet on the external network for all other IP addresses allocated on the external network. This
will not use any service type. It acts as a fall back for allocations that do not match either of the above
two service subnets.

$ openstack subnet create demo-other-subnet \

--subnet-range 203.0.113.0/25 --no-dhcp \

--network demo-ext-net

5. Create a router:

$ openstack router create demo-router

6. Add an interface to the router on demo-subnet1:

Configuration 163

Networking Guide (Release Version: 15.0.0)

$ openstack router add subnet demo-router demo-subnet1

7. Set the external gateway for the router, which will create an interface and allocate an IP address on
demo-ext-net:

$ neutron router-gateway-set demo-router demo-ext-net

8. Launch an instance on a private network and retrieve the neutron port ID that was allocated. As above,
use the cirros image and m1.tiny flavor:

$ openstack server create demo-instance1 --flavor m1.tiny \

--image cirros --nic net-id=b5b729d8-31cc-4d2c-8284-72b3291fec02

$ openstack port list --server demo-instance1

+--------------------------------------+------+-------------------+-------------------

↪→-------------------------------+--------+

| ID | Name | MAC Address | Fixed IP�

↪→Addresses | Status |

+--------------------------------------+------+-------------------+-------------------

↪→-------------------------------+--------+

| a752bb24-9bf2-4d37-b9d6-07da69c86f19 | | fa:16:3e:99:54:32 | ip_address='203.0.

↪→113.130', | ACTIVE |

| | | | subnet_id=

↪→'6e38b23f-0b27-4e3c-8e69-fd23a3df1935' | |

+--------------------------------------+------+-------------------+-------------------

↪→-------------------------------+--------+

9. Associate a floating IP with the instance port and verify it was allocated an IP address from the correct
subnet:

$ openstack floating ip create --port \

a752bb24-9bf2-4d37-b9d6-07da69c86f19 demo-ext-net

+---------------------+--------------------------------------+

| Field | Value |

+---------------------+--------------------------------------+

| fixed_ip_address | 203.0.113.130 |

| floating_ip_address | 192.0.2.12 |

| floating_network_id | 02d236d5-dad9-4082-bb6b-5245f9f84d13 |

| id | f15cae7f-5e05-4b19-bd25-4bb71edcf3de |

| port_id | a752bb24-9bf2-4d37-b9d6-07da69c86f19 |

| project_id | d44c19e056674381b86430575184b167 |

| router_id | 5a8ca19f-3703-4f81-bc29-db6bc2f528d6 |

| status | ACTIVE |

+---------------------+--------------------------------------+

10. As the admin user, verify the neutron routers are allocated IP addresses from their correct subnets. Use
openstack port list to find ports associated with the routers.

First, the router gateway external port:

$ neutron port-show f148ffeb-3c26-4067-bc5f-5c3dfddae2f5

+-----------------------+---

↪→-------------+

| Field | Value �

↪→ |

+-----------------------+---

↪→-------------+

| admin_state_up | UP �

↪→ |

164 Configuration

Networking Guide (Release Version: 15.0.0)

| device_id | 5a8ca19f-3703-4f81-bc29-db6bc2f528d6 �

↪→ |

| device_owner | network:router_gateway �

↪→ |

| extra_dhcp_opts | �

↪→ |

| fixed_ips | ip_address='203.0.113.11', �

↪→ |

| | subnet_id='67c251d9-2b7a-4200-99f6-e13785b0334d' �

↪→ |

| id | f148ffeb-3c26-4067-bc5f-5c3dfddae2f5 �

↪→ |

| mac_address | fa:16:3e:2c:0f:69 �

↪→ |

| network_id | 02d236d5-dad9-4082-bb6b-5245f9f84d13 �

↪→ |

| project_id | �

↪→ |

| status | ACTIVE �

↪→ |

+-----------------------+---

↪→-------------+

Second, the router floating IP agent gateway external port:

$ neutron port-show a2d1e756-8ae1-4f96-9aa1-e7ea16a6a68a

+-----------------------+---

↪→-------------+

| Field | Value �

↪→ |

+-----------------------+---

↪→-------------+

| admin_state_up | UP �

↪→ |

| device_id | 3d0c98eb-bca3-45cc-8aa4-90ae3deb0844 �

↪→ |

| device_owner | network:floatingip_agent_gateway �

↪→ |

| extra_dhcp_opts | �

↪→ |

| fixed_ips | ip_address='198.51.100.10', �

↪→ |

| | subnet_id='67c251d9-2b7a-4200-99f6-e13785b0334d' �

↪→ |

| id | a2d1e756-8ae1-4f96-9aa1-e7ea16a6a68a �

↪→ |

| mac_address | fa:16:3e:f4:5d:fa �

↪→ |

| network_id | 02d236d5-dad9-4082-bb6b-5245f9f84d13 �

↪→ |

| project_id | �

↪→ |

| status | ACTIVE �

↪→ |

+-----------------------+---

↪→-------------+

Configuration 165

Networking Guide (Release Version: 15.0.0)

Trunking

The network trunk service allows multiple networks to be connected to an instance using a single virtual NIC
(vNIC). Multiple networks can be presented to an instance by connecting it to a single port.

Operation

Network trunking consists of a service plug-in and a set of drivers that manage trunks on different layer-2
mechanism drivers. Users can create a port, associate it with a trunk, and launch an instance on that port. Users
can dynamically attach and detach additional networks without disrupting operation of the instance.

Every trunk has a parent port and can have any number of subports. The parent port is the port that the trunk
is associated with. Users create instances and specify the parent port of the trunk when launching instances
attached to a trunk.

The network presented by the subport is the network of the associated port. When creating a subport, a
segmentation-id may be required by the driver. segmentation-id defines the segmentation ID on which
the subport network is presented to the instance. segmentation-type may be required by certain drivers like
OVS, although at this time only vlan is supported as a segmentation-type.

Note: The segmentation-type and segmentation-id parameters are optional in the Networking API.
However, all drivers as of the Newton release require both to be provided when adding a subport to a trunk.
Future drivers may be implemented without this requirement.

The segmentation-type and segmentation-id specified by the user on the subports is intentionally decou-
pled from the segmentation-type and ID of the networks. For example, it is possible to configure the Net-
working service with tenant_network_types = vxlan and still create subports with segmentation_type
= vlan. The Networking service performs remapping as necessary.

Example configuration

The ML2 plug-in supports trunking with the following mechanism drivers:

• Open vSwitch (OVS)

• Linux bridge

• Open Virtual Network (OVN)

When using a segmentation-type of vlan, the OVS and Linux bridge drivers present the network of the
parent port as the untagged VLAN and all subports as tagged VLANs.

Controller node

• In the neutron.conf file, enable the trunk service plug-in:

[DEFAULT]

service_plugins = trunk

166 Configuration

Networking Guide (Release Version: 15.0.0)

Verify service operation

1. Source the administrative project credentials and list the enabled extensions.

2. Use the command openstack extension list --network to verify that the Trunk Extension and
Trunk port details extensions are enabled.

Workflow

At a high level, the basic steps to launching an instance on a trunk are the following:

1. Create networks and subnets for the trunk and subports

2. Create the trunk

3. Add subports to the trunk

4. Launch an instance on the trunk

Create networks and subnets for the trunk and subports

Create the appropriate networks for the trunk and subports that will be added to the trunk. Create subnets on
these networks to ensure the desired layer-3 connectivity over the trunk.

Create the trunk

• Create a parent port for the trunk.

$ openstack port create --network project-net-A trunk

+-------------------+---

↪→-------+

| Field | Value �

↪→ |

+-------------------+---

↪→-------+

| admin_state_up | UP �

↪→ |

| binding_vif_type | unbound �

↪→ |

| binding_vnic_type | normal �

↪→ |

| fixed_ips | ip_address='192.0.2.7',subnet_id='8b957198-d3cf-4953-8449-

↪→ad4e4dd712cc' |

| id | 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 �

↪→ |

| mac_address | fa:16:3e:dd:c4:d1 �

↪→ |

| name | trunk �

↪→ |

| network_id | 1b47d3e7-cda5-48e4-b0c8-d20bd7e35f55 �

↪→ |

+-------------------+---

↪→-------+

Configuration 167

Networking Guide (Release Version: 15.0.0)

• Create the trunk using --parent-port to reference the port from the previous step:

$ openstack network trunk create --parent-port 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38�

↪→trunk

+-----------------+--------------------------------------+

| Field | Value |

+-----------------+--------------------------------------+

| admin_state_up | UP |

| id | fdf02fcb-1844-45f1-9d9b-e4c2f522c164 |

| name | trunk |

| port_id | 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 |

| sub_ports | |

+-----------------+--------------------------------------+

Add subports to the trunk

Subports can be added to a trunk in two ways: creating the trunk with subports or adding subports to an existing
trunk.

• Create trunk with subports:

This method entails creating the trunk with subports specified at trunk creation.

$ openstack port create --network project-net-A trunk-parent

+-------------------+---

↪→-------+

| Field | Value �

↪→ |

+-------------------+---

↪→-------+

| admin_state_up | UP �

↪→ |

| binding_vif_type | unbound �

↪→ |

| binding_vnic_type | normal �

↪→ |

| fixed_ips | ip_address='192.0.2.7',subnet_id='8b957198-d3cf-4953-8449-

↪→ad4e4dd712cc' |

| id | 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 �

↪→ |

| mac_address | fa:16:3e:dd:c4:d1 �

↪→ |

| name | trunk-parent �

↪→ |

| network_id | 1b47d3e7-cda5-48e4-b0c8-d20bd7e35f55 �

↪→ |

+-------------------+---

↪→-------+

$ openstack port create --network trunked-net subport1

+-------------------+---

↪→-------+

| Field | Value �

↪→ |

+-------------------+---

↪→-------+

168 Configuration

Networking Guide (Release Version: 15.0.0)

| admin_state_up | UP �

↪→ |

| binding_vif_type | unbound �

↪→ |

| binding_vnic_type | normal �

↪→ |

| fixed_ips | ip_address='192.0.2.8',subnet_id='2a860e2c-922b-437b-a149-

↪→b269a8c9b120' |

| id | 91f9dde8-80a4-4506-b5da-c287feb8f5d8 �

↪→ |

| mac_address | fa:16:3e:ba:f0:4d �

↪→ |

| name | subport1 �

↪→ |

| network_id | aef78ec5-16e3-4445-b82d-b2b98c6a86d9 �

↪→ |

+-------------------+---

↪→-------+

$ openstack network trunk create \

--parent-port 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 \

--subport port=91f9dde8-80a4-4506-b5da-c287feb8f5d8, \

segmentation-type=vlan,segmentation-id=100

+----------------+--

↪→-----------------------------+

| Field | Value �

↪→ |

+----------------+--

↪→-----------------------------+

| admin_state_up | UP �

↪→ |

| id | 61d8e620-fe3a-4d8f-b9e6-e1b0dea6d9e3 �

↪→ |

| name | trunk �

↪→ |

| port_id | 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 �

↪→ |

| sub_ports | port_id='73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38', segmentation_id=

↪→'100', segmentation_type='vlan' |

+----------------+--

↪→-----------------------------+

• Add subports to an existing trunk:

This method entails creating a trunk, then adding subports to the trunk after it has already been created.

$ openstack network trunk set --subport \

port=91f9dde8-80a4-4506-b5da-c287feb8f5d8, \

segmentation-type=vlan, \

segmentation-id=100 61d8e620-fe3a-4d8f-b9e6-e1b0dea6d9e3

Note: The command provides no output.

$ openstack network trunk show 61d8e620-fe3a-4d8f-b9e6-e1b0dea6d9e3

+----------------+--

↪→-----------------------------+

Configuration 169

Networking Guide (Release Version: 15.0.0)

| Field | Value �

↪→ |

+----------------+--

↪→-----------------------------+

| admin_state_up | UP �

↪→ |

| id | 61d8e620-fe3a-4d8f-b9e6-e1b0dea6d9e3 �

↪→ |

| name | trunk �

↪→ |

| port_id | 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 �

↪→ |

| sub_ports | port_id='73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38', segmentation_id=

↪→'100', segmentation_type='vlan' |

+----------------+--

↪→-----------------------------+

Launch an instance on the trunk

• Show trunk details to get the port_id of the trunk.

$ openstack network trunk show 61d8e620-fe3a-4d8f-b9e6-e1b0dea6d9e3

+----------------+--------------------------------------+

| Field | Value |

+----------------+--------------------------------------+

| admin_state_up | UP |

| id | 61d8e620-fe3a-4d8f-b9e6-e1b0dea6d9e3 |

| name | trunk |

| port_id | 73fb9d54-43a7-4bb1-a8dc-569e0e0a0a38 |

| sub_ports | |

+----------------+--------------------------------------+

• Launch the instance by specifying port-id using the value of port_id from the trunk details. Launch-
ing an instance on a subport is not supported.

Using trunks and subports inside an instance

When configuring instances to use a subport, ensure that the interface on the instance is set to use the MAC
address assigned to the port by the Networking service. Instances are not made aware of changes made to the
trunk after they are active. For example, when a subport with a segmentation-type of vlan is added to a
trunk, any operations specific to the instance operating system that allow the instance to send and receive traffic
on the new VLAN must be handled outside of the Networking service.

When creating subports, the MAC address of the trunk parent port can be set on the subport. This will allow
VLAN subinterfaces inside an instance launched on a trunk to be configured without explicitly setting a MAC
address. Although unique MAC addresses can be used for subports, this can present issues with ARP spoof
protections and the native OVS firewall driver. If the native OVS firewall driver is to be used, we recommend
that the MAC address of the parent port be re-used on all subports.

Trunk states

• ACTIVE

170 Configuration

Networking Guide (Release Version: 15.0.0)

The trunk is ACTIVEwhen both the logical and physical resources have been created. This means that all
operations within the Networking and Compute services have completed and the trunk is ready for use.

• DOWN

A trunk is DOWNwhen it is first created without an instance launched on it, or when the instance associated
with the trunk has been deleted.

• DEGRADED

A trunk can be in a DEGRADED state when a temporary failure during the provisioning process is encoun-
tered. This includes situations where a subport add or remove operation fails. When in a degraded state,
the trunk is still usable and some subports may be usable as well. Operations that cause the trunk to go
into a DEGRADED state can be retried to fix temporary failures and move the trunk into an ACTIVE state.

• ERROR

A trunk is in ERROR state if the request leads to a conflict or an error that cannot be fixed by retrying the
request. The ERROR status can be encountered if the network is not compatible with the trunk config-
uration or the binding process leads to a persistent failure. When a trunk is in ERROR state, it must be
brought to a sane state (ACTIVE), or else requests to add subports will be rejected.

• BUILD

A trunk is in BUILD state while the resources associated with the trunk are in the process of being provi-
sioned. Once the trunk and all of the subports have been provisioned successfully, the trunk transitions
to ACTIVE. If there was a partial failure, the trunk transitions to DEGRADED.

When admin_state is set to DOWN, the user is blocked from performing operations on the trunk.
admin_state is set by the user and should not be used to monitor the health of the trunk.

Limitations and issues

• See bugs for more information.

Note: For general configuration, see the Configuration Reference.

Deployment examples

The following deployment examples provide building blocks of increasing architectural complexity using the
Networking service reference architecture which implements the Modular Layer 2 (ML2) plug-in and either
the Open vSwitch (OVS) or Linux bridge mechanism drivers. Both mechanism drivers support the same basic
features such as provider networks, self-service networks, and routers. However, more complex features often
require a particular mechanism driver. Thus, you should consider the requirements (or goals) of your cloud
before choosing a mechanism driver.

After choosing a mechanism driver, the deployment examples generally include the following building blocks:

1. Provider (public/external) networks using IPv4 and IPv6

2. Self-service (project/private/internal) networks including routers using IPv4 and IPv6

3. High-availability features

4. Other features such as BGP dynamic routing

Deployment examples 171

https://bugs.launchpad.net/neutron/+bugs?field.tag=trunk
https://docs.openstack.org/ocata/config-reference/

Networking Guide (Release Version: 15.0.0)

Prerequisites

Prerequisites, typically hardware requirements, generally increase with each building block. Each building
block depends on proper deployment and operation of prior building blocks. For example, the first building
block (provider networks) only requires one controller and two compute nodes, the second building block (self-
service networks) adds a network node, and the high-availability building blocks typically add a second network
node for a total of five nodes. Each building block could also require additional infrastructure or changes to
existing infrastructure such as networks.

For basic configuration of prerequisites, see the Ocata Install Tutorials and Guides.

Note: Example commands using the openstack client assume version 3.2.0 or higher.

Nodes

The deployment examples refer one or more of the following nodes:

• Controller: Contains control plane components of OpenStack services and their dependencies.

– Two network interfaces: management and provider.

– Operational SQL server with databases necessary for each OpenStack service.

– Operational message queue service.

– Operational OpenStack Identity (keystone) service.

– Operational OpenStack Image Service (glance).

– Operational management components of the OpenStack Compute (nova) service with appropriate
configuration to use the Networking service.

– OpenStack Networking (neutron) server service and ML2 plug-in.

• Network: Contains the OpenStack Networking service layer-3 (routing) component. High availability
options may include additional components.

– Three network interfaces: management, overlay, and provider.

– OpenStack Networking layer-2 (switching) agent, layer-3 agent, and any dependencies.

• Compute: Contains the hypervisor component of the OpenStack Compute service and the OpenStack
Networking layer-2, DHCP, and metadata components. High-availability options may include additional
components.

– Two network interfaces: management and provider.

– Operational hypervisor components of the OpenStack Compute (nova) service with appropriate
configuration to use the Networking service.

– OpenStack Networking layer-2 agent, DHCP agent, metadata agent, and any dependencies.

Each building block defines the quantity and types of nodes including the components on each node.

Note: You can virtualize these nodes for demonstration, training, or proof-of-concept purposes. However, you
must use physical hosts for evaluation of performance or scaling.

172 Deployment examples

https://docs.openstack.org/project-install-guide/ocata

Networking Guide (Release Version: 15.0.0)

Networks and network interfaces

The deployment examples refer to one or more of the following networks and network interfaces:

• Management: Handles API requests from clients and control plane traffic for OpenStack services in-
cluding their dependencies.

• Overlay: Handles self-service networks using an overlay protocol such as VXLAN or GRE.

• Provider: Connects virtual and physical networks at layer-2. Typically uses physical network infrastruc-
ture for switching/routing traffic to external networks such as the Internet.

Note: For best performance, 10+ Gbps physical network infrastructure should support jumbo frames.

For illustration purposes, the configuration examples typically reference the following IP address ranges:

• Management network: 10.0.0.0/24

• Overlay (tunnel) network: 10.0.1.0/24

• Provider network 1:

– IPv4: 203.0.113.0/24

– IPv6: fd00:203:0:113::/64

• Provider network 2:

– IPv4: 192.0.2.0/24

– IPv6: fd00:192:0:2::/64

• Self-service networks:

– IPv4: 192.168.0.0/16 in /24 segments

– IPv6: fd00:192:168::/48 in /64 segments

You may change them to work with your particular network infrastructure.

Mechanism drivers

Linux bridge mechanism driver

The Linux bridge mechanism driver uses only Linux bridges and veth pairs as interconnection devices. A
layer-2 agent manages Linux bridges on each compute node and any other node that provides layer-3 (routing),
DHCP, metadata, or other network services.

Linux bridge: Provider networks

The provider networks architecture example provides layer-2 connectivity between instances and the physical
network infrastructure using VLAN (802.1q) tagging. It supports one untagged (flat) network and and up to
4095 tagged (VLAN) networks. The actual quantity of VLAN networks depends on the physical network
infrastructure. For more information on provider networks, see Provider networks.

Deployment examples 173

Networking Guide (Release Version: 15.0.0)

Prerequisites

One controller node with the following components:

• Two network interfaces: management and provider.

• OpenStack Networking server service and ML2 plug-in.

Two compute nodes with the following components:

• Two network interfaces: management and provider.

• OpenStack Networking Linux bridge layer-2 agent, DHCP agent, metadata agent, and any dependencies.

Note: Larger deployments typically deploy the DHCP and metadata agents on a subset of compute nodes
to increase performance and redundancy. However, too many agents can overwhelm the message bus. Also,
to further simplify any deployment, you can omit the metadata agent and use a configuration drive to provide
metadata to instances.

Architecture

174 Deployment examples

Networking Guide (Release Version: 15.0.0)

The following figure shows components and connectivity for one untagged (flat) network. In this particular
case, the instance resides on the same compute node as the DHCP agent for the network. If the DHCP agent
resides on another compute node, the latter only contains a DHCP namespace and Linux bridge with a port on
the provider physical network interface.

The following figure describes virtual connectivity among components for two tagged (VLAN) networks. Es-
sentially, each network uses a separate bridge that contains a port on the VLAN sub-interface on the provider
physical network interface. Similar to the single untagged network case, the DHCP agent may reside on a
different compute node.

Deployment examples 175

Networking Guide (Release Version: 15.0.0)

Note: These figures omit the controller node because it does not handle instance network traffic.

Example configuration

Use the following example configuration as a template to deploy provider networks in your environment.

Controller node

1. Install the Networking service components that provides the neutron-server service andML2 plug-in.

2. In the neutron.conf file:

• Configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

176 Deployment examples

Networking Guide (Release Version: 15.0.0)

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

• Disable service plug-ins because provider networks do not require any. However, this breaks por-
tions of the dashboard that manage the Networking service. See the Ocata Install Tutorials and
Guides for more information.

[DEFAULT]

service_plugins =

• Enable two DHCP agents per network so both compute nodes can provide DHCP service provider
networks.

[DEFAULT]

dhcp_agents_per_network = 2

• If necessary, configure MTU.

3. In the ml2_conf.ini file:

• Configure drivers and network types:

[ml2]

type_drivers = flat,vlan

tenant_network_types =

mechanism_drivers = linuxbridge

extension_drivers = port_security

• Configure network mappings:

[ml2_type_flat]

flat_networks = provider

[ml2_type_vlan]

network_vlan_ranges = provider

Note: The tenant_network_types option contains no value because the architecture does not
support self-service networks.

Note: The provider value in the network_vlan_ranges option lacks VLAN ID ranges to
support use of arbitrary VLAN IDs.

Deployment examples 177

https://docs.openstack.org
https://docs.openstack.org
https://docs.openstack.org/project-install-guide/ocata
https://docs.openstack.org/project-install-guide/ocata

Networking Guide (Release Version: 15.0.0)

4. Populate the database.

su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf \

--config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head" neutron

5. Start the following services:

• Server

Compute nodes

1. Install the Networking service Linux bridge layer-2 agent.

2. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the linuxbridge_agent.ini file, configure the Linux bridge agent:

[linux_bridge]

physical_interface_mappings = provider:PROVIDER_INTERFACE

[vxlan]

enable_vxlan = False

[securitygroup]

firewall_driver = iptables

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider net-
works. For example, eth1.

4. In the dhcp_agent.ini file, configure the DHCP agent:

[DEFAULT]

interface_driver = linuxbridge

enable_isolated_metadata = True

force_metadata = True

178 Deployment examples

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

Note: The force_metadata option forces the DHCP agent to provide a host route to the metadata
service on 169.254.169.254 regardless of whether the subnet contains an interface on a router, thus
maintaining similar and predictable metadata behavior among subnets.

5. In the metadata_agent.ini file, configure the metadata agent:

[DEFAULT]

nova_metadata_ip = controller

metadata_proxy_shared_secret = METADATA_SECRET

The value of METADATA_SECRET must match the value of the same option in the [neutron] section of
the nova.conf file.

6. Start the following services:

• Linux bridge agent

• DHCP agent

• Metadata agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 09de6af6-c5f1-4548-8b09-18801f068c57 | Linux bridge agent | compute2 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| 188945d1-9e70-4803-a276-df924e0788a4 | Linux bridge agent | compute1 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| e76c440d-d5f6-4316-a674-d689630b629e | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| e67367de-6657-11e6-86a4-931cd04404bb | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| e8174cae-6657-11e6-89f0-534ac6d0cb5c | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| ece49ec6-6657-11e6-bafb-c7560f19197d | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

The configuration supports one flat or multiple VLAN provider networks. For simplicity, the following proce-
dure creates one flat provider network.

Deployment examples 179

Networking Guide (Release Version: 15.0.0)

1. Source the administrative project credentials.

2. Create a flat network.

$ openstack network create --share --provider-physical-network provider \

--provider-network-type flat provider1

+---------------------------+-----------+-

| Field | Value |

+---------------------------+-----------+

| admin_state_up | UP |

| mtu | 1500 |

| name | provider1 |

| port_security_enabled | True |

| provider:network_type | flat |

| provider:physical_network | provider |

| provider:segmentation_id | None |

| router:external | Internal |

| shared | True |

| status | ACTIVE |

+---------------------------+-----------+

Note: The share option allows any project to use this network. To limit access to provider networks,
see Role-Based Access Control (RBAC).

Note: To create a VLAN network instead of a flat network, change --provider:network_type

flat to --provider-network-type vlan and add --provider-segment with a value referencing
the VLAN ID.

3. Create a IPv4 subnet on the provider network.

$ openstack subnet create --subnet-range 203.0.113.0/24 --gateway 203.0.113.1 \

--network provider1 --allocation-pool start=203.0.113.11,end=203.0.113.250 \

--dns-nameserver 8.8.4.4 provider1-v4

+-------------------+----------------------------+

| Field | Value |

+-------------------+----------------------------+

| allocation_pools | 203.0.113.11-203.0.113.250 |

| cidr | 203.0.113.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

| gateway_ip | 203.0.113.1 |

| ip_version | 4 |

| name | provider1-v4 |

+-------------------+----------------------------+

Note: Enabling DHCP causes the Networking service to provide DHCP which can interfere with exist-
ing DHCP services on the physical network infrastructure.

4. Create a IPv6 subnet on the provider network.

180 Deployment examples

Networking Guide (Release Version: 15.0.0)

$ openstack subnet create --subnet-range fd00:203:0:113::/64 --gateway�

↪→fd00:203:0:113::1 \

--ip-version 6 --ipv6-address-mode slaac --network provider1 \

--dns-nameserver 2001:4860:4860::8844 provider1-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:203:0:113::2-fd00:203:0:113:ffff:ffff:ffff:ffff |

| cidr | fd00:203:0:113::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:203:0:113::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | None |

| name | provider1-v6 |

+-------------------+--+

Note: The Networking service uses the layer-3 agent to provide router advertisement. Provider net-
works rely on physical network infrastructure for layer-3 services rather than the layer-3 agent. Thus,
the physical network infrastructure must provide router advertisement on provider networks for proper
operation of IPv6.

Verify network operation

1. On each compute node, verify creation of the qdhcp namespace.

ip netns

qdhcp-8b868082-e312-4110-8627-298109d4401c

2. Source a regular (non-administrative) project credentials.

3. Create the appropriate security group rules to allow ping and SSH access instances using the network.

$ openstack security group rule create --proto icmp default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| protocol | icmp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto ipv6-icmp default

+-----------+-----------+

| Field | Value |

+-----------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| protocol | ipv6-icmp |

+-----------+-----------+

Deployment examples 181

Networking Guide (Release Version: 15.0.0)

$ openstack security group rule create --proto tcp --dst-port 22 default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto tcp --dst-port 22�

↪→default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

+------------------+-----------+

4. Launch an instance with an interface on the provider network. For example, a CirrOS image using flavor
ID 1.

$ openstack server create --flavor 1 --image cirros \

--nic net-id=NETWORK_ID provider-instance1

Replace NETWORK_ID with the ID of the provider network.

5. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+--------------------+--------+----------------

↪→--+------------+

| ID | Name | Status | Networks �

↪→ | Image Name |

+--------------------------------------+--------------------+--------+----------------

↪→--+------------+

| 018e0ae2-b43c-4271-a78d-62653dd03285 | provider-instance1 | ACTIVE | provider1=203.

↪→0.113.13, fd00:203:0:113:f816:3eff:fe58:be4e | cirros |

+--------------------------------------+--------------------+--------+----------------

↪→--+------------+

6. On the controller node or any host with access to the provider network, ping the IPv4 and IPv6 addresses
of the instance.

$ ping -c 4 203.0.113.13

PING 203.0.113.13 (203.0.113.13) 56(84) bytes of data.

64 bytes from 203.0.113.13: icmp_req=1 ttl=63 time=3.18 ms

64 bytes from 203.0.113.13: icmp_req=2 ttl=63 time=0.981 ms

64 bytes from 203.0.113.13: icmp_req=3 ttl=63 time=1.06 ms

64 bytes from 203.0.113.13: icmp_req=4 ttl=63 time=0.929 ms

--- 203.0.113.13 ping statistics ---

182 Deployment examples

Networking Guide (Release Version: 15.0.0)

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

rtt min/avg/max/mdev = 0.929/1.539/3.183/0.951 ms

$ ping6 -c 4 fd00:203:0:113:f816:3eff:fe58:be4e

PING fd00:203:0:113:f816:3eff:fe58:be4e(fd00:203:0:113:f816:3eff:fe58:be4e) 56 data�

↪→bytes

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=1 ttl=64 time=1.25 ms

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=2 ttl=64 time=0.683 ms

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=3 ttl=64 time=0.762 ms

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=4 ttl=64 time=0.486 ms

--- fd00:203:0:113:f816:3eff:fe58:be4e ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999ms

rtt min/avg/max/mdev = 0.486/0.796/1.253/0.282 ms

7. Obtain access to the instance.

8. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south network
traffic travels between an instance and external network such as the Internet. East-west network traffic travels
between instances on the same or different networks. In all scenarios, the physical network infrastructure
handles switching and routing among provider networks and external networks such as the Internet. Each case
references one or more of the following components:

• Provider network 1 (VLAN)

– VLAN ID 101 (tagged)

– IP address ranges 203.0.113.0/24 and fd00:203:0:113::/64

– Gateway (via physical network infrastructure)

* IP addresses 203.0.113.1 and fd00:203:0:113:0::1

• Provider network 2 (VLAN)

– VLAN ID 102 (tagged)

– IP address range 192.0.2.0/24 and fd00:192:0:2::/64

– Gateway

* IP addresses 192.0.2.1 and fd00:192:0:2::1

• Instance 1

– IP addresses 203.0.113.101 and fd00:203:0:113:0::101

• Instance 2

– IP addresses 192.0.2.101 and fd00:192:0:2:0::101

North-south scenario: Instance with a fixed IP address

• The instance resides on compute node 1 and uses provider network 1.

Deployment examples 183

Networking Guide (Release Version: 15.0.0)

• The instance sends a packet to a host on the Internet.

The following steps involve compute node 1.

1. The instance interface (1) forwards the packet to the provider bridge instance port (2) via veth pair.

2. Security group rules (3) on the provider bridge handle firewalling and connection tracking for the packet.

3. The VLAN sub-interface port (4) on the provider bridge forwards the packet to the physical network
interface (5).

4. The physical network interface (5) adds VLAN tag 101 to the packet and forwards it to the physical
network infrastructure switch (6).

The following steps involve the physical network infrastructure:

1. The switch removes VLAN tag 101 from the packet and forwards it to the router (7).

2. The router routes the packet from the provider network (8) to the external network (9) and forwards the
packet to the switch (10).

3. The switch forwards the packet to the external network (11).

4. The external network (12) receives the packet.

184 Deployment examples

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

East-west scenario 1: Instances on the same network

Instances on the same network communicate directly between compute nodes containing those instances.

• Instance 1 resides on compute node 1 and uses provider network 1.

• Instance 2 resides on compute node 2 and uses provider network 1.

• Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

1. The instance 1 interface (1) forwards the packet to the provider bridge instance port (2) via veth pair.

2. Security group rules (3) on the provider bridge handle firewalling and connection tracking for the packet.

3. The VLAN sub-interface port (4) on the provider bridge forwards the packet to the physical network
interface (5).

4. The physical network interface (5) adds VLAN tag 101 to the packet and forwards it to the physical
network infrastructure switch (6).

The following steps involve the physical network infrastructure:

1. The switch forwards the packet from compute node 1 to compute node 2 (7).

The following steps involve compute node 2:

1. The physical network interface (8) removes VLAN tag 101 from the packet and forwards it to the VLAN
sub-interface port (9) on the provider bridge.

2. Security group rules (10) on the provider bridge handle firewalling and connection tracking for the packet.

3. The provider bridge instance port (11) forwards the packet to the instance 2 interface (12) via veth pair.

Deployment examples 185

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

East-west scenario 2: Instances on different networks

Instances communicate via router on the physical network infrastructure.

• Instance 1 resides on compute node 1 and uses provider network 1.

• Instance 2 resides on compute node 1 and uses provider network 2.

• Instance 1 sends a packet to instance 2.

Note: Both instances reside on the same compute node to illustrate how VLAN tagging enables multiple
logical layer-2 networks to use the same physical layer-2 network.

186 Deployment examples

Networking Guide (Release Version: 15.0.0)

The following steps involve the compute node:

1. The instance 1 interface (1) forwards the packet to the provider bridge instance port (2) via veth pair.

2. Security group rules (3) on the provider bridge handle firewalling and connection tracking for the packet.

3. The VLAN sub-interface port (4) on the provider bridge forwards the packet to the physical network
interface (5).

4. The physical network interface (5) adds VLAN tag 101 to the packet and forwards it to the physical
network infrastructure switch (6).

The following steps involve the physical network infrastructure:

1. The switch removes VLAN tag 101 from the packet and forwards it to the router (7).

2. The router routes the packet from provider network 1 (8) to provider network 2 (9).

3. The router forwards the packet to the switch (10).

4. The switch adds VLAN tag 102 to the packet and forwards it to compute node 1 (11).

The following steps involve the compute node:

1. The physical network interface (12) removes VLAN tag 102 from the packet and forwards it to the VLAN
sub-interface port (13) on the provider bridge.

2. Security group rules (14) on the provider bridge handle firewalling and connection tracking for the packet.

3. The provider bridge instance port (15) forwards the packet to the instance 2 interface (16) via veth pair.

Deployment examples 187

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

Linux bridge: Self-service networks

This architecture example augments Linux bridge: Provider networks to support a nearly limitless quantity of
entirely virtual networks. Although the Networking service supports VLAN self-service networks, this example
focuses on VXLAN self-service networks. For more information on self-service networks, see Self-service
networks.

188 Deployment examples

Networking Guide (Release Version: 15.0.0)

Note: The Linux bridge agent lacks support for other overlay protocols such as GRE and Geneve.

Prerequisites

Add one network node with the following components:

• Three network interfaces: management, provider, and overlay.

• OpenStack Networking Linux bridge layer-2 agent, layer-3 agent, and any dependencies.

Modify the compute nodes with the following components:

• Add one network interface: overlay.

Note: You can keep the DHCP and metadata agents on each compute node or move them to the network node.

Deployment examples 189

Networking Guide (Release Version: 15.0.0)

Architecture

The following figure shows components and connectivity for one self-service network and one untagged (flat)
provider network. In this particular case, the instance resides on the same compute node as the DHCP agent for
the network. If the DHCP agent resides on another compute node, the latter only contains a DHCP namespace

190 Deployment examples

Networking Guide (Release Version: 15.0.0)

and Linux bridge with a port on the overlay physical network interface.

Example configuration

Use the following example configuration as a template to add support for self-service networks to an existing
operational environment that supports provider networks.

Controller node

1. In the neutron.conf file:

• Enable routing and allow overlapping IP address ranges.

[DEFAULT]

service_plugins = router

allow_overlapping_ips = True

2. In the ml2_conf.ini file:

• Add vxlan to type drivers and project network types.

Deployment examples 191

Networking Guide (Release Version: 15.0.0)

[ml2]

type_drivers = flat,vlan,vxlan

tenant_network_types = vxlan

• Enable the layer-2 population mechanism driver.

[ml2]

mechanism_drivers = linuxbridge,l2population

• Configure the VXLAN network ID (VNI) range.

[ml2_type_vxlan]

vni_ranges = VNI_START:VNI_END

Replace VNI_START and VNI_END with appropriate numerical values.

3. Restart the following services:

• Server

Network node

1. Install the Networking service layer-3 agent.

2. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the linuxbridge_agent.ini file, configure the layer-2 agent.

[linux_bridge]

physical_interface_mappings = provider:PROVIDER_INTERFACE

[vxlan]

enable_vxlan = True

l2_population = True

local_ip = OVERLAY_INTERFACE_IP_ADDRESS

192 Deployment examples

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

[securitygroup]

firewall_driver = iptables

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider net-
works. For example, eth1.

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
overlays for self-service networks.

4. In the l3_agent.ini file, configure the layer-3 agent.

[DEFAULT]

interface_driver = linuxbridge

external_network_bridge =

Note: The external_network_bridge option intentionally contains no value.

5. Start the following services:

• Linux bridge agent

• Layer-3 agent

Compute nodes

1. In the linuxbridge_agent.ini file, enable VXLAN support including layer-2 population.

[vxlan]

enable_vxlan = True

l2_population = True

local_ip = OVERLAY_INTERFACE_IP_ADDRESS

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
overlays for self-service networks.

2. Restart the following services:

• Linux bridge agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 09de6af6-c5f1-4548-8b09-18801f068c57 | Linux bridge agent | compute2 | �

↪→ | True | UP | neutron-linuxbridge-agent |

Deployment examples 193

Networking Guide (Release Version: 15.0.0)

| 188945d1-9e70-4803-a276-df924e0788a4 | Linux bridge agent | compute1 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| e76c440d-d5f6-4316-a674-d689630b629e | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| e67367de-6657-11e6-86a4-931cd04404bb | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| e8174cae-6657-11e6-89f0-534ac6d0cb5c | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| ece49ec6-6657-11e6-bafb-c7560f19197d | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

| 598f6357-4331-4da5-a420-0f5be000bec9 | L3 agent | network1 | nova �

↪→ | True | UP | neutron-l3-agent |

| f4734e0f-bcd5-4922-a19d-e31d56b0a7ae | Linux bridge agent | network1 | �

↪→ | True | UP | neutron-linuxbridge-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

The configuration supports multiple VXLAN self-service networks. For simplicity, the following procedure
creates one self-service network and a router with a gateway on the flat provider network. The router uses NAT
for IPv4 network traffic and directly routes IPv6 network traffic.

Note: IPv6 connectivity with self-service networks often requires addition of static routes to nodes and physical
network infrastructure.

1. Source the administrative project credentials.

2. Update the provider network to support external connectivity for self-service networks.

$ openstack network set --external provider1

Note: This command provides no output.

3. Source a regular (non-administrative) project credentials.

4. Create a self-service network.

$ openstack network create selfservice1

+-------------------------+--------------+

| Field | Value |

+-------------------------+--------------+

| admin_state_up | UP |

| mtu | 1450 |

| name | selfservice1 |

| port_security_enabled | True |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

+-------------------------+--------------+

5. Create a IPv4 subnet on the self-service network.

194 Deployment examples

Networking Guide (Release Version: 15.0.0)

$ openstack subnet create --subnet-range 192.0.2.0/24 \

--network selfservice1 --dns-nameserver 8.8.4.4 selfservice1-v4

+-------------------+---------------------------+

| Field | Value |

+-------------------+---------------------------+

| allocation_pools | 192.0.2.2-192.0.2.254 |

| cidr | 192.0.2.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

| gateway_ip | 192.0.2.1 |

| ip_version | 4 |

| name | selfservice1-v4 |

+-------------------+---------------------------+

6. Create a IPv6 subnet on the self-service network.

$ openstack subnet create --subnet-range fd00:192:0:2::/64 --ip-version 6 \

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice1 \

--dns-nameserver 2001:4860:4860::8844 selfservice1-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:192:0:2::2-fd00:192:0:2:ffff:ffff:ffff:ffff |

| cidr | fd00:192:0:2::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:192:0:2::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | selfservice1-v6 |

+-------------------+--+

7. Create a router.

$ openstack router create router1

+-----------------------+---------+

| Field | Value |

+-----------------------+---------+

| admin_state_up | UP |

| name | router1 |

| status | ACTIVE |

+-----------------------+---------+

8. Add the IPv4 and IPv6 subnets as interfaces on the router.

$ openstack router add subnet router1 selfservice1-v4

$ openstack router add subnet router1 selfservice1-v6

Note: These commands provide no output.

9. Add the provider network as the gateway on the router.

$ neutron router-gateway-set router1 provider1

Set gateway for router router1

Deployment examples 195

Networking Guide (Release Version: 15.0.0)

Verify network operation

1. On each compute node, verify creation of a second qdhcp namespace.

ip netns

qdhcp-8b868082-e312-4110-8627-298109d4401c

qdhcp-8fbc13ca-cfe0-4b8a-993b-e33f37ba66d1

2. On the network node, verify creation of the qrouter namespace.

ip netns

qrouter-17db2a15-e024-46d0-9250-4cd4d336a2cc

3. Source a regular (non-administrative) project credentials.

4. Create the appropriate security group rules to allow ping and SSH access instances using the network.

$ openstack security group rule create --proto icmp default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| protocol | icmp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto ipv6-icmp default

+-----------+-----------+

| Field | Value |

+-----------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| protocol | ipv6-icmp |

+-----------+-----------+

$ openstack security group rule create --proto tcp --dst-port 22 default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto tcp --dst-port 22�

↪→default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| port_range_max | 22 |

| port_range_min | 22 |

196 Deployment examples

Networking Guide (Release Version: 15.0.0)

| protocol | tcp |

+------------------+-----------+

5. Launch an instance with an interface on the self-service network. For example, a CirrOS image using
flavor ID 1.

$ openstack server create --flavor 1 --image cirros --nic net-id=NETWORK_ID�

↪→selfservice-instance1

Replace NETWORK_ID with the ID of the self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+-----------------------+--------+-------------

↪→---+

| ID | Name | Status | Networks �

↪→ |

+--------------------------------------+-----------------------+--------+-------------

↪→---+

| c055cdb0-ebb4-4d65-957c-35cbdbd59306 | selfservice-instance1 | ACTIVE |�

↪→selfservice1=192.0.2.4, fd00:192:0:2:f816:3eff:fe30:9cb0 |

+--------------------------------------+-----------------------+--------+-------------

↪→---+

Warning: The IPv4 address resides in a private IP address range (RFC1918). Thus, the Networking
service performs source network address translation (SNAT) for the instance to access external net-
works such as the Internet. Access from external networks such as the Internet to the instance requires
a floating IPv4 address. The Networking service performs destination network address translation
(DNAT) from the floating IPv4 address to the instance IPv4 address on the self-service network. On
the other hand, the Networking service architecture for IPv6 lacks support for NAT due to the sig-
nificantly larger address space and complexity of NAT. Thus, floating IP addresses do not exist for
IPv6 and the Networking service only performs routing for IPv6 subnets on self-service networks.
In other words, you cannot rely on NAT to “hide” instances with IPv4 and IPv6 addresses or only
IPv6 addresses and must properly implement security groups to restrict access.

7. On the controller node or any host with access to the provider network, ping the IPv6 address of the
instance.

$ ping6 -c 4 fd00:192:0:2:f816:3eff:fe30:9cb0

PING fd00:192:0:2:f816:3eff:fe30:9cb0(fd00:192:0:2:f816:3eff:fe30:9cb0) 56 data bytes

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=1 ttl=63 time=2.08 ms

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=2 ttl=63 time=1.88 ms

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=3 ttl=63 time=1.55 ms

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=4 ttl=63 time=1.62 ms

--- fd00:192:0:2:f816:3eff:fe30:9cb0 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3004ms

rtt min/avg/max/mdev = 1.557/1.788/2.085/0.217 ms

8. Optionally, enable IPv4 access from external networks such as the Internet to the instance.

(a) Create a floating IPv4 address on the provider network.

Deployment examples 197

Networking Guide (Release Version: 15.0.0)

$ openstack floating ip create provider1

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| fixed_ip | None |

| id | 22a1b088-5c9b-43b4-97f3-970ce5df77f2 |

| instance_id | None |

| ip | 203.0.113.16 |

| pool | provider1 |

+-------------+--------------------------------------+

(b) Associate the floating IPv4 address with the instance.

$ openstack server add floating ip selfservice-instance1 203.0.113.16

Note: This command provides no output.

(c) On the controller node or any host with access to the provider network, ping the floating IPv4
address of the instance.

$ ping -c 4 203.0.113.16

PING 203.0.113.16 (203.0.113.16) 56(84) bytes of data.

64 bytes from 203.0.113.16: icmp_seq=1 ttl=63 time=3.41 ms

64 bytes from 203.0.113.16: icmp_seq=2 ttl=63 time=1.67 ms

64 bytes from 203.0.113.16: icmp_seq=3 ttl=63 time=1.47 ms

64 bytes from 203.0.113.16: icmp_seq=4 ttl=63 time=1.59 ms

--- 203.0.113.16 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3005ms

rtt min/avg/max/mdev = 1.473/2.040/3.414/0.798 ms

9. Obtain access to the instance.

10. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south network
traffic travels between an instance and external network such as the Internet. East-west network traffic travels
between instances on the same or different networks. In all scenarios, the physical network infrastructure
handles switching and routing among provider networks and external networks such as the Internet. Each case
references one or more of the following components:

• Provider network (VLAN)

– VLAN ID 101 (tagged)

• Self-service network 1 (VXLAN)

– VXLAN ID (VNI) 101

• Self-service network 2 (VXLAN)

– VXLAN ID (VNI) 102

198 Deployment examples

Networking Guide (Release Version: 15.0.0)

• Self-service router

– Gateway on the provider network

– Interface on self-service network 1

– Interface on self-service network 2

• Instance 1

• Instance 2

North-south scenario 1: Instance with a fixed IP address

For instances with a fixed IPv4 address, the network node performs SNAT on north-south traffic passing from
self-service to external networks such as the Internet. For instances with a fixed IPv6 address, the network node
performs conventional routing of traffic between self-service and external networks.

• The instance resides on compute node 1 and uses self-service network 1.

• The instance sends a packet to a host on the Internet.

The following steps involve compute node 1:

1. The instance interface (1) forwards the packet to the self-service bridge instance port (2) via veth pair.

2. Security group rules (3) on the self-service bridge handle firewalling and connection tracking for the
packet.

3. The self-service bridge forwards the packet to the VXLAN interface (4) which wraps the packet using
VNI 101.

4. The underlying physical interface (5) for the VXLAN interface forwards the packet to the network node
via the overlay network (6).

The following steps involve the network node:

1. The underlying physical interface (7) for the VXLAN interface forwards the packet to the VXLAN
interface (8) which unwraps the packet.

2. The self-service bridge router port (9) forwards the packet to the self-service network interface (10) in
the router namespace.

• For IPv4, the router performs SNAT on the packet which changes the source IP address to the router
IP address on the provider network and sends it to the gateway IP address on the provider network
via the gateway interface on the provider network (11).

• For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP address
on the provider network, via the provider gateway interface (11).

3. The router forwards the packet to the provider bridge router port (12).

4. The VLAN sub-interface port (13) on the provider bridge forwards the packet to the provider physical
network interface (14).

5. The provider physical network interface (14) adds VLAN tag 101 to the packet and forwards it to the
Internet via physical network infrastructure (15).

Deployment examples 199

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse. However, without a floating IPv4 address, hosts on the
provider or external networks cannot originate connections to instances on the self-service network.

North-south scenario 2: Instance with a floating IPv4 address

For instances with a floating IPv4 address, the network node performs SNAT on north-south traffic passing from
the instance to external networks such as the Internet and DNAT on north-south traffic passing from external
networks to the instance. Floating IP addresses and NAT do not apply to IPv6. Thus, the network node routes
IPv6 traffic in this scenario.

• The instance resides on compute node 1 and uses self-service network 1.

• A host on the Internet sends a packet to the instance.

The following steps involve the network node:

1. The physical network infrastructure (1) forwards the packet to the provider physical network interface

200 Deployment examples

Networking Guide (Release Version: 15.0.0)

(2).

2. The provider physical network interface removes VLAN tag 101 and forwards the packet to the VLAN
sub-interface on the provider bridge.

3. The provider bridge forwards the packet to the self-service router gateway port on the provider network
(5).

• For IPv4, the router performs DNAT on the packet which changes the destination IP address to
the instance IP address on the self-service network and sends it to the gateway IP address on the
self-service network via the self-service interface (6).

• For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP address
on the self-service network, via the self-service interface (6).

4. The router forwards the packet to the self-service bridge router port (7).

5. The self-service bridge forwards the packet to the VXLAN interface (8) which wraps the packet using
VNI 101.

6. The underlying physical interface (9) for the VXLAN interface forwards the packet to the network node
via the overlay network (10).

The following steps involve the compute node:

1. The underlying physical interface (11) for the VXLAN interface forwards the packet to the VXLAN
interface (12) which unwraps the packet.

2. Security group rules (13) on the self-service bridge handle firewalling and connection tracking for the
packet.

3. The self-service bridge instance port (14) forwards the packet to the instance interface (15) via veth pair.

Note: Egress instance traffic flows similar to north-south scenario 1, except SNAT changes the source IP
address of the packet to the floating IPv4 address rather than the router IP address on the provider network.

Deployment examples 201

Networking Guide (Release Version: 15.0.0)

East-west scenario 1: Instances on the same network

Instances with a fixed IPv4/IPv6 or floating IPv4 address on the same network communicate directly between
compute nodes containing those instances.

By default, the VXLAN protocol lacks knowledge of target location and uses multicast to discover it. After
discovery, it stores the location in the local forwarding database. In large deployments, the discovery process
can generate a significant amount of network that all nodes must process. To eliminate the latter and generally
increase efficiency, the Networking service includes the layer-2 population mechanism driver that automatically
populates the forwarding database for VXLAN interfaces. The example configuration enables this driver. For
more information, seeML2 plug-in.

• Instance 1 resides on compute node 1 and uses self-service network 1.

• Instance 2 resides on compute node 2 and uses self-service network 1.

• Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

202 Deployment examples

Networking Guide (Release Version: 15.0.0)

1. The instance 1 interface (1) forwards the packet to the self-service bridge instance port (2) via veth pair.

2. Security group rules (3) on the self-service bridge handle firewalling and connection tracking for the
packet.

3. The self-service bridge forwards the packet to the VXLAN interface (4) which wraps the packet using
VNI 101.

4. The underlying physical interface (5) for the VXLAN interface forwards the packet to compute node 2
via the overlay network (6).

The following steps involve compute node 2:

1. The underlying physical interface (7) for the VXLAN interface forwards the packet to the VXLAN
interface (8) which unwraps the packet.

2. Security group rules (9) on the self-service bridge handle firewalling and connection tracking for the
packet.

3. The self-service bridge instance port (10) forwards the packet to the instance 1 interface (11) via veth
pair.

Note: Return traffic follows similar steps in reverse.

Deployment examples 203

Networking Guide (Release Version: 15.0.0)

East-west scenario 2: Instances on different networks

Instances using a fixed IPv4/IPv6 address or floating IPv4 address communicate via router on the network node.
The self-service networks must reside on the same router.

• Instance 1 resides on compute node 1 and uses self-service network 1.

• Instance 2 resides on compute node 1 and uses self-service network 2.

• Instance 1 sends a packet to instance 2.

Note: Both instances reside on the same compute node to illustrate how VXLAN enables multiple overlays to
use the same layer-3 network.

The following steps involve the compute node:

1. The instance 1 interface (1) forwards the packet to the self-service bridge instance port (2) via veth pair.

2. Security group rules (3) on the self-service bridge handle firewalling and connection tracking for the
packet.

3. The self-service bridge forwards the packet to the VXLAN interface (4) which wraps the packet using
VNI 101.

4. The underlying physical interface (5) for the VXLAN interface forwards the packet to the network node
via the overlay network (6).

The following steps involve the network node:

1. The underlying physical interface (7) for the VXLAN interface forwards the packet to the VXLAN
interface (8) which unwraps the packet.

2. The self-service bridge router port (9) forwards the packet to the self-service network 1 interface (10) in
the router namespace.

3. The router sends the packet to the next-hop IP address, typically the gateway IP address on self-service
network 2, via the self-service network 2 interface (11).

4. The router forwards the packet to the self-service network 2 bridge router port (12).

5. The self-service network 2 bridge forwards the packet to the VXLAN interface (13) which wraps the
packet using VNI 102.

6. The physical network interface (14) for the VXLAN interface sends the packet to the compute node via
the overlay network (15).

The following steps involve the compute node:

1. The underlying physical interface (16) for theVXLAN interface sends the packet to theVXLAN interface
(17) which unwraps the packet.

2. Security group rules (18) on the self-service bridge handle firewalling and connection tracking for the
packet.

3. The self-service bridge instance port (19) forwards the packet to the instance 2 interface (20) via veth
pair.

204 Deployment examples

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

Linux bridge: High availability using VRRP

This architecture example augments the self-service deployment example with a high-availability mechanism
using the Virtual Router Redundancy Protocol (VRRP) via keepalived and provides failover of routing for
self-service networks. It requires a minimum of two network nodes because VRRP creates one master (active)
instance and at least one backup instance of each router.

Deployment examples 205

Networking Guide (Release Version: 15.0.0)

During normal operation, keepalived on the master router periodically transmits heartbeat packets over a
hidden network that connects all VRRP routers for a particular project. Each project with VRRP routers uses
a separate hidden network. By default this network uses the first value in the tenant_network_types option
in the ml2_conf.ini file. For additional control, you can specify the self-service network type and physical
network name for the hidden network using the l3_ha_network_type and l3_ha_network_name options in
the neutron.conf file.

If keepalived on the backup router stops receiving heartbeat packets, it assumes failure of the master router
and promotes the backup router to master router by configuring IP addresses on the interfaces in the qrouter
namespace. In environments with more than one backup router, keepalived on the backup router with the
next highest priority promotes that backup router to master router.

Note: This high-availability mechanism configures VRRP using the same priority for all routers. Therefore,
VRRP promotes the backup router with the highest IP address to the master router.

Warning: There is a known bug with keepalived v1.2.15 and earlier which can cause packet loss
when max_l3_agents_per_router is set to 3 or more. Therefore, we recommend that you upgrade to
keepalived v1.2.16 or greater when using this feature.

Interruption of VRRP heartbeat traffic between network nodes, typically due to a network interface or physical
network infrastructure failure, triggers a failover. Restarting the layer-3 agent, or failure of it, does not trigger
a failover providing keepalived continues to operate.

Consider the following attributes of this high-availability mechanism to determine practicality in your environ-
ment:

• Instance network traffic on self-service networks using a particular router only traverses the master in-
stance of that router. Thus, resource limitations of a particular network node can impact all master
instances of routers on that network node without triggering failover to another network node. However,
you can configure the scheduler to distribute the master instance of each router uniformly across a pool
of network nodes to reduce the chance of resource contention on any particular network node.

• Only supports self-service networks using a router. Provider networks operate at layer-2 and rely on
physical network infrastructure for redundancy.

• For instances with a floating IPv4 address, maintains state of network connections during failover as a
side effect of 1:1 static NAT. The mechanism does not actually implement connection tracking.

For production deployments, we recommend at least three network nodes with sufficient resources to handle
network traffic for the entire environment if one network node fails. Also, the remaining two nodes can continue
to provide redundancy.

Warning: This high-availability mechanism is not compatible with the layer-2 population mechanism.
You must disable layer-2 population in the linuxbridge_agent.ini file and restart the Linux bridge
agent on all existing network and compute nodes prior to deploying the example configuration.

Prerequisites

Add one network node with the following components:

206 Deployment examples

Networking Guide (Release Version: 15.0.0)

• Three network interfaces: management, provider, and overlay.

• OpenStack Networking layer-2 agent, layer-3 agent, and any dependencies.

Note: You can keep the DHCP and metadata agents on each compute node or move them to the network nodes.

Deployment examples 207

Networking Guide (Release Version: 15.0.0)

Architecture

The following figure shows components and connectivity for one self-service network and one untagged (flat)
network. The master router resides on network node 1. In this particular case, the instance resides on the same

208 Deployment examples

Networking Guide (Release Version: 15.0.0)

compute node as the DHCP agent for the network. If the DHCP agent resides on another compute node, the
latter only contains a DHCP namespace and Linux bridge with a port on the overlay physical network interface.

Example configuration

Use the following example configuration as a template to add support for high-availability using VRRP to an
existing operational environment that supports self-service networks.

Deployment examples 209

Networking Guide (Release Version: 15.0.0)

Controller node

1. In the neutron.conf file:

• Enable VRRP.

[DEFAULT]

l3_ha = True

2. Restart the following services:

• Server

Network node 1

No changes.

Network node 2

1. Install the Networking service Linux bridge layer-2 agent and layer-3 agent.

2. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the linuxbridge_agent.ini file, configure the layer-2 agent.

[linux_bridge]

physical_interface_mappings = provider:PROVIDER_INTERFACE

[vxlan]

enable_vxlan = True

local_ip = OVERLAY_INTERFACE_IP_ADDRESS

[securitygroup]

firewall_driver = iptables

210 Deployment examples

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider net-
works. For example, eth1.

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
overlays for self-service networks.

4. In the l3_agent.ini file, configure the layer-3 agent.

[DEFAULT]

interface_driver = linuxbridge

external_network_bridge =

Note: The external_network_bridge option intentionally contains no value.

5. Start the following services:

• Linux bridge agent

• Layer-3 agent

Compute nodes

No changes.

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 09de6af6-c5f1-4548-8b09-18801f068c57 | Linux bridge agent | compute2 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| 188945d1-9e70-4803-a276-df924e0788a4 | Linux bridge agent | compute1 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| e76c440d-d5f6-4316-a674-d689630b629e | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| e67367de-6657-11e6-86a4-931cd04404bb | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| e8174cae-6657-11e6-89f0-534ac6d0cb5c | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| ece49ec6-6657-11e6-bafb-c7560f19197d | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

| 598f6357-4331-4da5-a420-0f5be000bec9 | L3 agent | network1 | nova �

↪→ | True | UP | neutron-l3-agent |

| f4734e0f-bcd5-4922-a19d-e31d56b0a7ae | Linux bridge agent | network1 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| 670e5805-340b-4182-9825-fa8319c99f23 | Linux bridge agent | network2 | �

↪→ | True | UP | neutron-linuxbridge-agent |

Deployment examples 211

Networking Guide (Release Version: 15.0.0)

| 96224e89-7c15-42e9-89c4-8caac7abdd54 | L3 agent | network2 | nova �

↪→ | True | UP | neutron-l3-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

Similar to the self-service deployment example, this configuration supports multiple VXLAN self-service net-
works. After enabling high-availability, all additional routers use VRRP. The following procedure creates an
additional self-service network and router. The Networking service also supports adding high-availability to
existing routers. However, the procedure requires administratively disabling and enabling each router which
temporarily interrupts network connectivity for self-service networks with interfaces on that router.

1. Source a regular (non-administrative) project credentials.

2. Create a self-service network.

$ openstack network create selfservice2

+-------------------------+--------------+

| Field | Value |

+-------------------------+--------------+

| admin_state_up | UP |

| mtu | 1450 |

| name | selfservice2 |

| port_security_enabled | True |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

+-------------------------+--------------+

3. Create a IPv4 subnet on the self-service network.

$ openstack subnet create --subnet-range 198.51.100.0/24 \

--network selfservice2 --dns-nameserver 8.8.4.4 selfservice2-v4

+-------------------+------------------------------+

| Field | Value |

+-------------------+------------------------------+

| allocation_pools | 198.51.100.2-198.51.100.254 |

| cidr | 198.51.100.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

| gateway_ip | 198.51.100.1 |

| ip_version | 4 |

| name | selfservice2-v4 |

+-------------------+------------------------------+

4. Create a IPv6 subnet on the self-service network.

$ openstack subnet create --subnet-range fd00:198:51:100::/64 --ip-version 6 \

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice2 \

--dns-nameserver 2001:4860:4860::8844 selfservice2-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:198:51:100::2-fd00:198:51:100:ffff:ffff:ffff:ffff |

212 Deployment examples

Networking Guide (Release Version: 15.0.0)

| cidr | fd00:198:51:100::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:198:51:100::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | selfservice2-v6 |

+-------------------+--+

5. Create a router.

$ openstack router create router2

+-----------------------+---------+

| Field | Value |

+-----------------------+---------+

| admin_state_up | UP |

| name | router2 |

| status | ACTIVE |

+-----------------------+---------+

6. Add the IPv4 and IPv6 subnets as interfaces on the router.

$ openstack router add subnet router2 selfservice2-v4

$ openstack router add subnet router2 selfservice2-v6

Note: These commands provide no output.

7. Add the provider network as a gateway on the router.

$ neutron router-gateway-set router2 provider1

Set gateway for router router2

Verify network operation

1. Source the administrative project credentials.

2. Verify creation of the internal high-availability network that handles VRRP heartbeat traffic.

$ openstack network list

+--------------------------------------+--

↪→------+--------------------------------------+

| ID | Name �

↪→ | Subnets |

+--------------------------------------+--

↪→------+--------------------------------------+

| 1b8519c1-59c4-415c-9da2-a67d53c68455 | HA network tenant�

↪→f986edf55ae945e2bef3cb4bfd589928 | 6843314a-1e76-4cc9-94f5-c64b7a39364a |

+--------------------------------------+--

↪→------+--------------------------------------+

3. On each network node, verify creation of a qrouter namespace with the same ID.

Network node 1:

Deployment examples 213

Networking Guide (Release Version: 15.0.0)

ip netns

qrouter-b6206312-878e-497c-8ef7-eb384f8add96

Network node 2:

ip netns

qrouter-b6206312-878e-497c-8ef7-eb384f8add96

Note: The namespace for router 1 from Linux bridge: Self-service networks should only appear on
network node 1 because of creation prior to enabling VRRP.

4. On each network node, show the IP address of interfaces in the qrouter namespace. With the exception
of the VRRP interface, only one namespace belonging to the master router instance contains IP addresses
on the interfaces.

Network node 1:

ip netns exec qrouter-b6206312-878e-497c-8ef7-eb384f8add96 ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default�

↪→qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ha-eb820380-40@if21: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:78:ba:99 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 169.254.192.1/18 brd 169.254.255.255 scope global ha-eb820380-40

valid_lft forever preferred_lft forever

inet 169.254.0.1/24 scope global ha-eb820380-40

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:fe78:ba99/64 scope link

valid_lft forever preferred_lft forever

3: qr-da3504ad-ba@if24: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:dc:8e:a8 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 198.51.100.1/24 scope global qr-da3504ad-ba

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:fedc:8ea8/64 scope link

valid_lft forever preferred_lft forever

4: qr-442e36eb-fc@if27: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:ee:c8:41 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet6 fd00:198:51:100::1/64 scope global nodad

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:feee:c841/64 scope link

valid_lft forever preferred_lft forever

5: qg-33fedbc5-43@if28: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:03:1a:f6 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 203.0.113.21/24 scope global qg-33fedbc5-43

valid_lft forever preferred_lft forever

inet6 fd00:203:0:113::21/64 scope global nodad

valid_lft forever preferred_lft forever

214 Deployment examples

Networking Guide (Release Version: 15.0.0)

inet6 fe80::f816:3eff:fe03:1af6/64 scope link

valid_lft forever preferred_lft forever

Network node 2:

ip netns exec qrouter-b6206312-878e-497c-8ef7-eb384f8add96 ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default�

↪→qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ha-7a7ce184-36@if8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state�

↪→UP group default qlen 1000

link/ether fa:16:3e:16:59:84 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 169.254.192.2/18 brd 169.254.255.255 scope global ha-7a7ce184-36

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:fe16:5984/64 scope link

valid_lft forever preferred_lft forever

3: qr-da3504ad-ba@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:dc:8e:a8 brd ff:ff:ff:ff:ff:ff link-netnsid 0

4: qr-442e36eb-fc@if14: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

5: qg-33fedbc5-43@if15: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:03:1a:f6 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Note: The master router may reside on network node 2.

5. Launch an instance with an interface on the addtional self-service network. For example, a CirrOS image
using flavor ID 1.

$ openstack server create --flavor 1 --image cirros --nic net-id=NETWORK_ID�

↪→selfservice-instance2

Replace NETWORK_ID with the ID of the additional self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+-----------------------+--------+-------------

↪→--+

| ID | Name | Status | Networks �

↪→ |

+--------------------------------------+-----------------------+--------+-------------

↪→--+

| bde64b00-77ae-41b9-b19a-cd8e378d9f8b | selfservice-instance2 | ACTIVE |�

↪→selfservice2=fd00:198:51:100:f816:3eff:fe71:e93e, 198.51.100.4 |

+--------------------------------------+-----------------------+--------+-------------

↪→--+

7. Create a floating IPv4 address on the provider network.

Deployment examples 215

Networking Guide (Release Version: 15.0.0)

$ openstack floating ip create provider1

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| fixed_ip | None |

| id | 0174056a-fa56-4403-b1ea-b5151a31191f |

| instance_id | None |

| ip | 203.0.113.17 |

| pool | provider1 |

+-------------+--------------------------------------+

8. Associate the floating IPv4 address with the instance.

$ openstack server add floating ip selfservice-instance2 203.0.113.17

Note: This command provides no output.

Verify failover operation

1. Begin a continuous ping of both the floating IPv4 address and IPv6 address of the instance. While
performing the next three steps, you should see a minimal, if any, interruption of connectivity to the
instance.

2. On the network node with the master router, administratively disable the overlay network interface.

3. On the other network node, verify promotion of the backup router to master router by noting addition of
IP addresses to the interfaces in the qrouter namespace.

4. On the original network node in step 2, administratively enable the overlay network interface. Note that
the master router remains on the network node in step 3.

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies con-
nectivity to all available and configured gateway addresses. In the event that connectivity is lost, the master
router is rescheduled to another node.

If all routers lose connectivity simultaneously, the process of selecting a new master router will be repeated in
a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the l3_agent.ini file:

ha_vrrp_health_check_interval = 30

Where ha_vrrp_health_check_interval indicates how often in seconds the health check should run. The
default value is 0, which indicates that the check should not run at all.

Network traffic flow

This high-availability mechanism simply augments Linux bridge: Self-service networkswith failover of layer-3
services to another router if the master router fails. Thus, you can reference Self-service network traffic flow

216 Deployment examples

Networking Guide (Release Version: 15.0.0)

for normal operation.

Open vSwitch mechanism driver

The Open vSwitch (OVS) mechanism driver uses a combination of OVS and Linux bridges as interconnec-
tion devices. However, optionally enabling the OVS native implementation of security groups removes the
dependency on Linux bridges.

We recommend using Open vSwitch version 2.4 or higher. Optional features may require a higher minimum
version.

Open vSwitch: Provider networks

This architecture example provides layer-2 connectivity between instances and the physical network infrastruc-
ture using VLAN (802.1q) tagging. It supports one untagged (flat) network and up to 4095 tagged (VLAN)
networks. The actual quantity of VLAN networks depends on the physical network infrastructure. For more
information on provider networks, see Provider networks.

Warning: Linux distributions often package older releases of Open vSwitch that can introduce issues
during operation with the Networking service. We recommend using at least the latest long-term stable
(LTS) release of Open vSwitch for the best experience and support from Open vSwitch. See http://www.
openvswitch.org for available releases and the installation instructions for

Prerequisites

One controller node with the following components:

• Two network interfaces: management and provider.

• OpenStack Networking server service and ML2 plug-in.

Two compute nodes with the following components:

• Two network interfaces: management and provider.

• OpenStack Networking Open vSwitch (OVS) layer-2 agent, DHCP agent, metadata agent, and any de-
pendencies including OVS.

Note: Larger deployments typically deploy the DHCP and metadata agents on a subset of compute nodes
to increase performance and redundancy. However, too many agents can overwhelm the message bus. Also,
to further simplify any deployment, you can omit the metadata agent and use a configuration drive to provide
metadata to instances.

Deployment examples 217

http://www.openvswitch.org
http://www.openvswitch.org
https://github.com/openvswitch/ovs/blob/master/INSTALL.md

Networking Guide (Release Version: 15.0.0)

Architecture

The following figure shows components and connectivity for one untagged (flat) network. In this particular
case, the instance resides on the same compute node as the DHCP agent for the network. If the DHCP agent
resides on another compute node, the latter only contains a DHCP namespace with a port on the OVS integration
bridge.

218 Deployment examples

Networking Guide (Release Version: 15.0.0)

The following figure describes virtual connectivity among components for two tagged (VLAN) networks. Es-
sentially, all networks use a single OVS integration bridge with different internal VLAN tags. The internal
VLAN tags almost always differ from the network VLAN assignment in the Networking service. Similar to
the untagged network case, the DHCP agent may reside on a different compute node.

Deployment examples 219

Networking Guide (Release Version: 15.0.0)

Note: These figures omit the controller node because it does not handle instance network traffic.

Example configuration

Use the following example configuration as a template to deploy provider networks in your environment.

Controller node

1. Install the Networking service components that provide the neutron-server service and ML2 plug-in.

2. In the neutron.conf file:

• Configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

220 Deployment examples

Networking Guide (Release Version: 15.0.0)

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

• Disable service plug-ins because provider networks do not require any. However, this breaks por-
tions of the dashboard that manage the Networking service. See the Ocata Install Tutorials and
Guides for more information.

[DEFAULT]

service_plugins =

• Enable two DHCP agents per network so both compute nodes can provide DHCP service provider
networks.

[DEFAULT]

dhcp_agents_per_network = 2

• If necessary, configure MTU.

3. In the ml2_conf.ini file:

• Configure drivers and network types:

[ml2]

type_drivers = flat,vlan

tenant_network_types =

mechanism_drivers = openvswitch

extension_drivers = port_security

• Configure network mappings:

[ml2_type_flat]

flat_networks = provider

[ml2_type_vlan]

network_vlan_ranges = provider

Note: The tenant_network_types option contains no value because the architecture does not
support self-service networks.

Note: The provider value in the network_vlan_ranges option lacks VLAN ID ranges to

Deployment examples 221

https://docs.openstack.org
https://docs.openstack.org
https://docs.openstack.org/project-install-guide/ocata
https://docs.openstack.org/project-install-guide/ocata

Networking Guide (Release Version: 15.0.0)

support use of arbitrary VLAN IDs.

4. Populate the database.

su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf \

--config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head" neutron

5. Start the following services:

• Server

Compute nodes

1. Install the Networking service OVS layer-2 agent, DHCP agent, and metadata agent.

2. Install OVS.

3. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

4. In the openvswitch_agent.ini file, configure the OVS agent:

[ovs]

bridge_mappings = provider:br-provider

[securitygroup]

firewall_driver = iptables_hybrid

5. In the dhcp_agent.ini file, configure the DHCP agent:

[DEFAULT]

interface_driver = openvswitch

enable_isolated_metadata = True

force_metadata = True

Note: The force_metadata option forces the DHCP agent to provide a host route to the metadata

222 Deployment examples

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

service on 169.254.169.254 regardless of whether the subnet contains an interface on a router, thus
maintaining similar and predictable metadata behavior among subnets.

6. In the metadata_agent.ini file, configure the metadata agent:

[DEFAULT]

nova_metadata_ip = controller

metadata_proxy_shared_secret = METADATA_SECRET

The value of METADATA_SECRET must match the value of the same option in the [neutron] section of
the nova.conf file.

7. Start the following services:

• OVS

8. Create the OVS provider bridge br-provider:

$ ovs-vsctl add-br br-provider

9. Add the provider network interface as a port on the OVS provider bridge br-provider:

$ ovs-vsctl add-port br-provider PROVIDER_INTERFACE

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider net-
works. For example, eth1.

10. Start the following services:

• OVS agent

• DHCP agent

• Metadata agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 1236bbcb-e0ba-48a9-80fc-81202ca4fa51 | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

| 457d6898-b373-4bb3-b41f-59345dcfb5c5 | Open vSwitch agent | compute2 | �

↪→ | True | UP | neutron-openvswitch-agent |

| 71f15e84-bc47-4c2a-b9fb-317840b2d753 | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| a6c69690-e7f7-4e56-9831-1282753e5007 | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| af11f22f-a9f4-404f-9fd8-cd7ad55c0f68 | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

Deployment examples 223

Networking Guide (Release Version: 15.0.0)

| bcfc977b-ec0e-4ba9-be62-9489b4b0e6f1 | Open vSwitch agent | compute1 | �

↪→ | True | UP | neutron-openvswitch-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

The configuration supports one flat or multiple VLAN provider networks. For simplicity, the following proce-
dure creates one flat provider network.

1. Source the administrative project credentials.

2. Create a flat network.

$ openstack network create --share --provider-physical-network provider \

--provider-network-type flat provider1

+---------------------------+-----------+-

| Field | Value |

+---------------------------+-----------+

| admin_state_up | UP |

| mtu | 1500 |

| name | provider1 |

| port_security_enabled | True |

| provider:network_type | flat |

| provider:physical_network | provider |

| provider:segmentation_id | None |

| router:external | Internal |

| shared | True |

| status | ACTIVE |

+---------------------------+-----------+

Note: The share option allows any project to use this network. To limit access to provider networks,
see Role-Based Access Control (RBAC).

Note: To create a VLAN network instead of a flat network, change --provider:network_type

flat to --provider-network-type vlan and add --provider-segment with a value referencing
the VLAN ID.

3. Create a IPv4 subnet on the provider network.

$ openstack subnet create --subnet-range 203.0.113.0/24 --gateway 203.0.113.1 \

--network provider1 --allocation-pool start=203.0.113.11,end=203.0.113.250 \

--dns-nameserver 8.8.4.4 provider1-v4

+-------------------+----------------------------+

| Field | Value |

+-------------------+----------------------------+

| allocation_pools | 203.0.113.11-203.0.113.250 |

| cidr | 203.0.113.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

| gateway_ip | 203.0.113.1 |

224 Deployment examples

Networking Guide (Release Version: 15.0.0)

| ip_version | 4 |

| name | provider1-v4 |

+-------------------+----------------------------+

Note: Enabling DHCP causes the Networking service to provide DHCP which can interfere with exist-
ing DHCP services on the physical network infrastructure.

4. Create a IPv6 subnet on the provider network.

$ openstack subnet create --subnet-range fd00:203:0:113::/64 --gateway�

↪→fd00:203:0:113::1 \

--ip-version 6 --ipv6-address-mode slaac --network provider1 \

--dns-nameserver 2001:4860:4860::8844 provider1-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:203:0:113::2-fd00:203:0:113:ffff:ffff:ffff:ffff |

| cidr | fd00:203:0:113::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:203:0:113::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | None |

| name | provider1-v6 |

+-------------------+--+

Note: The Networking service uses the layer-3 agent to provide router advertisement. Provider net-
works rely on physical network infrastructure for layer-3 services rather than the layer-3 agent. Thus,
the physical network infrastructure must provide router advertisement on provider networks for proper
operation of IPv6.

Verify network operation

1. On each compute node, verify creation of the qdhcp namespace.

ip netns

qdhcp-8b868082-e312-4110-8627-298109d4401c

2. Source a regular (non-administrative) project credentials.

3. Create the appropriate security group rules to allow ping and SSH access instances using the network.

$ openstack security group rule create --proto icmp default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| protocol | icmp |

| remote_ip_prefix | 0.0.0.0/0 |

Deployment examples 225

Networking Guide (Release Version: 15.0.0)

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto ipv6-icmp default

+-----------+-----------+

| Field | Value |

+-----------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| protocol | ipv6-icmp |

+-----------+-----------+

$ openstack security group rule create --proto tcp --dst-port 22 default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto tcp --dst-port 22�

↪→default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

+------------------+-----------+

4. Launch an instance with an interface on the provider network. For example, a CirrOS image using flavor
ID 1.

$ openstack server create --flavor 1 --image cirros \

--nic net-id=NETWORK_ID provider-instance1

Replace NETWORK_ID with the ID of the provider network.

5. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+--------------------+--------+----------------

↪→--+------------+

| ID | Name | Status | Networks �

↪→ | Image Name |

+--------------------------------------+--------------------+--------+----------------

↪→--+------------+

| 018e0ae2-b43c-4271-a78d-62653dd03285 | provider-instance1 | ACTIVE | provider1=203.

↪→0.113.13, fd00:203:0:113:f816:3eff:fe58:be4e | cirros |

+--------------------------------------+--------------------+--------+----------------

↪→--+------------+

226 Deployment examples

Networking Guide (Release Version: 15.0.0)

6. On the controller node or any host with access to the provider network, ping the IPv4 and IPv6 addresses
of the instance.

$ ping -c 4 203.0.113.13

PING 203.0.113.13 (203.0.113.13) 56(84) bytes of data.

64 bytes from 203.0.113.13: icmp_req=1 ttl=63 time=3.18 ms

64 bytes from 203.0.113.13: icmp_req=2 ttl=63 time=0.981 ms

64 bytes from 203.0.113.13: icmp_req=3 ttl=63 time=1.06 ms

64 bytes from 203.0.113.13: icmp_req=4 ttl=63 time=0.929 ms

--- 203.0.113.13 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

rtt min/avg/max/mdev = 0.929/1.539/3.183/0.951 ms

$ ping6 -c 4 fd00:203:0:113:f816:3eff:fe58:be4e

PING fd00:203:0:113:f816:3eff:fe58:be4e(fd00:203:0:113:f816:3eff:fe58:be4e) 56 data�

↪→bytes

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=1 ttl=64 time=1.25 ms

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=2 ttl=64 time=0.683 ms

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=3 ttl=64 time=0.762 ms

64 bytes from fd00:203:0:113:f816:3eff:fe58:be4e icmp_seq=4 ttl=64 time=0.486 ms

--- fd00:203:0:113:f816:3eff:fe58:be4e ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999ms

rtt min/avg/max/mdev = 0.486/0.796/1.253/0.282 ms

7. Obtain access to the instance.

8. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south network
traffic travels between an instance and external network such as the Internet. East-west network traffic travels
between instances on the same or different networks. In all scenarios, the physical network infrastructure
handles switching and routing among provider networks and external networks such as the Internet. Each case
references one or more of the following components:

• Provider network 1 (VLAN)

– VLAN ID 101 (tagged)

– IP address ranges 203.0.113.0/24 and fd00:203:0:113::/64

– Gateway (via physical network infrastructure)

* IP addresses 203.0.113.1 and fd00:203:0:113:0::1

• Provider network 2 (VLAN)

– VLAN ID 102 (tagged)

– IP address range 192.0.2.0/24 and fd00:192:0:2::/64

– Gateway

* IP addresses 192.0.2.1 and fd00:192:0:2::1

• Instance 1

Deployment examples 227

Networking Guide (Release Version: 15.0.0)

– IP addresses 203.0.113.101 and fd00:203:0:113:0::101

• Instance 2

– IP addresses 192.0.2.101 and fd00:192:0:2:0::101

North-south

• The instance resides on compute node 1 and uses provider network 1.

• The instance sends a packet to a host on the Internet.

The following steps involve compute node 1.

1. The instance interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group
port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge int-br-provider patch port (6) forwards the packet to the OVS provider
bridge phy-br-provider patch port (7).

6. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

7. The OVS provider bridge provider network port (8) forwards the packet to the physical network interface
(9).

8. The physical network interface forwards the packet to the physical network infrastructure switch (10).

The following steps involve the physical network infrastructure:

1. The switch removes VLAN tag 101 from the packet and forwards it to the router (11).

2. The router routes the packet from the provider network (12) to the external network (13) and forwards
the packet to the switch (14).

3. The switch forwards the packet to the external network (15).

4. The external network (16) receives the packet.

228 Deployment examples

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

East-west scenario 1: Instances on the same network

Instances on the same network communicate directly between compute nodes containing those instances.

• Instance 1 resides on compute node 1 and uses provider network 1.

• Instance 2 resides on compute node 2 and uses provider network 1.

Deployment examples 229

Networking Guide (Release Version: 15.0.0)

• Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

1. The instance 1 interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group
port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge int-br-provider patch port (6) forwards the packet to the OVS provider
bridge phy-br-provider patch port (7).

6. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

7. The OVS provider bridge provider network port (8) forwards the packet to the physical network interface
(9).

8. The physical network interface forwards the packet to the physical network infrastructure switch (10).

The following steps involve the physical network infrastructure:

1. The switch forwards the packet from compute node 1 to compute node 2 (11).

The following steps involve compute node 2:

1. The physical network interface (12) forwards the packet to the OVS provider bridge provider network
port (13).

2. The OVS provider bridge phy-br-provider patch port (14) forwards the packet to the OVS integration
bridge int-br-provider patch port (15).

3. The OVS integration bridge swaps the actual VLAN tag 101 with the internal VLAN tag.

4. The OVS integration bridge security group port (16) forwards the packet to the security group bridge
OVS port (17).

5. Security group rules (18) on the security group bridge handle firewalling and connection tracking for the
packet.

6. The security group bridge instance port (19) forwards the packet to the instance 2 interface (20) via veth
pair.

230 Deployment examples

Networking Guide (Release Version: 15.0.0)

Deployment examples 231

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

East-west scenario 2: Instances on different networks

Instances communicate via router on the physical network infrastructure.

• Instance 1 resides on compute node 1 and uses provider network 1.

• Instance 2 resides on compute node 1 and uses provider network 2.

• Instance 1 sends a packet to instance 2.

Note: Both instances reside on the same compute node to illustrate how VLAN tagging enables multiple
logical layer-2 networks to use the same physical layer-2 network.

The following steps involve the compute node:

1. The instance 1 interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group
port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge int-br-provider patch port (6) forwards the packet to the OVS provider
bridge phy-br-provider patch port (7).

6. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

7. The OVS provider bridge provider network port (8) forwards the packet to the physical network interface
(9).

8. The physical network interface forwards the packet to the physical network infrastructure switch (10).

The following steps involve the physical network infrastructure:

1. The switch removes VLAN tag 101 from the packet and forwards it to the router (11).

2. The router routes the packet from provider network 1 (12) to provider network 2 (13).

3. The router forwards the packet to the switch (14).

4. The switch adds VLAN tag 102 to the packet and forwards it to compute node 1 (15).

The following steps involve the compute node:

1. The physical network interface (16) forwards the packet to the OVS provider bridge provider network
port (17).

2. The OVS provider bridge phy-br-provider patch port (18) forwards the packet to the OVS integration
bridge int-br-provider patch port (19).

3. The OVS integration bridge swaps the actual VLAN tag 102 with the internal VLAN tag.

232 Deployment examples

Networking Guide (Release Version: 15.0.0)

4. The OVS integration bridge security group port (20) removes the internal VLAN tag and forwards the
packet to the security group bridge OVS port (21).

5. Security group rules (22) on the security group bridge handle firewalling and connection tracking for the
packet.

6. The security group bridge instance port (23) forwards the packet to the instance 2 interface (24) via veth
pair.

Note: Return traffic follows similar steps in reverse.

Open vSwitch: Self-service networks

This architecture example augments Open vSwitch: Provider networks to support a nearly limitless quantity of
entirely virtual networks. Although the Networking service supports VLAN self-service networks, this example
focuses on VXLAN self-service networks. For more information on self-service networks, see Self-service
networks.

Deployment examples 233

Networking Guide (Release Version: 15.0.0)

Prerequisites

Add one network node with the following components:

• Three network interfaces: management, provider, and overlay.

• OpenStack Networking Open vSwitch (OVS) layer-2 agent, layer-3 agent, and any including OVS.

Modify the compute nodes with the following components:

• Add one network interface: overlay.

Note: You can keep the DHCP and metadata agents on each compute node or move them to the network node.

234 Deployment examples

Networking Guide (Release Version: 15.0.0)

Architecture

Deployment examples 235

Networking Guide (Release Version: 15.0.0)

The following figure shows components and connectivity for one self-service network and one untagged (flat)
provider network. In this particular case, the instance resides on the same compute node as the DHCP agent for
the network. If the DHCP agent resides on another compute node, the latter only contains a DHCP namespace
and with a port on the OVS integration bridge.

Example configuration

Use the following example configuration as a template to add support for self-service networks to an existing
operational environment that supports provider networks.

Controller node

1. In the neutron.conf file:

• Enable routing and allow overlapping IP address ranges.

236 Deployment examples

Networking Guide (Release Version: 15.0.0)

[DEFAULT]

service_plugins = router

allow_overlapping_ips = True

2. In the ml2_conf.ini file:

• Add vxlan to type drivers and project network types.

[ml2]

type_drivers = flat,vlan,vxlan

tenant_network_types = vxlan

• Enable the layer-2 population mechanism driver.

[ml2]

mechanism_drivers = openvswitch,l2population

• Configure the VXLAN network ID (VNI) range.

[ml2_type_vxlan]

vni_ranges = VNI_START:VNI_END

Replace VNI_START and VNI_END with appropriate numerical values.

3. Restart the following services:

• Neutron Server

• Open vSwitch agent

Network node

1. Install the Networking service OVS layer-2 agent and layer-3 agent.

2. Install OVS.

3. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

Deployment examples 237

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

4. Start the following services:

• OVS

5. Create the OVS provider bridge br-provider:

$ ovs-vsctl add-br br-provider

6. In the openvswitch_agent.ini file, configure the layer-2 agent.

[ovs]

bridge_mappings = provider:br-provider

local_ip = OVERLAY_INTERFACE_IP_ADDRESS

[agent]

tunnel_types = vxlan

l2_population = True

[securitygroup]

firewall_driver = iptables_hybrid

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
overlays for self-service networks.

7. In the l3_agent.ini file, configure the layer-3 agent.

[DEFAULT]

interface_driver = openvswitch

external_network_bridge =

Note: The external_network_bridge option intentionally contains no value.

8. Start the following services:

• Open vSwitch agent

• Layer-3 agent

Compute nodes

1. In the openvswitch_agent.ini file, enable VXLAN support including layer-2 population.

[ovs]

local_ip = OVERLAY_INTERFACE_IP_ADDRESS

[agent]

tunnel_types = vxlan

l2_population = True

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
overlays for self-service networks.

2. Restart the following services:

• Open vSwitch agent

238 Deployment examples

Networking Guide (Release Version: 15.0.0)

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 1236bbcb-e0ba-48a9-80fc-81202ca4fa51 | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

| 457d6898-b373-4bb3-b41f-59345dcfb5c5 | Open vSwitch agent | compute2 | �

↪→ | True | UP | neutron-openvswitch-agent |

| 71f15e84-bc47-4c2a-b9fb-317840b2d753 | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| 8805b962-de95-4e40-bdc2-7a0add7521e8 | L3 agent | network1 | nova �

↪→ | True | UP | neutron-l3-agent |

| a33cac5a-0266-48f6-9cac-4cef4f8b0358 | Open vSwitch agent | network1 | �

↪→ | True | UP | neutron-openvswitch-agent |

| a6c69690-e7f7-4e56-9831-1282753e5007 | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| af11f22f-a9f4-404f-9fd8-cd7ad55c0f68 | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| bcfc977b-ec0e-4ba9-be62-9489b4b0e6f1 | Open vSwitch agent | compute1 | �

↪→ | True | UP | neutron-openvswitch-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

The configuration supports multiple VXLAN self-service networks. For simplicity, the following procedure
creates one self-service network and a router with a gateway on the flat provider network. The router uses NAT
for IPv4 network traffic and directly routes IPv6 network traffic.

Note: IPv6 connectivity with self-service networks often requires addition of static routes to nodes and physical
network infrastructure.

1. Source the administrative project credentials.

2. Update the provider network to support external connectivity for self-service networks.

$ openstack network set --external provider1

Note: This command provides no output.

3. Source a regular (non-administrative) project credentials.

4. Create a self-service network.

Deployment examples 239

Networking Guide (Release Version: 15.0.0)

$ openstack network create selfservice1

+-------------------------+--------------+

| Field | Value |

+-------------------------+--------------+

| admin_state_up | UP |

| mtu | 1450 |

| name | selfservice1 |

| port_security_enabled | True |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

+-------------------------+--------------+

5. Create a IPv4 subnet on the self-service network.

$ openstack subnet create --subnet-range 192.0.2.0/24 \

--network selfservice1 --dns-nameserver 8.8.4.4 selfservice1-v4

+-------------------+---------------------------+

| Field | Value |

+-------------------+---------------------------+

| allocation_pools | 192.0.2.2-192.0.2.254 |

| cidr | 192.0.2.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

| gateway_ip | 192.0.2.1 |

| ip_version | 4 |

| name | selfservice1-v4 |

+-------------------+---------------------------+

6. Create a IPv6 subnet on the self-service network.

$ openstack subnet create --subnet-range fd00:192:0:2::/64 --ip-version 6 \

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice1 \

--dns-nameserver 2001:4860:4860::8844 selfservice1-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:192:0:2::2-fd00:192:0:2:ffff:ffff:ffff:ffff |

| cidr | fd00:192:0:2::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:192:0:2::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | selfservice1-v6 |

+-------------------+--+

7. Create a router.

$ openstack router create router1

+-----------------------+---------+

| Field | Value |

+-----------------------+---------+

| admin_state_up | UP |

| name | router1 |

| status | ACTIVE |

240 Deployment examples

Networking Guide (Release Version: 15.0.0)

+-----------------------+---------+

8. Add the IPv4 and IPv6 subnets as interfaces on the router.

$ openstack router add subnet router1 selfservice1-v4

$ openstack router add subnet router1 selfservice1-v6

Note: These commands provide no output.

9. Add the provider network as the gateway on the router.

$ neutron router-gateway-set router1 provider1

Set gateway for router router1

Verify network operation

1. On each compute node, verify creation of a second qdhcp namespace.

ip netns

qdhcp-8b868082-e312-4110-8627-298109d4401c

qdhcp-8fbc13ca-cfe0-4b8a-993b-e33f37ba66d1

2. On the network node, verify creation of the qrouter namespace.

ip netns

qrouter-17db2a15-e024-46d0-9250-4cd4d336a2cc

3. Source a regular (non-administrative) project credentials.

4. Create the appropriate security group rules to allow ping and SSH access instances using the network.

$ openstack security group rule create --proto icmp default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| protocol | icmp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto ipv6-icmp default

+-----------+-----------+

| Field | Value |

+-----------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| protocol | ipv6-icmp |

+-----------+-----------+

$ openstack security group rule create --proto tcp --dst-port 22 default

+------------------+-----------+

| Field | Value |

Deployment examples 241

Networking Guide (Release Version: 15.0.0)

+------------------+-----------+

| direction | ingress |

| ethertype | IPv4 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

| remote_ip_prefix | 0.0.0.0/0 |

+------------------+-----------+

$ openstack security group rule create --ethertype IPv6 --proto tcp --dst-port 22�

↪→default

+------------------+-----------+

| Field | Value |

+------------------+-----------+

| direction | ingress |

| ethertype | IPv6 |

| port_range_max | 22 |

| port_range_min | 22 |

| protocol | tcp |

+------------------+-----------+

5. Launch an instance with an interface on the self-service network. For example, a CirrOS image using
flavor ID 1.

$ openstack server create --flavor 1 --image cirros --nic net-id=NETWORK_ID�

↪→selfservice-instance1

Replace NETWORK_ID with the ID of the self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+-----------------------+--------+-------------

↪→---+

| ID | Name | Status | Networks �

↪→ |

+--------------------------------------+-----------------------+--------+-------------

↪→---+

| c055cdb0-ebb4-4d65-957c-35cbdbd59306 | selfservice-instance1 | ACTIVE |�

↪→selfservice1=192.0.2.4, fd00:192:0:2:f816:3eff:fe30:9cb0 |

+--------------------------------------+-----------------------+--------+-------------

↪→---+

Warning: The IPv4 address resides in a private IP address range (RFC1918). Thus, the Networking
service performs source network address translation (SNAT) for the instance to access external net-
works such as the Internet. Access from external networks such as the Internet to the instance requires
a floating IPv4 address. The Networking service performs destination network address translation
(DNAT) from the floating IPv4 address to the instance IPv4 address on the self-service network. On
the other hand, the Networking service architecture for IPv6 lacks support for NAT due to the sig-
nificantly larger address space and complexity of NAT. Thus, floating IP addresses do not exist for
IPv6 and the Networking service only performs routing for IPv6 subnets on self-service networks.
In other words, you cannot rely on NAT to “hide” instances with IPv4 and IPv6 addresses or only
IPv6 addresses and must properly implement security groups to restrict access.

242 Deployment examples

Networking Guide (Release Version: 15.0.0)

7. On the controller node or any host with access to the provider network, ping the IPv6 address of the
instance.

$ ping6 -c 4 fd00:192:0:2:f816:3eff:fe30:9cb0

PING fd00:192:0:2:f816:3eff:fe30:9cb0(fd00:192:0:2:f816:3eff:fe30:9cb0) 56 data bytes

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=1 ttl=63 time=2.08 ms

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=2 ttl=63 time=1.88 ms

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=3 ttl=63 time=1.55 ms

64 bytes from fd00:192:0:2:f816:3eff:fe30:9cb0: icmp_seq=4 ttl=63 time=1.62 ms

--- fd00:192:0:2:f816:3eff:fe30:9cb0 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3004ms

rtt min/avg/max/mdev = 1.557/1.788/2.085/0.217 ms

8. Optionally, enable IPv4 access from external networks such as the Internet to the instance.

(a) Create a floating IPv4 address on the provider network.

$ openstack floating ip create provider1

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| fixed_ip | None |

| id | 22a1b088-5c9b-43b4-97f3-970ce5df77f2 |

| instance_id | None |

| ip | 203.0.113.16 |

| pool | provider1 |

+-------------+--------------------------------------+

(b) Associate the floating IPv4 address with the instance.

$ openstack server add floating ip selfservice-instance1 203.0.113.16

Note: This command provides no output.

(c) On the controller node or any host with access to the provider network, ping the floating IPv4
address of the instance.

$ ping -c 4 203.0.113.16

PING 203.0.113.16 (203.0.113.16) 56(84) bytes of data.

64 bytes from 203.0.113.16: icmp_seq=1 ttl=63 time=3.41 ms

64 bytes from 203.0.113.16: icmp_seq=2 ttl=63 time=1.67 ms

64 bytes from 203.0.113.16: icmp_seq=3 ttl=63 time=1.47 ms

64 bytes from 203.0.113.16: icmp_seq=4 ttl=63 time=1.59 ms

--- 203.0.113.16 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3005ms

rtt min/avg/max/mdev = 1.473/2.040/3.414/0.798 ms

9. Obtain access to the instance.

10. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Deployment examples 243

Networking Guide (Release Version: 15.0.0)

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south network
traffic travels between an instance and external network such as the Internet. East-west network traffic travels
between instances on the same or different networks. In all scenarios, the physical network infrastructure
handles switching and routing among provider networks and external networks such as the Internet. Each case
references one or more of the following components:

• Provider network (VLAN)

– VLAN ID 101 (tagged)

• Self-service network 1 (VXLAN)

– VXLAN ID (VNI) 101

• Self-service network 2 (VXLAN)

– VXLAN ID (VNI) 102

• Self-service router

– Gateway on the provider network

– Interface on self-service network 1

– Interface on self-service network 2

• Instance 1

• Instance 2

North-south scenario 1: Instance with a fixed IP address

For instances with a fixed IPv4 address, the network node performs SNAT on north-south traffic passing from
self-service to external networks such as the Internet. For instances with a fixed IPv6 address, the network node
performs conventional routing of traffic between self-service and external networks.

• The instance resides on compute node 1 and uses self-service network 1.

• The instance sends a packet to a host on the Internet.

The following steps involve compute node 1:

1. The instance interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group
port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

6. The OVS integration bridge patch port (6) forwards the packet to the OVS tunnel bridge patch port (7).

7. The OVS tunnel bridge (8) wraps the packet using VNI 101.

244 Deployment examples

Networking Guide (Release Version: 15.0.0)

8. The underlying physical interface (9) for overlay networks forwards the packet to the network node via
the overlay network (10).

The following steps involve the network node:

1. The underlying physical interface (11) for overlay networks forwards the packet to the OVS tunnel bridge
(12).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch port (13) forwards the packet to the OVS integration bridge patch port (14).

5. The OVS integration bridge port for the self-service network (15) removes the internal VLAN tag and
forwards the packet to the self-service network interface (16) in the router namespace.

• For IPv4, the router performs SNAT on the packet which changes the source IP address to the router
IP address on the provider network and sends it to the gateway IP address on the provider network
via the gateway interface on the provider network (17).

• For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP address
on the provider network, via the provider gateway interface (17).

6. The router forwards the packet to the OVS integration bridge port for the provider network (18).

7. The OVS integration bridge adds the internal VLAN tag to the packet.

8. The OVS integration bridge int-br-provider patch port (19) forwards the packet to the OVS provider
bridge phy-br-provider patch port (20).

9. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

10. The OVS provider bridge provider network port (21) forwards the packet to the physical network inter-
face (22).

11. The physical network interface forwards the packet to the Internet via physical network infrastructure
(23).

Note: Return traffic follows similar steps in reverse. However, without a floating IPv4 address, hosts on the
provider or external networks cannot originate connections to instances on the self-service network.

Deployment examples 245

Networking Guide (Release Version: 15.0.0)

246 Deployment examples

Networking Guide (Release Version: 15.0.0)

North-south scenario 2: Instance with a floating IPv4 address

For instances with a floating IPv4 address, the network node performs SNAT on north-south traffic passing from
the instance to external networks such as the Internet and DNAT on north-south traffic passing from external
networks to the instance. Floating IP addresses and NAT do not apply to IPv6. Thus, the network node routes
IPv6 traffic in this scenario.

• The instance resides on compute node 1 and uses self-service network 1.

• A host on the Internet sends a packet to the instance.

The following steps involve the network node:

1. The physical network infrastructure (1) forwards the packet to the provider physical network interface
(2).

2. The provider physical network interface forwards the packet to theOVS provider bridge provider network
port (3).

3. The OVS provider bridge swaps actual VLAN tag 101 with the internal VLAN tag.

4. The OVS provider bridge phy-br-provider port (4) forwards the packet to the OVS integration bridge
int-br-provider port (5).

5. The OVS integration bridge port for the provider network (6) removes the internal VLAN tag and for-
wards the packet to the provider network interface (6) in the router namespace.

• For IPv4, the router performs DNAT on the packet which changes the destination IP address to
the instance IP address on the self-service network and sends it to the gateway IP address on the
self-service network via the self-service interface (7).

• For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP address
on the self-service network, via the self-service interface (8).

6. The router forwards the packet to the OVS integration bridge port for the self-service network (9).

7. The OVS integration bridge adds an internal VLAN tag to the packet.

8. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

9. The OVS integration bridge patch-tun patch port (10) forwards the packet to the OVS tunnel bridge
patch-int patch port (11).

10. The OVS tunnel bridge (12) wraps the packet using VNI 101.

11. The underlying physical interface (13) for overlay networks forwards the packet to the network node via
the overlay network (14).

The following steps involve the compute node:

1. The underlying physical interface (15) for overlay networks forwards the packet to the OVS tunnel bridge
(16).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch-int patch port (17) forwards the packet to the OVS integration bridge
patch-tun patch port (18).

5. The OVS integration bridge removes the internal VLAN tag from the packet.

Deployment examples 247

Networking Guide (Release Version: 15.0.0)

6. The OVS integration bridge security group port (19) forwards the packet to the security group bridge
OVS port (20) via veth pair.

7. Security group rules (21) on the security group bridge handle firewalling and connection tracking for the
packet.

8. The security group bridge instance port (22) forwards the packet to the instance interface (23) via veth
pair.

248 Deployment examples

Networking Guide (Release Version: 15.0.0)

Deployment examples 249

Networking Guide (Release Version: 15.0.0)

Note: Egress instance traffic flows similar to north-south scenario 1, except SNAT changes the source IP
address of the packet to the floating IPv4 address rather than the router IP address on the provider network.

East-west scenario 1: Instances on the same network

Instances with a fixed IPv4/IPv6 address or floating IPv4 address on the same network communicate directly
between compute nodes containing those instances.

By default, the VXLAN protocol lacks knowledge of target location and uses multicast to discover it. After
discovery, it stores the location in the local forwarding database. In large deployments, the discovery process
can generate a significant amount of network that all nodes must process. To eliminate the latter and generally
increase efficiency, the Networking service includes the layer-2 population mechanism driver that automatically
populates the forwarding database for VXLAN interfaces. The example configuration enables this driver. For
more information, seeML2 plug-in.

• Instance 1 resides on compute node 1 and uses self-service network 1.

• Instance 2 resides on compute node 2 and uses self-service network 1.

• Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

1. The instance 1 interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group
port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

6. The OVS integration bridge patch port (6) forwards the packet to the OVS tunnel bridge patch port (7).

7. The OVS tunnel bridge (8) wraps the packet using VNI 101.

8. The underlying physical interface (9) for overlay networks forwards the packet to compute node 2 via
the overlay network (10).

The following steps involve compute node 2:

1. The underlying physical interface (11) for overlay networks forwards the packet to the OVS tunnel bridge
(12).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch-int patch port (13) forwards the packet to the OVS integration bridge
patch-tun patch port (14).

5. The OVS integration bridge removes the internal VLAN tag from the packet.

250 Deployment examples

Networking Guide (Release Version: 15.0.0)

6. The OVS integration bridge security group port (15) forwards the packet to the security group bridge
OVS port (16) via veth pair.

7. Security group rules (17) on the security group bridge handle firewalling and connection tracking for the
packet.

8. The security group bridge instance port (18) forwards the packet to the instance 2 interface (19) via veth
pair.

Deployment examples 251

Networking Guide (Release Version: 15.0.0)

Note: Return traffic follows similar steps in reverse.

252 Deployment examples

Networking Guide (Release Version: 15.0.0)

East-west scenario 2: Instances on different networks

Instances using a fixed IPv4/IPv6 address or floating IPv4 address communicate via router on the network node.
The self-service networks must reside on the same router.

• Instance 1 resides on compute node 1 and uses self-service network 1.

• Instance 2 resides on compute node 1 and uses self-service network 2.

• Instance 1 sends a packet to instance 2.

Note: Both instances reside on the same compute node to illustrate how VXLAN enables multiple overlays to
use the same layer-3 network.

The following steps involve the compute node:

1. The instance interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group
port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

6. The OVS integration bridge patch-tun patch port (6) forwards the packet to the OVS tunnel bridge
patch-int patch port (7).

7. The OVS tunnel bridge (8) wraps the packet using VNI 101.

8. The underlying physical interface (9) for overlay networks forwards the packet to the network node via
the overlay network (10).

The following steps involve the network node:

1. The underlying physical interface (11) for overlay networks forwards the packet to the OVS tunnel bridge
(12).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch-int patch port (13) forwards the packet to the OVS integration bridge
patch-tun patch port (14).

5. The OVS integration bridge port for self-service network 1 (15) removes the internal VLAN tag and
forwards the packet to the self-service network 1 interface (16) in the router namespace.

6. The router sends the packet to the next-hop IP address, typically the gateway IP address on self-service
network 2, via the self-service network 2 interface (17).

7. The router forwards the packet to the OVS integration bridge port for self-service network 2 (18).

8. The OVS integration bridge adds the internal VLAN tag to the packet.

9. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

Deployment examples 253

Networking Guide (Release Version: 15.0.0)

10. The OVS integration bridge patch-tun patch port (19) forwards the packet to the OVS tunnel bridge
patch-int patch port (20).

11. The OVS tunnel bridge (21) wraps the packet using VNI 102.

12. The underlying physical interface (22) for overlay networks forwards the packet to the compute node via
the overlay network (23).

The following steps involve the compute node:

1. The underlying physical interface (24) for overlay networks forwards the packet to the OVS tunnel bridge
(25).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch-int patch port (26) forwards the packet to the OVS integration bridge
patch-tun patch port (27).

5. The OVS integration bridge removes the internal VLAN tag from the packet.

6. The OVS integration bridge security group port (28) forwards the packet to the security group bridge
OVS port (29) via veth pair.

7. Security group rules (30) on the security group bridge handle firewalling and connection tracking for the
packet.

8. The security group bridge instance port (31) forwards the packet to the instance interface (32) via veth
pair.

Note: Return traffic follows similar steps in reverse.

254 Deployment examples

Networking Guide (Release Version: 15.0.0)

Deployment examples 255

Networking Guide (Release Version: 15.0.0)

Open vSwitch: High availability using VRRP

This architecture example augments the self-service deployment example with a high-availability mechanism
using the Virtual Router Redundancy Protocol (VRRP) via keepalived and provides failover of routing for
self-service networks. It requires a minimum of two network nodes because VRRP creates one master (active)
instance and at least one backup instance of each router.

During normal operation, keepalived on the master router periodically transmits heartbeat packets over a
hidden network that connects all VRRP routers for a particular project. Each project with VRRP routers uses
a separate hidden network. By default this network uses the first value in the tenant_network_types option
in the ml2_conf.ini file. For additional control, you can specify the self-service network type and physical
network name for the hidden network using the l3_ha_network_type and l3_ha_network_name options in
the neutron.conf file.

If keepalived on the backup router stops receiving heartbeat packets, it assumes failure of the master router
and promotes the backup router to master router by configuring IP addresses on the interfaces in the qrouter
namespace. In environments with more than one backup router, keepalived on the backup router with the
next highest priority promotes that backup router to master router.

Note: This high-availability mechanism configures VRRP using the same priority for all routers. Therefore,
VRRP promotes the backup router with the highest IP address to the master router.

Warning: There is a known bug with keepalived v1.2.15 and earlier which can cause packet loss
when max_l3_agents_per_router is set to 3 or more. Therefore, we recommend that you upgrade to
keepalived v1.2.16 or greater when using this feature.

Interruption of VRRP heartbeat traffic between network nodes, typically due to a network interface or physical
network infrastructure failure, triggers a failover. Restarting the layer-3 agent, or failure of it, does not trigger
a failover providing keepalived continues to operate.

Consider the following attributes of this high-availability mechanism to determine practicality in your environ-
ment:

• Instance network traffic on self-service networks using a particular router only traverses the master in-
stance of that router. Thus, resource limitations of a particular network node can impact all master
instances of routers on that network node without triggering failover to another network node. However,
you can configure the scheduler to distribute the master instance of each router uniformly across a pool
of network nodes to reduce the chance of resource contention on any particular network node.

• Only supports self-service networks using a router. Provider networks operate at layer-2 and rely on
physical network infrastructure for redundancy.

• For instances with a floating IPv4 address, maintains state of network connections during failover as a
side effect of 1:1 static NAT. The mechanism does not actually implement connection tracking.

For production deployments, we recommend at least three network nodes with sufficient resources to handle
network traffic for the entire environment if one network node fails. Also, the remaining two nodes can continue
to provide redundancy.

256 Deployment examples

Networking Guide (Release Version: 15.0.0)

Prerequisites

Add one network node with the following components:

• Three network interfaces: management, provider, and overlay.

• OpenStack Networking layer-2 agent, layer-3 agent, and any dependencies.

Note: You can keep the DHCP and metadata agents on each compute node or move them to the network nodes.

Deployment examples 257

Networking Guide (Release Version: 15.0.0)

Architecture

258 Deployment examples

Networking Guide (Release Version: 15.0.0)

The following figure shows components and connectivity for one self-service network and one untagged (flat)
network. The master router resides on network node 1. In this particular case, the instance resides on the same
compute node as the DHCP agent for the network. If the DHCP agent resides on another compute node, the
latter only contains a DHCP namespace and Linux bridge with a port on the overlay physical network interface.

Deployment examples 259

Networking Guide (Release Version: 15.0.0)

260 Deployment examples

Networking Guide (Release Version: 15.0.0)

Example configuration

Use the following example configuration as a template to add support for high-availability using VRRP to an
existing operational environment that supports self-service networks.

Controller node

1. In the neutron.conf file:

• Enable VRRP.

[DEFAULT]

l3_ha = True

2. Restart the following services:

• Server

Network node 1

No changes.

Network node 2

1. Install the Networking service OVS layer-2 agent and layer-3 agent.

2. Install OVS.

3. In the neutron.conf file, configure common options:

[DEFAULT]

core_plugin = ml2

auth_strategy = keystone

[database]

...

[keystone_authtoken]

...

[nova]

...

[agent]

...

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

4. Start the following services:

• OVS

Deployment examples 261

https://docs.openstack.org
https://docs.openstack.org

Networking Guide (Release Version: 15.0.0)

5. Create the OVS provider bridge br-provider:

$ ovs-vsctl add-br br-provider

6. In the openvswitch_agent.ini file, configure the layer-2 agent.

[ovs]

bridge_mappings = provider:br-provider

local_ip = OVERLAY_INTERFACE_IP_ADDRESS

[agent]

tunnel_types = vxlan

l2_population = true

[securitygroup]

firewall_driver = iptables_hybrid

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles VXLAN
overlays for self-service networks.

7. In the l3_agent.ini file, configure the layer-3 agent.

[DEFAULT]

interface_driver = openvswitch

external_network_bridge =

Note: The external_network_bridge option intentionally contains no value.

8. Start the following services:

• Open vSwitch agent

• Layer-3 agent

Compute nodes

No changes.

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 1236bbcb-e0ba-48a9-80fc-81202ca4fa51 | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

| 457d6898-b373-4bb3-b41f-59345dcfb5c5 | Open vSwitch agent | compute2 | �

↪→ | True | UP | neutron-openvswitch-agent |

262 Deployment examples

Networking Guide (Release Version: 15.0.0)

| 71f15e84-bc47-4c2a-b9fb-317840b2d753 | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| 8805b962-de95-4e40-bdc2-7a0add7521e8 | L3 agent | network1 | nova �

↪→ | True | UP | neutron-l3-agent |

| a33cac5a-0266-48f6-9cac-4cef4f8b0358 | Open vSwitch agent | network1 | �

↪→ | True | UP | neutron-openvswitch-agent |

| a6c69690-e7f7-4e56-9831-1282753e5007 | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| af11f22f-a9f4-404f-9fd8-cd7ad55c0f68 | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| bcfc977b-ec0e-4ba9-be62-9489b4b0e6f1 | Open vSwitch agent | compute1 | �

↪→ | True | UP | neutron-openvswitch-agent |

| 7f00d759-f2c9-494a-9fbf-fd9118104d03 | Open vSwitch agent | network2 | �

↪→ | True | UP | neutron-openvswitch-agent |

| b28d8818-9e32-4888-930b-29addbdd2ef9 | L3 agent | network2 | nova �

↪→ | True | UP | neutron-l3-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

Create initial networks

Similar to the self-service deployment example, this configuration supports multiple VXLAN self-service net-
works. After enabling high-availability, all additional routers use VRRP. The following procedure creates an
additional self-service network and router. The Networking service also supports adding high-availability to
existing routers. However, the procedure requires administratively disabling and enabling each router which
temporarily interrupts network connectivity for self-service networks with interfaces on that router.

1. Source a regular (non-administrative) project credentials.

2. Create a self-service network.

$ openstack network create selfservice2

+-------------------------+--------------+

| Field | Value |

+-------------------------+--------------+

| admin_state_up | UP |

| mtu | 1450 |

| name | selfservice2 |

| port_security_enabled | True |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

+-------------------------+--------------+

3. Create a IPv4 subnet on the self-service network.

$ openstack subnet create --subnet-range 198.51.100.0/24 \

--network selfservice2 --dns-nameserver 8.8.4.4 selfservice2-v4

+-------------------+------------------------------+

| Field | Value |

+-------------------+------------------------------+

| allocation_pools | 198.51.100.2-198.51.100.254 |

| cidr | 198.51.100.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

Deployment examples 263

Networking Guide (Release Version: 15.0.0)

| gateway_ip | 198.51.100.1 |

| ip_version | 4 |

| name | selfservice2-v4 |

+-------------------+------------------------------+

4. Create a IPv6 subnet on the self-service network.

$ openstack subnet create --subnet-range fd00:198:51:100::/64 --ip-version 6 \

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice2 \

--dns-nameserver 2001:4860:4860::8844 selfservice2-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:198:51:100::2-fd00:198:51:100:ffff:ffff:ffff:ffff |

| cidr | fd00:198:51:100::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:198:51:100::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | selfservice2-v6 |

+-------------------+--+

5. Create a router.

$ openstack router create router2

+-----------------------+---------+

| Field | Value |

+-----------------------+---------+

| admin_state_up | UP |

| name | router2 |

| status | ACTIVE |

+-----------------------+---------+

6. Add the IPv4 and IPv6 subnets as interfaces on the router.

$ openstack router add subnet router2 selfservice2-v4

$ openstack router add subnet router2 selfservice2-v6

Note: These commands provide no output.

7. Add the provider network as a gateway on the router.

$ neutron router-gateway-set router2 provider1

Set gateway for router router2

Verify network operation

1. Source the administrative project credentials.

2. Verify creation of the internal high-availability network that handles VRRP heartbeat traffic.

264 Deployment examples

Networking Guide (Release Version: 15.0.0)

$ openstack network list

+--------------------------------------+--

↪→------+--------------------------------------+

| ID | Name �

↪→ | Subnets |

+--------------------------------------+--

↪→------+--------------------------------------+

| 1b8519c1-59c4-415c-9da2-a67d53c68455 | HA network tenant�

↪→f986edf55ae945e2bef3cb4bfd589928 | 6843314a-1e76-4cc9-94f5-c64b7a39364a |

+--------------------------------------+--

↪→------+--------------------------------------+

3. On each network node, verify creation of a qrouter namespace with the same ID.

Network node 1:

ip netns

qrouter-b6206312-878e-497c-8ef7-eb384f8add96

Network node 2:

ip netns

qrouter-b6206312-878e-497c-8ef7-eb384f8add96

Note: The namespace for router 1 from Linux bridge: Self-service networks should only appear on
network node 1 because of creation prior to enabling VRRP.

4. On each network node, show the IP address of interfaces in the qrouter namespace. With the exception
of the VRRP interface, only one namespace belonging to the master router instance contains IP addresses
on the interfaces.

Network node 1:

ip netns exec qrouter-b6206312-878e-497c-8ef7-eb384f8add96 ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default�

↪→qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ha-eb820380-40@if21: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:78:ba:99 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 169.254.192.1/18 brd 169.254.255.255 scope global ha-eb820380-40

valid_lft forever preferred_lft forever

inet 169.254.0.1/24 scope global ha-eb820380-40

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:fe78:ba99/64 scope link

valid_lft forever preferred_lft forever

3: qr-da3504ad-ba@if24: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:dc:8e:a8 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 198.51.100.1/24 scope global qr-da3504ad-ba

valid_lft forever preferred_lft forever

Deployment examples 265

Networking Guide (Release Version: 15.0.0)

inet6 fe80::f816:3eff:fedc:8ea8/64 scope link

valid_lft forever preferred_lft forever

4: qr-442e36eb-fc@if27: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:ee:c8:41 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet6 fd00:198:51:100::1/64 scope global nodad

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:feee:c841/64 scope link

valid_lft forever preferred_lft forever

5: qg-33fedbc5-43@if28: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:03:1a:f6 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 203.0.113.21/24 scope global qg-33fedbc5-43

valid_lft forever preferred_lft forever

inet6 fd00:203:0:113::21/64 scope global nodad

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:fe03:1af6/64 scope link

valid_lft forever preferred_lft forever

Network node 2:

ip netns exec qrouter-b6206312-878e-497c-8ef7-eb384f8add96 ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default�

↪→qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ha-7a7ce184-36@if8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state�

↪→UP group default qlen 1000

link/ether fa:16:3e:16:59:84 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 169.254.192.2/18 brd 169.254.255.255 scope global ha-7a7ce184-36

valid_lft forever preferred_lft forever

inet6 fe80::f816:3eff:fe16:5984/64 scope link

valid_lft forever preferred_lft forever

3: qr-da3504ad-ba@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:dc:8e:a8 brd ff:ff:ff:ff:ff:ff link-netnsid 0

4: qr-442e36eb-fc@if14: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue�

↪→state UP group default qlen 1000

5: qg-33fedbc5-43@if15: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue�

↪→state UP group default qlen 1000

link/ether fa:16:3e:03:1a:f6 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Note: The master router may reside on network node 2.

5. Launch an instance with an interface on the addtional self-service network. For example, a CirrOS image
using flavor ID 1.

$ openstack server create --flavor 1 --image cirros --nic net-id=NETWORK_ID�

↪→selfservice-instance2

Replace NETWORK_ID with the ID of the additional self-service network.

266 Deployment examples

Networking Guide (Release Version: 15.0.0)

6. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+-----------------------+--------+-------------

↪→--+

| ID | Name | Status | Networks �

↪→ |

+--------------------------------------+-----------------------+--------+-------------

↪→--+

| bde64b00-77ae-41b9-b19a-cd8e378d9f8b | selfservice-instance2 | ACTIVE |�

↪→selfservice2=fd00:198:51:100:f816:3eff:fe71:e93e, 198.51.100.4 |

+--------------------------------------+-----------------------+--------+-------------

↪→--+

7. Create a floating IPv4 address on the provider network.

$ openstack floating ip create provider1

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| fixed_ip | None |

| id | 0174056a-fa56-4403-b1ea-b5151a31191f |

| instance_id | None |

| ip | 203.0.113.17 |

| pool | provider1 |

+-------------+--------------------------------------+

8. Associate the floating IPv4 address with the instance.

$ openstack server add floating ip selfservice-instance2 203.0.113.17

Note: This command provides no output.

Verify failover operation

1. Begin a continuous ping of both the floating IPv4 address and IPv6 address of the instance. While
performing the next three steps, you should see a minimal, if any, interruption of connectivity to the
instance.

2. On the network node with the master router, administratively disable the overlay network interface.

3. On the other network node, verify promotion of the backup router to master router by noting addition of
IP addresses to the interfaces in the qrouter namespace.

4. On the original network node in step 2, administratively enable the overlay network interface. Note that
the master router remains on the network node in step 3.

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies con-
nectivity to all available and configured gateway addresses. In the event that connectivity is lost, the master
router is rescheduled to another node.

Deployment examples 267

Networking Guide (Release Version: 15.0.0)

If all routers lose connectivity simultaneously, the process of selecting a new master router will be repeated in
a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the l3_agent.ini file:

ha_vrrp_health_check_interval = 30

Where ha_vrrp_health_check_interval indicates how often in seconds the health check should run. The
default value is 0, which indicates that the check should not run at all.

Network traffic flow

This high-availability mechanism simply augmentsOpen vSwitch: Self-service networkswith failover of layer-
3 services to another router if the master router fails. Thus, you can reference Self-service network traffic flow
for normal operation.

Open vSwitch: High availability using DVR

This architecture example augments the self-service deployment example with the Distributed Virtual Router
(DVR) high-availability mechanism that provides connectivity between self-service and provider networks on
compute nodes rather than network nodes for specific scenarios. For instances with a floating IPv4 address,
routing between self-service and provider networks resides completely on the compute nodes to eliminate single
point of failure and performance issues with network nodes. Routing also resides completely on the compute
nodes for instances with a fixed or floating IPv4 address using self-service networks on the same distributed
virtual router. However, instances with a fixed IP address still rely on the network node for routing and SNAT
services between self-service and provider networks.

Consider the following attributes of this high-availability mechanism to determine practicality in your environ-
ment:

• Only provides connectivity to an instance via the compute node on which the instance resides if the
instance resides on a self-service networkwith a floating IPv4 address. Instances on self-service networks
with only an IPv6 address or both IPv4 and IPv6 addresses rely on the network node for IPv6 connectivity.

• The instance of a router on each compute node consumes an IPv4 address on the provider network on
which it contains a gateway.

Prerequisites

Modify the compute nodes with the following components:

• Install the OpenStack Networking layer-3 agent.

Note: Consider adding at least one additional network node to provide high-availability for instances with a
fixed IP address. See See Distributed Virtual Routing with VRRP for more information.

268 Deployment examples

Networking Guide (Release Version: 15.0.0)

Architecture

Deployment examples 269

Networking Guide (Release Version: 15.0.0)

The following figure shows components and connectivity for one self-service network and one untagged (flat)
network. In this particular case, the instance resides on the same compute node as the DHCP agent for the
network. If the DHCP agent resides on another compute node, the latter only contains a DHCP namespace with
a port on the OVS integration bridge.

270 Deployment examples

Networking Guide (Release Version: 15.0.0)

Example configuration

Use the following example configuration as a template to add support for high-availability using DVR to an
existing operational environment that supports self-service networks.

Controller node

1. In the neutron.conf file:

• Enable distributed routing by default for all routers.

[DEFAULT]

router_distributed = True

2. Restart the following services:

• Server

Network node

1. In the openswitch_agent.ini file, enable distributed routing.

[DEFAULT]

enable_distributed_routing = True

2. In the l3_agent.ini file, configure the layer-3 agent to provide SNAT services.

[DEFAULT]

agent_mode = dvr_snat

Note: The external_network_bridge option intentionally contains no value.

3. Restart the following services:

• Open vSwitch agent

• Layer-3 agent

Compute nodes

1. Install the Networking service layer-3 agent.

2. In the openswitch_agent.ini file, enable distributed routing.

[DEFAULT]

enable_distributed_routing = True

3. In the l3_agent.ini file, configure the layer-3 agent.

Deployment examples 271

Networking Guide (Release Version: 15.0.0)

[DEFAULT]

interface_driver = openvswitch

external_network_bridge =

agent_mode = dvr

Note: The external_network_bridge option intentionally contains no value.

4. Restart the following services:

• Open vSwitch agent

• Layer-3 agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

$ openstack network agent list

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| ID | Agent Type | Host | Availability�

↪→Zone | Alive | State | Binary |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

| 05d980f2-a4fc-4815-91e7-a7f7e118c0db | L3 agent | compute1 | nova �

↪→ | True | UP | neutron-l3-agent |

| 1236bbcb-e0ba-48a9-80fc-81202ca4fa51 | Metadata agent | compute2 | �

↪→ | True | UP | neutron-metadata-agent |

| 2a2e9a90-51b8-4163-a7d6-3e199ba2374b | L3 agent | compute2 | nova �

↪→ | True | UP | neutron-l3-agent |

| 457d6898-b373-4bb3-b41f-59345dcfb5c5 | Open vSwitch agent | compute2 | �

↪→ | True | UP | neutron-openvswitch-agent |

| 513caa68-0391-4e53-a530-082e2c23e819 | Linux bridge agent | compute1 | �

↪→ | True | UP | neutron-linuxbridge-agent |

| 71f15e84-bc47-4c2a-b9fb-317840b2d753 | DHCP agent | compute2 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| 8805b962-de95-4e40-bdc2-7a0add7521e8 | L3 agent | network1 | nova �

↪→ | True | UP | neutron-l3-agent |

| a33cac5a-0266-48f6-9cac-4cef4f8b0358 | Open vSwitch agent | network1 | �

↪→ | True | UP | neutron-openvswitch-agent |

| a6c69690-e7f7-4e56-9831-1282753e5007 | Metadata agent | compute1 | �

↪→ | True | UP | neutron-metadata-agent |

| af11f22f-a9f4-404f-9fd8-cd7ad55c0f68 | DHCP agent | compute1 | nova �

↪→ | True | UP | neutron-dhcp-agent |

| bcfc977b-ec0e-4ba9-be62-9489b4b0e6f1 | Open vSwitch agent | compute1 | �

↪→ | True | UP | neutron-openvswitch-agent |

+--------------------------------------+--------------------+----------+--------------

↪→-----+-------+-------+---------------------------+

272 Deployment examples

Networking Guide (Release Version: 15.0.0)

Create initial networks

Similar to the self-service deployment example, this configuration supports multiple VXLAN self-service net-
works. After enabling high-availability, all additional routers use distributed routing. The following procedure
creates an additional self-service network and router. The Networking service also supports adding distributed
routing to existing routers.

1. Source a regular (non-administrative) project credentials.

2. Create a self-service network.

$ openstack network create selfservice2

+-------------------------+--------------+

| Field | Value |

+-------------------------+--------------+

| admin_state_up | UP |

| mtu | 1450 |

| name | selfservice2 |

| port_security_enabled | True |

| router:external | Internal |

| shared | False |

| status | ACTIVE |

+-------------------------+--------------+

3. Create a IPv4 subnet on the self-service network.

$ openstack subnet create --subnet-range 192.0.2.0/24 \

--network selfservice2 --dns-nameserver 8.8.4.4 selfservice2-v4

+-------------------+---------------------------+

| Field | Value |

+-------------------+---------------------------+

| allocation_pools | 192.0.2.2-192.0.2.254 |

| cidr | 192.0.2.0/24 |

| dns_nameservers | 8.8.4.4 |

| enable_dhcp | True |

| gateway_ip | 192.0.2.1 |

| ip_version | 4 |

| name | selfservice2-v4 |

+-------------------+---------------------------+

4. Create a IPv6 subnet on the self-service network.

$ openstack subnet create --subnet-range fd00:192:0:2::/64 --ip-version 6 \

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice2 \

--dns-nameserver 2001:4860:4860::8844 selfservice2-v6

+-------------------+--+

| Field | Value |

+-------------------+--+

| allocation_pools | fd00:192:0:2::2-fd00:192:0:2:ffff:ffff:ffff:ffff |

| cidr | fd00:192:0:2::/64 |

| dns_nameservers | 2001:4860:4860::8844 |

| enable_dhcp | True |

| gateway_ip | fd00:192:0:2::1 |

| ip_version | 6 |

| ipv6_address_mode | slaac |

| ipv6_ra_mode | slaac |

| name | selfservice2-v6 |

Deployment examples 273

Networking Guide (Release Version: 15.0.0)

+-------------------+--+

5. Create a router.

$ openstack router create router2

+-----------------------+---------+

| Field | Value |

+-----------------------+---------+

| admin_state_up | UP |

| name | router2 |

| status | ACTIVE |

+-----------------------+---------+

6. Add the IPv4 and IPv6 subnets as interfaces on the router.

$ openstack router add subnet router2 selfservice2-v4

$ openstack router add subnet router2 selfservice2-v6

Note: These commands provide no output.

7. Add the provider network as a gateway on the router.

$ openstack router set router2 --external-gateway provider1

Verify network operation

1. Source the administrative project credentials.

2. Verify distributed routing on the router.

$ openstack router show router2

+-------------------------+---------+

| Field | Value |

+-------------------------+---------+

| admin_state_up | UP |

| distributed | True |

| ha | False |

| name | router2 |

| status | ACTIVE |

+-------------------------+---------+

3. On each compute node, verify creation of a qrouter namespace with the same ID.

Compute node 1:

ip netns

qrouter-78d2f628-137c-4f26-a257-25fc20f203c1

Compute node 2:

ip netns

qrouter-78d2f628-137c-4f26-a257-25fc20f203c1

274 Deployment examples

Networking Guide (Release Version: 15.0.0)

4. On the network node, verify creation of the snat and qrouter namespaces with the same ID.

ip netns

snat-78d2f628-137c-4f26-a257-25fc20f203c1

qrouter-78d2f628-137c-4f26-a257-25fc20f203c1

Note: The namespace for router 1 from Open vSwitch: Self-service networks should also appear on
network node 1 because of creation prior to enabling distributed routing.

5. Launch an instance with an interface on the addtional self-service network. For example, a CirrOS image
using flavor ID 1.

$ openstack server create --flavor 1 --image cirros --nic net-id=NETWORK_ID�

↪→selfservice-instance2

Replace NETWORK_ID with the ID of the additional self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

$ openstack server list

+--------------------------------------+-----------------------+--------+-------------

↪→--+

| ID | Name | Status | Networks �

↪→ |

+--------------------------------------+-----------------------+--------+-------------

↪→--+

| bde64b00-77ae-41b9-b19a-cd8e378d9f8b | selfservice-instance2 | ACTIVE |�

↪→selfservice2=fd00:192:0:2:f816:3eff:fe71:e93e, 192.0.2.4 |

+--------------------------------------+-----------------------+--------+-------------

↪→--+

7. Create a floating IPv4 address on the provider network.

$ openstack floating ip create provider1

+-------------+--------------------------------------+

| Field | Value |

+-------------+--------------------------------------+

| fixed_ip | None |

| id | 0174056a-fa56-4403-b1ea-b5151a31191f |

| instance_id | None |

| ip | 203.0.113.17 |

| pool | provider1 |

+-------------+--------------------------------------+

8. Associate the floating IPv4 address with the instance.

$ openstack server add floating ip selfservice-instance2 203.0.113.17

Note: This command provides no output.

9. On the compute node containing the instance, verify creation of the fip namespace with the same ID as
the provider network.

Deployment examples 275

Networking Guide (Release Version: 15.0.0)

ip netns

fip-4bfa3075-b4b2-4f7d-b88e-df1113942d43

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south network
traffic travels between an instance and external network such as the Internet. East-west network traffic travels
between instances on the same or different networks. In all scenarios, the physical network infrastructure
handles switching and routing among provider networks and external networks such as the Internet. Each case
references one or more of the following components:

• Provider network (VLAN)

– VLAN ID 101 (tagged)

• Self-service network 1 (VXLAN)

– VXLAN ID (VNI) 101

• Self-service network 2 (VXLAN)

– VXLAN ID (VNI) 102

• Self-service router

– Gateway on the provider network

– Interface on self-service network 1

– Interface on self-service network 2

• Instance 1

• Instance 2

This section only contains flow scenarios that benefit from distributed virtual routing or that differ from con-
ventional operation. For other flow scenarios, see Network traffic flow.

North-south scenario 1: Instance with a fixed IP address

Similar toNorth-south scenario 1: Instance with a fixed IP address, except the router namespace on the network
node becomes the SNAT namespace. The network node still contains the router namespace, but it serves no
purpose in this case.

276 Deployment examples

Networking Guide (Release Version: 15.0.0)

Deployment examples 277

Networking Guide (Release Version: 15.0.0)

North-south scenario 2: Instance with a floating IPv4 address

For instances with a floating IPv4 address using a self-service network on a distributed router, the compute node
containing the instance performs SNAT on north-south traffic passing from the instance to external networks
such as the Internet and DNAT on north-south traffic passing from external networks to the instance. Floating IP
addresses and NAT do not apply to IPv6. Thus, the network node routes IPv6 traffic in this scenario. north-south
traffic passing between the instance and external networks such as the Internet.

• Instance 1 resides on compute node 1 and uses self-service network 1.

• A host on the Internet sends a packet to the instance.

The following steps involve the compute node:

1. The physical network infrastructure (1) forwards the packet to the provider physical network interface
(2).

2. The provider physical network interface forwards the packet to theOVS provider bridge provider network
port (3).

3. The OVS provider bridge swaps actual VLAN tag 101 with the internal VLAN tag.

4. The OVS provider bridge phy-br-provider port (4) forwards the packet to the OVS integration bridge
int-br-provider port (5).

5. The OVS integration bridge port for the provider network (6) removes the internal VLAN tag and for-
wards the packet to the provider network interface (7) in the floating IP namespace. This interface
responds to any ARP requests for the instance floating IPv4 address.

6. The floating IP namespace routes the packet (8) to the distributed router namespace (9) using a pair of
IP addresses on the DVR internal network. This namespace contains the instance floating IPv4 address.

7. The router performs DNAT on the packet which changes the destination IP address to the instance IP
address on the self-service network via the self-service network interface (10).

8. The router forwards the packet to the OVS integration bridge port for the self-service network (11).

9. The OVS integration bridge adds an internal VLAN tag to the packet.

10. The OVS integration bridge removes the internal VLAN tag from the packet.

11. The OVS integration bridge security group port (12) forwards the packet to the security group bridge
OVS port (13) via veth pair.

12. Security group rules (14) on the security group bridge handle firewalling and connection tracking for the
packet.

13. The security group bridge instance port (15) forwards the packet to the instance interface (16) via veth
pair.

278 Deployment examples

Networking Guide (Release Version: 15.0.0)

Note: Egress traffic follows similar steps in reverse, except SNAT changes the source IPv4 address of the
packet to the floating IPv4 address.

East-west scenario 1: Instances on different networks on the same router

Instances with fixed IPv4/IPv6 address or floating IPv4 address on the same compute node communicate via
router on the compute node. Instances on different compute nodes communicate via an instance of the router
on each compute node.

Note: This scenario places the instances on different compute nodes to show the most complex situation.

The following steps involve compute node 1:

1. The instance interface (1) forwards the packet to the security group bridge instance port (2) via veth
pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking for the
packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security group

Deployment examples 279

Networking Guide (Release Version: 15.0.0)

port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge port for self-service network 1 (6) removes the internal VLAN tag and
forwards the packet to the self-service network 1 interface in the distributed router namespace (6).

6. The distributed router namespace routes the packet to self-service network 2.

7. The self-service network 2 interface in the distributed router namespace (8) forwards the packet to the
OVS integration bridge port for self-service network 2 (9).

8. The OVS integration bridge adds an internal VLAN tag to the packet.

9. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

10. The OVS integration bridge patch-tun port (10) forwards the packet to the OVS tunnel bridge
patch-int port (11).

11. The OVS tunnel bridge (12) wraps the packet using VNI 101.

12. The underlying physical interface (13) for overlay networks forwards the packet to compute node 2 via
the overlay network (14).

The following steps involve compute node 2:

1. The underlying physical interface (15) for overlay networks forwards the packet to the OVS tunnel bridge
(16).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch-int patch port (17) forwards the packet to the OVS integration bridge
patch-tun patch port (18).

5. The OVS integration bridge removes the internal VLAN tag from the packet.

6. The OVS integration bridge security group port (19) forwards the packet to the security group bridge
OVS port (20) via veth pair.

7. Security group rules (21) on the security group bridge handle firewalling and connection tracking for the
packet.

8. The security group bridge instance port (22) forwards the packet to the instance 2 interface (23) via veth
pair.

Note: Routing between self-service networks occurs on the compute node containing the instance sending the
packet. In this scenario, routing occurs on compute node 1 for packets from instance 1 to instance 2 and on
compute node 2 for packets from instance 2 to instance 1.

280 Deployment examples

Networking Guide (Release Version: 15.0.0)

Deployment examples 281

Networking Guide (Release Version: 15.0.0)

Operations

IP availability metrics

Network IP Availability is an information-only API extension that allows a user or process to determine the
number of IP addresses that are consumed across networks and the allocation pools of their subnets. This
extension was added to neutron in the Mitaka release.

This section illustrates how you can get the Network IP address availability through the command-line interface.

Get Network IP address availability for all IPv4 networks:

$ openstack ip availability list

+--------------------------------------+--------------+-----------+----------+

| Network ID | Network Name | Total IPs | Used IPs |

+--------------------------------------+--------------+-----------+----------+

| 363a611a-b08b-4281-b64e-198d90cb94fd | private | 253 | 3 |

| c92d0605-caf2-4349-b1b8-8d5f9ac91df8 | public | 253 | 1 |

+--------------------------------------+--------------+-----------+----------+

Get Network IP address availability for all IPv6 networks:

$ openstack ip availability list --ip-version 6

+--------------------------------------+--------------+----------------------+----------+

| Network ID | Network Name | Total IPs | Used IPs |

+--------------------------------------+--------------+----------------------+----------+

| 363a611a-b08b-4281-b64e-198d90cb94fd | private | 18446744073709551614 | 3 |

| c92d0605-caf2-4349-b1b8-8d5f9ac91df8 | public | 18446744073709551614 | 1 |

+--------------------------------------+--------------+----------------------+----------+

Get Network IP address availability statistics for a specific network:

$ openstack ip availability show NETWORKUUID

+------------------------+--+

| Field | Value |

+------------------------+--+

| network_id | 0bf90de6-fc0f-4dba-b80d-96670dfb331a |

| network_name | public |

| project_id | 5669caad86a04256994cdf755df4d3c1 |

| subnet_ip_availability | cidr='192.0.2.224/28', ip_version='4', subnet_id='346806ee- |

| | a53e-44fd-968a-ddb2bcd2ba96', subnet_name='public_subnet', |

| | total_ips='13', used_ips='5' |

| total_ips | 13 |

| used_ips | 5 |

+------------------------+--+

Resource tags

Various virtual networking resources support tags for use by external systems or any other clients of the Net-
working service API.

The currently supported resources are:

282 Operations

Networking Guide (Release Version: 15.0.0)

• networks

• subnets

• subnetpools

• ports

• routers

Use cases

The following use cases refer to adding tags to networks, but the same can be applicable to any other supported
Networking service resource:

1. Ability to map different networks in different OpenStack locations to one logically same network (for
multi-site OpenStack).

2. Ability to map IDs from different management/orchestration systems to OpenStack networks in mixed
environments. For example, in the Kuryr project, the Docker network ID is mapped to the Neutron
network ID.

3. Ability to leverage tags by deployment tools.

4. Ability to tag information about provider networks (for example, high-bandwidth, low-latency, and so
on).

Filtering with tags

The API allows searching/filtering of the GET /v2.0/networks API. The following query parameters are
supported:

• tags

• tags-any

• not-tags

• not-tags-any

To request the list of networks that have a single tag, tags argument should be set to the desired tag name.
Example:

GET /v2.0/networks?tags=red

To request the list of networks that have two or more tags, the tags argument should be set to the list of tags,
separated by commas. In this case, the tags given must all be present for a network to be included in the query
result. Example that returns networks that have the “red” and “blue” tags:

GET /v2.0/networks?tags=red,blue

To request the list of networks that have one or more of a list of given tags, the tags-any argument should be
set to the list of tags, separated by commas. In this case, as long as one of the given tags is present, the network
will be included in the query result. Example that returns the networks that have the “red” or the “blue” tag:

GET /v2.0/networks?tags-any=red,blue

Operations 283

Networking Guide (Release Version: 15.0.0)

To request the list of networks that do not have one or more tags, the not-tags argument should be set to the
list of tags, separated by commas. In this case, only the networks that do not have any of the given tags will be
included in the query results. Example that returns the networks that do not have either “red” or “blue” tag:

GET /v2.0/networks?not-tags=red,blue

To request the list of networks that do not have at least one of a list of tags, the not-tags-any argument should
be set to the list of tags, separated by commas. In this case, only the networks that do not have at least one of
the given tags will be included in the query result. Example that returns the networks that do not have the “red”
tag, or do not have the “blue” tag:

GET /v2.0/networks?not-tags-any=red,blue

The tags, tags-any, not-tags, and not-tags-any arguments can be combined to build more complex
queries. Example:

GET /v2.0/networks?tags=red,blue&tags-any=green,orange

The above example returns any networks that have the “red” and “blue” tags, plus at least one of “green” and
“orange”.

Complex queries may have contradictory parameters. Example:

GET /v2.0/networks?tags=blue¬-tags=blue

In this case, we should let the Networking service find these networks. Obviously, there are no such networks
and the service will return an empty list.

User workflow

Add a tag to a resource:

$ neutron tag-add --resource-type network --resource ab442634-1cc9-49e5-bd49-0dac9c811f69 --

↪→tag red

$ neutron net-show net

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | |

| id | ab442634-1cc9-49e5-bd49-0dac9c811f69 |

| ipv4_address_scope | |

| ipv6_address_scope | |

| mtu | 1450 |

| name | net |

| port_security_enabled | True |

| router:external | False |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | red |

| tenant_id | e6710680bfd14555891f265644e1dd5c |

+-------------------------+--------------------------------------+

284 Operations

Networking Guide (Release Version: 15.0.0)

Remove a tag from a resource:

$ neutron tag-remove --resource-type network --resource ab442634-1cc9-49e5-bd49-

↪→0dac9c811f69 --tag red

$ neutron net-show net

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | |

| id | ab442634-1cc9-49e5-bd49-0dac9c811f69 |

| ipv4_address_scope | |

| ipv6_address_scope | |

| mtu | 1450 |

| name | net |

| port_security_enabled | True |

| router:external | False |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | |

| tenant_id | e6710680bfd14555891f265644e1dd5c |

+-------------------------+--------------------------------------+

Replace all tags on the resource:

$ neutron tag-replace --resource-type network --resource ab442634-1cc9-49e5-bd49-

↪→0dac9c811f69 --tag red --tag blue

$ neutron net-show net

+-------------------------+--------------------------------------+

| Field | Value |

+-------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | |

| id | ab442634-1cc9-49e5-bd49-0dac9c811f69 |

| ipv4_address_scope | |

| ipv6_address_scope | |

| mtu | 1450 |

| name | net |

| port_security_enabled | True |

| router:external | False |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | red |

| | blue |

| tenant_id | e6710680bfd14555891f265644e1dd5c |

+-------------------------+--------------------------------------+

Clear tags from a resource:

$ neutron tag-remove --resource-type network --resource ab442634-1cc9-49e5-bd49-

↪→0dac9c811f69 --all

$ neutron net-show net

+-------------------------+--------------------------------------+

| Field | Value |

Operations 285

Networking Guide (Release Version: 15.0.0)

+-------------------------+--------------------------------------+

| admin_state_up | True |

| availability_zone_hints | |

| availability_zones | |

| id | ab442634-1cc9-49e5-bd49-0dac9c811f69 |

| ipv4_address_scope | |

| ipv6_address_scope | |

| mtu | 1450 |

| name | net |

| port_security_enabled | True |

| router:external | False |

| shared | False |

| status | ACTIVE |

| subnets | |

| tags | |

| tenant_id | e6710680bfd14555891f265644e1dd5c |

+-------------------------+--------------------------------------+

Get list of resources with tag filters from networks. The networks are: test-net1 with “red” tag, test-net2 with
“red” and “blue” tags, test-net3 with “red”, “blue”, and “green” tags, and test-net4 with “green” tag.

Get list of resources with tags filter:

$ neutron net-list --tags red,blue

+--------------------------------------+-----------+---------+

| id | name | subnets |

+--------------------------------------+-----------+---------+

| 8ca3b9ed-f578-45fa-8c44-c53f13aec05a | test-net3 | |

| e736e63d-42e4-4f4c-836c-6ad286ffd68a | test-net2 | |

+--------------------------------------+-----------+---------+

Get list of resources with tags-any filter:

$ neutron net-list --tags-any red,blue

+--------------------------------------+-----------+---------+

| id | name | subnets |

+--------------------------------------+-----------+---------+

| 30491224-3855-431f-a688-fb29df004d82 | test-net1 | |

| 8ca3b9ed-f578-45fa-8c44-c53f13aec05a | test-net3 | |

| e736e63d-42e4-4f4c-836c-6ad286ffd68a | test-net2 | |

+--------------------------------------+-----------+---------+

Get list of resources with not-tags filter:

$ neutron net-list --not-tags red,blue

+--------------------------------------+-----------+---------+

| id | name | subnets |

+--------------------------------------+-----------+---------+

| 30491224-3855-431f-a688-fb29df004d82 | test-net1 | |

| cdb3ed08-ca63-4090-ba12-30b366372993 | test-net4 | |

+--------------------------------------+-----------+---------+

Get list of resources with not-tags-any filter:

$ neutron net-list --not-tags-any red,blue

+--------------------------------------+-----------+---------+

| id | name | subnets |

286 Operations

Networking Guide (Release Version: 15.0.0)

+--------------------------------------+-----------+---------+

| cdb3ed08-ca63-4090-ba12-30b366372993 | test-net4 | |

+--------------------------------------+-----------+---------+

Limitations

Filtering resources with a tag whose name contains a comma is not supported. Thus, do not put such a tag name
to resources.

Future support

In future releases, the Networking service may support setting tags for additional resources.

Resource purge

The Networking service provides a purge mechanism to delete the following network resources for a project:

• Networks

• Subnets

• Ports

• Router interfaces

• Routers

• Floating IP addresses

• Security groups

Typically, one uses this mechanism to delete networking resources for a defunct project regardless of its exis-
tence in the Identity service.

Usage

1. Source the necessary project credentials. The administrative project can delete resources for all other
projects. A regular project can delete its own network resources and those belonging to other projects
for which it has sufficient access.

2. Delete the network resources for a particular project.

$ neutron purge PROJECT_ID

Replace PROJECT_ID with the project ID.

The command provides output that includes a completion percentage and the quantity of successful or unsuc-
cessful network resource deletions. An unsuccessful deletion usually indicates sharing of a resource with one
or more additional projects.

Purging resources: 100% complete.

Deleted 1 security_group, 2 ports, 1 router, 1 floatingip, 2 networks.

The following resources could not be deleted: 1 network.

Operations 287

Networking Guide (Release Version: 15.0.0)

The command also indicates if a project lacks network resources.

Tenant has no supported resources.

Migration

Database

The upgrade of theNetworking service database is implementedwithAlembicmigration chains. Themigrations
in the alembic/versions contain the changes needed to migrate from older Networking service releases to
newer ones.

Since Liberty, Networking maintains two parallel Alembic migration branches.

The first branch is called expand and is used to store expansion-only migration rules. These rules are strictly
additive and can be applied while the Neutron server is running.

The second branch is called contract and is used to store those migration rules that are not safe to apply while
Neutron server is running.

The intent of separate branches is to allow invoking those safe migrations from the expand branch while the
Neutron server is running and therefore reducing downtime needed to upgrade the service.

A database management command-line tool uses the Alembic library to manage the migration.

Database management command-line tool

The database management command-line tool is called neutron-db-manage. Pass the --help option to the
tool for usage information.

The tool takes some options followed by some commands:

$ neutron-db-manage <options> <commands>

The tool needs to access the database connection string, which is provided in the neutron.conf configuration
file in an installation. The tool automatically reads from /etc/neutron/neutron.conf if it is present. If the
configuration is in a different location, use the following command:

$ neutron-db-manage --config-file /path/to/neutron.conf <commands>

Multiple --config-file options can be passed if needed.

Instead of reading the DB connection from the configuration file(s), you can use the --database-connection
option:

$ neutron-db-manage --database-connection

mysql+pymysql://root:secret@127.0.0.1/neutron?charset=utf8 <commands>

The branches, current, and history commands all accept a --verbose option, which, when passed, will instruct
neutron-db-manage to display more verbose output for the specified command:

$ neutron-db-manage current --verbose

288 Migration

Networking Guide (Release Version: 15.0.0)

Note: The tool usage examples below do not show the options. It is assumed that you use the options that you
need for your environment.

In new deployments, you start with an empty database and then upgrade to the latest database version using the
following command:

$ neutron-db-manage upgrade heads

After installing a new version of the Neutron server, upgrade the database using the following command:

$ neutron-db-manage upgrade heads

In existing deployments, check the current database version using the following command:

$ neutron-db-manage current

To apply the expansion migration rules, use the following command:

$ neutron-db-manage upgrade --expand

To apply the non-expansive migration rules, use the following command:

$ neutron-db-manage upgrade --contract

To check if any contract migrations are pending and therefore if offline migration is required, use the following
command:

$ neutron-db-manage has_offline_migrations

Note: Offline migration requires all Neutron server instances in the cluster to be shutdown before you apply
any contract scripts.

To generate a script of the command instead of operating immediately on the database, use the following com-
mand:

$ neutron-db-manage upgrade heads --sql

.. note::

The `--sql` option causes the command to generate a script. The script

can be run later (online or offline), perhaps after verifying and/or

modifying it.

To migrate between specific migration versions, use the following command:

$ neutron-db-manage upgrade <start version>:<end version>

To upgrade the database incrementally, use the following command:

$ neutron-db-manage upgrade --delta <# of revs>

Migration 289

Networking Guide (Release Version: 15.0.0)

Note: Database downgrade is not supported.

To look for differences between the schema generated by the upgrade command and the schema defined by the
models, use the revision --autogenerate command:

neutron-db-manage revision -m REVISION_DESCRIPTION --autogenerate

Note: This generates a prepopulated template with the changes needed to match the database state with the
models.

Legacy nova-network to OpenStack Networking (neutron)

Two networking models exist in OpenStack. The first is called legacy networking (nova-network) and it is
a sub-process embedded in the Compute project (nova). This model has some limitations, such as creating
complex network topologies, extending its back-end implementation to vendor-specific technologies, and pro-
viding project-specific networking elements. These limitations are the main reasons the OpenStack Networking
(neutron) model was created.

This section describes the process of migrating clouds based on the legacy networking model to the OpenStack
Networking model. This process requires additional changes to both compute and networking to support the
migration. This document describes the overall process and the features required in both Networking and
Compute.

The current process as designed is a minimally viable migration with the goal of deprecating and then removing
legacy networking. Both the Compute and Networking teams agree that a one-button migration process from
legacy networking to OpenStack Networking (neutron) is not an essential requirement for the deprecation and
removal of the legacy networking at a future date. This section includes a process and tools which are designed
to solve a simple use case migration.

Users are encouraged to take these tools, test them, provide feedback, and then expand on the feature set to suit
their own deployments; deployers that refrain from participating in this process intending to wait for a path that
better suits their use case are likely to be disappointed.

Impact and limitations

The migration process from the legacy nova-network networking service to OpenStack Networking (neutron)
has some limitations and impacts on the operational state of the cloud. It is critical to understand them in order
to decide whether or not this process is acceptable for your cloud and all users.

Management impact

The Networking REST API is publicly read-only until after the migration is complete. During the migration,
Networking REST API is read-write only to nova-api, and changes to Networking are only allowed via nova-
api.

The Compute REST API is available throughout the entire process, although there is a brief period where it is
made read-only during a database migration. The Networking REST API will need to expose (to nova-api) all
details necessary for reconstructing the information previously held in the legacy networking database.

290 Migration

Networking Guide (Release Version: 15.0.0)

Compute needs a per-hypervisor “has_transitioned” boolean change in the data model to be used during the
migration process. This flag is no longer required once the process is complete.

Operations impact

In order to support a wide range of deployment options, the migration process described here requires a rolling
restart of hypervisors. The rate and timing of specific hypervisor restarts is under the control of the operator.

The migration may be paused, even for an extended period of time (for example, while testing or investigating
issues) with some hypervisors on legacy networking and some on Networking, and Compute API remains fully
functional. Individual hypervisors may be rolled back to legacy networking during this stage of the migration,
although this requires an additional restart.

In order to support the widest range of deployer needs, the process described here is easy to automate but is not
already automated. Deployers should expect to perform multiple manual steps or write some simple scripts in
order to perform this migration.

Performance impact

During the migration, nova-network API calls will go through an additional internal conversion to Networking
calls. This will have different and likely poorer performance characteristics compared with either the pre-
migration or post-migration APIs.

Migration process overview

1. Start neutron-server in intended final config, except with REST API restricted to read-write only by
nova-api.

2. Make the Compute REST API read-only.

3. Run a DB dump/restore tool that creates Networking data structures representing current legacy network-
ing config.

4. Enable a nova-api proxy that recreates internal Compute objects from Networking information (via the
Networking REST API).

5. Make Compute REST API read-write again. This means legacy networking DB is now unused, new
changes are now stored in the Networking DB, and no rollback is possible from here without losing
those new changes.

Note: At this moment the Networking DB is the source of truth, but nova-api is the only public read-write
API.

Next, you’ll need to migrate each hypervisor. To do that, follow these steps:

1. Disable the hypervisor. This would be a good time to live migrate or evacuate the compute node, if
supported.

2. Disable nova-compute.

3. Enable the Networking agent.

4. Set the “has_transitioned” flag in the Compute hypervisor database/config.

Migration 291

Networking Guide (Release Version: 15.0.0)

5. Reboot the hypervisor (or run “smart” live transition tool if available).

6. Re-enable the hypervisor.

At this point, all compute nodes have been migrated, but they are still using the nova-api API and Compute
gateways. Finally, enable OpenStack Networking by following these steps:

1. Bring up the Networking (l3) nodes. The new routers will have identical MAC+IPs as old Compute
gateways so some sort of immediate cutover is possible, except for stateful connections issues such as
NAT.

2. Make the Networking API read-write and disable legacy networking.

Migration Completed!

Add VRRP to an existing router

This section describes the process of migrating from a classic router to an L3 HA router, which is available
starting from the Mitaka release.

Similar to the classic scenario, all network traffic on a project network that requires routing actively traverses
only one network node regardless of the quantity of network nodes providing HA for the router. Therefore, this
high-availability implementation primarily addresses failure situations instead of bandwidth constraints that
limit performance. However, it supports random distribution of routers on different network nodes to reduce
the chances of bandwidth constraints and to improve scaling.

This section references parts of Linux bridge: High availability using VRRP and Open vSwitch: High avail-
ability using VRRP. For details regarding needed infrastructure and configuration to allow actual L3 HA de-
ployment, read the relevant guide before continuing with the migration process.

Migration

The migration process is quite simple, it involves turning down the router by setting the router’s
admin_state_up attribute to False, upgrading the router to L3 HA and then setting the router’s
admin_state_up attribute back to True.

Warning: Once starting the migration, south-north connections (instances to internet) will be severed.
New connections will be able to start only when the migration is complete.

Here is the router we have used in our demonstration:

$ openstack router show router1

+-------------------------+---+

| Field | Value |

+-------------------------+---+

| admin_state_up | UP |

| distributed | False |

| external_gateway_info | |

| ha | False |

| id | 6b793b46-d082-4fd5-980f-a6f80cbb0f2a |

| name | router1 |

| project_id | bb8b84ab75be4e19bd0dfe02f6c3f5c1 |

| routes | |

292 Migration

Networking Guide (Release Version: 15.0.0)

| status | ACTIVE |

+-------------------------+---+

1. Source the administrative project credentials.

2. Set the admin_state_up to False. This will severe south-north connections until admin_state_up is set
to True again.

$ openstack router set router1 --disable

3. Set the ha attribute of the router to True.

$ openstack router set router1 --ha

4. Set the admin_state_up to True. After this, south-north connections can start.

$ openstack router set router1 --enable

5. Make sure that the router’s ha attribute has changed to True.

$ openstack router show router1

+-------------------------+---+

| Field | Value |

+-------------------------+---+

| admin_state_up | UP |

| distributed | False |

| external_gateway_info | |

| ha | True |

| id | 6b793b46-d082-4fd5-980f-a6f80cbb0f2a |

| name | router1 |

| project_id | bb8b84ab75be4e19bd0dfe02f6c3f5c1 |

| routes | |

| status | ACTIVE |

+-------------------------+---+

L3 HA to Legacy

To return to classic mode, turn down the router again, turning off L3 HA and starting the router again.

Warning: Once starting the migration, south-north connections (instances to internet) will be severed.
New connections will be able to start only when the migration is complete.

Here is the router we have used in our demonstration:

$ openstack router show router1

+-------------------------+---+

| Field | Value |

+-------------------------+---+

| admin_state_up | DOWN |

| distributed | False |

| external_gateway_info | |

| ha | True |

| id | 6b793b46-d082-4fd5-980f-a6f80cbb0f2a |

Migration 293

Networking Guide (Release Version: 15.0.0)

| name | router1 |

| project_id | bb8b84ab75be4e19bd0dfe02f6c3f5c1 |

| routes | |

| status | ACTIVE |

+-------------------------+---+

1. Source the administrative project credentials.

2. Set the admin_state_up to False. This will severe south-north connections until admin_state_up is set
to True again.

$ openstack router set router1 --disable

3. Set the ha attribute of the router to True.

$ openstack router set router1 --no-ha

4. Set the admin_state_up to True. After this, south-north connections can start.

$ openstack router set router1 --enable

5. Make sure that the router’s ha attribute has changed to False.

$ openstack router show router1

+-------------------------+---+

| Field | Value |

+-------------------------+---+

| admin_state_up | UP |

| distributed | False |

| external_gateway_info | |

| ha | False |

| id | 6b793b46-d082-4fd5-980f-a6f80cbb0f2a |

| name | router1 |

| project_id | bb8b84ab75be4e19bd0dfe02f6c3f5c1 |

| routes | |

| status | ACTIVE |

+-------------------------+---+

Miscellaneous

Firewall-as-a-Service (FWaaS) v2 scenario

Enable FWaaS v2

1. Enable the FWaaS plug-in in the /etc/neutron/neutron.conf file:

service_plugins = firewall_v2

[service_providers]

...

service_provider = FIREWALL:Iptables:neutron.agent.linux.iptables_firewall.

↪→OVSHybridIptablesFirewallDriver:default

[fwaas]

294 Miscellaneous

Networking Guide (Release Version: 15.0.0)

agent_version = v2

driver = neutron_fwaas.services.firewall.drivers.linux.iptables_fwaas_v2.

↪→IptablesFwaasDriver

enabled = True

Note: On Ubuntu, modify the [fwaas] section in the /etc/neutron/fwaas_driver.ini file instead
of /etc/neutron/neutron.conf.

2. Configure the FWaaS plugin for the L3 agent.

In the AGENT section of l3_agent.ini, make sure the FWaaS extension is loaded:

[AGENT]

extensions = fwaas

3. Create the required tables in the database:

neutron-db-manage --subproject neutron-fwaas upgrade head

4. Restart the neutron-l3-agent and neutron-server services to apply the settings.

Note: Firewall v2 is not supported by horizon yet.

Configure Firewall-as-a-Service v2

Create the firewall rules and create a policy that contains them. Then, create a firewall that applies the policy.

1. Create a firewall rule:

$ neutron firewall-rule-create --protocol {tcp,udp,icmp,any} \

--source-ip-address SOURCE_IP_ADDRESS \

--destination-ip-address DESTINATION_IP_ADDRESS \

--source-port SOURCE_PORT_RANGE --destination-port DEST_PORT_RANGE \

--action {allow,deny,reject}

The Networking client requires a protocol value. If the rule is protocol agnostic, you can use the any
value.

Note: When the source or destination IP address are not of the same IP version (for example, IPv6), the
command returns an error.

2. Create a firewall policy:

$ neutron firewall-policy-create --firewall-rules \

"FIREWALL_RULE_IDS_OR_NAMES" myfirewallpolicy

Separate firewall rule IDs or names with spaces. The order in which you specify the rules is important.

You can create a firewall policy without any rules and add rules later, as follows:

• To add multiple rules, use the update operation.

Miscellaneous 295

Networking Guide (Release Version: 15.0.0)

• To add a single rule, use the insert-rule operation.

For more details, see Networking command-line client in the OpenStack Command-Line Interface Ref-
erence.

Note: FWaaS always adds a default deny all rule at the lowest precedence of each policy. Conse-
quently, a firewall policy with no rules blocks all traffic by default.

3. Create a firewall:

$ neutron firewall-create FIREWALL_POLICY_UUID

Note: The firewall remains in PENDING_CREATE state until you create a Networking router and
attach an interface to it.

Firewall-as-a-Service (FWaaS) v1 scenario

Enable FWaaS v1

FWaaS management options are also available in the Dashboard.

1. Enable the FWaaS plug-in in the /etc/neutron/neutron.conf file:

service_plugins = firewall

[service_providers]

...

service_provider = FIREWALL:Iptables:neutron.agent.linux.iptables_firewall.

↪→OVSHybridIptablesFirewallDriver:default

[fwaas]

driver = neutron_fwaas.services.firewall.drivers.linux.iptables_fwaas.

↪→IptablesFwaasDriver

enabled = True

Note: On Ubuntu, modify the [fwaas] section in the /etc/neutron/fwaas_driver.ini file instead
of /etc/neutron/neutron.conf.

2. Configure the FWaaS plugin for the L3 agent.

In the AGENT section of l3_agent.ini, make sure the FWaaS extension is loaded:

[AGENT]

extensions = fwaas

Edit the FWaaS section in the /etc/neutron/neutron.conf file to indicate the agent version and
driver:

[fwaas]

agent_version = v1

296 Miscellaneous

https://docs.openstack.org/cli-reference/neutron.html

Networking Guide (Release Version: 15.0.0)

driver = iptables

enabled = True

conntrack_driver = conntrack

3. Create the required tables in the database:

neutron-db-manage --subproject neutron-fwaas upgrade head

4. Enable the firewall option in the local settings file (named local_settings on RHEL and CentOS, and
local_settings.py on Ubuntu):

OPENSTACK_NEUTRON_NETWORK = {

...

'enable_firewall' = True,

...

}

Note: By default, the enable_firewall option value is True in the local settings file.

5. Restart the neutron-l3-agent and neutron-server services to apply the settings.

Configure Firewall-as-a-Service v1

Create the firewall rules and create a policy that contains them. Then, create a firewall that applies the policy.

1. Create a firewall rule:

$ neutron firewall-rule-create --protocol {tcp,udp,icmp,any} \

--source-ip-address SOURCE_IP_ADDRESS \

--destination-ip-address DESTINATION_IP_ADDRESS \

--source-port SOURCE_PORT_RANGE --destination-port DEST_PORT_RANGE \

--action {allow,deny,reject}

The Networking client requires a protocol value. If the rule is protocol agnostic, you can use the any
value.

Note: When the source or destination IP address are not of the same IP version (for example, IPv6), the
command returns an error.

2. Create a firewall policy:

$ neutron firewall-policy-create --firewall-rules \

"FIREWALL_RULE_IDS_OR_NAMES" myfirewallpolicy

Separate firewall rule IDs or names with spaces. The order in which you specify the rules is important.

You can create a firewall policy without any rules and add rules later, as follows:

• To add multiple rules, use the update operation.

• To add a single rule, use the insert-rule operation.

Miscellaneous 297

Networking Guide (Release Version: 15.0.0)

For more details, see Networking command-line client in the OpenStack Command-Line Interface Ref-
erence.

Note: FWaaS always adds a default deny all rule at the lowest precedence of each policy. Conse-
quently, a firewall policy with no rules blocks all traffic by default.

3. Create a firewall:

$ neutron firewall-create FIREWALL_POLICY_UUID

Note: The firewall remains in PENDING_CREATE state until you create a Networking router and
attach an interface to it.

Disable libvirt networking

Most OpenStack deployments use the libvirt toolkit for interacting with the hypervisor. Specifically, OpenStack
Compute uses libvirt for tasks such as booting and terminating virtual machine instances. When OpenStack
Compute boots a new instance, libvirt provides OpenStack with the VIF associated with the instance, and
OpenStack Compute plugs the VIF into a virtual device provided by OpenStack Network. The libvirt toolkit
itself does not provide any networking functionality in OpenStack deployments.

However, libvirt is capable of providing networking services to the virtual machines that it manages. In par-
ticular, libvirt can be configured to provide networking functionality akin to a simplified, single-node version
of OpenStack. Users can use libvirt to create layer 2 networks that are similar to OpenStack Networking’s
networks, confined to a single node.

libvirt network implementation

By default, libvirt’s networking functionality is enabled, and libvirt creates a network when the system boots.
To implement this network, libvirt leverages some of the same technologies that OpenStack Network does. In
particular, libvirt uses:

• Linux bridging for implementing a layer 2 network

• dnsmasq for providing IP addresses to virtual machines using DHCP

• iptables to implement SNAT so instances can connect out to the public internet, and to ensure that virtual
machines are permitted to communicate with dnsmasq using DHCP

By default, libvirt creates a network named default. The details of this network may vary by distribution; on
Ubuntu this network involves:

• a Linux bridge named virbr0 with an IP address of 192.0.2.1/24

• a dnsmasq process that listens on the virbr0 interface and hands out IP addresses in the range 192.0.
2.2-192.0.2.254

• a set of iptables rules

When libvirt boots a virtual machine, it places the machine’s VIF in the bridge virbr0 unless explicitly told
not to.

298 Miscellaneous

https://docs.openstack.org/cli-reference/neutron.html
http://libvirt.org

Networking Guide (Release Version: 15.0.0)

On Ubuntu, the iptables ruleset that libvirt creates includes the following rules:

*nat

-A POSTROUTING -s 192.0.2.0/24 -d 224.0.0.0/24 -j RETURN

-A POSTROUTING -s 192.0.2.0/24 -d 255.255.255.255/32 -j RETURN

-A POSTROUTING -s 192.0.2.0/24 ! -d 192.0.2.0/24 -p tcp -j MASQUERADE --to-ports 1024-65535

-A POSTROUTING -s 192.0.2.0/24 ! -d 192.0.2.0/24 -p udp -j MASQUERADE --to-ports 1024-65535

-A POSTROUTING -s 192.0.2.0/24 ! -d 192.0.2.0/24 -j MASQUERADE

*mangle

-A POSTROUTING -o virbr0 -p udp -m udp --dport 68 -j CHECKSUM --checksum-fill

*filter

-A INPUT -i virbr0 -p udp -m udp --dport 53 -j ACCEPT

-A INPUT -i virbr0 -p tcp -m tcp --dport 53 -j ACCEPT

-A INPUT -i virbr0 -p udp -m udp --dport 67 -j ACCEPT

-A INPUT -i virbr0 -p tcp -m tcp --dport 67 -j ACCEPT

-A FORWARD -d 192.0.2.0/24 -o virbr0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -s 192.0.2.0/24 -i virbr0 -j ACCEPT

-A FORWARD -i virbr0 -o virbr0 -j ACCEPT

-A FORWARD -o virbr0 -j REJECT --reject-with icmp-port-unreachable

-A FORWARD -i virbr0 -j REJECT --reject-with icmp-port-unreachable

-A OUTPUT -o virbr0 -p udp -m udp --dport 68 -j ACCEPT

The following shows the dnsmasq process that libvirt manages as it appears in the output of ps:

2881 ? S 0:00 /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.

↪→conf

How to disable libvirt networks

Although OpenStack does not make use of libvirt’s networking, this networking will not interfere with Open-
Stack’s behavior, and can be safely left enabled. However, libvirt’s networking can be a nuisance when debug-
ging OpenStack networking issues. Because libvirt creates an additional bridge, dnsmasq process, and iptables
ruleset, these may distract an operator engaged in network troubleshooting. Unless you need to start up virtual
machines using libvirt directly, you can safely disable libvirt’s network.

To view the defined libvirt networks and their state:

virsh net-list

Name State Autostart Persistent

--

default active yes yes

To deactivate the libvirt network named default:

virsh net-destroy default

Deactivating the network will remove the virbr0 bridge, terminate the dnsmasq process, and remove the ipt-
ables rules.

To prevent the network from automatically starting on boot:

virsh net-autostart --network default --disable

To activate the network after it has been deactivated:

Miscellaneous 299

Networking Guide (Release Version: 15.0.0)

virsh net-start default

neutron-linuxbridge-cleanup utility

Description

Automated removal of empty bridges has been disabled to fix a race condition between the Compute (nova)
and Networking (neutron) services. Previously, it was possible for a bridge to be deleted during the time when
the only instance using it was rebooted.

Usage

Use this script to remove empty bridges on compute nodes by running the following command:

$ neutron-linuxbridge-cleanup

Important: Do not use this tool when creating or migrating an instance as it throws an error when the bridge
does not exist.

Note: Using this script can still trigger the original race condition. Only run this script if you have evacuated all
instances off a compute node and you want to clean up the bridges. In addition to evacuating all instances, you
should fence off the compute node where you are going to run this script so new instances do not get scheduled
on it.

300 Miscellaneous

APPENDIX

Community support

The following resources are available to help you run and useOpenStack. TheOpenStack community constantly
improves and adds to the main features of OpenStack, but if you have any questions, do not hesitate to ask. Use
the following resources to get OpenStack support and troubleshoot your installations.

Documentation

For the available OpenStack documentation, see docs.openstack.org.

To provide feedback on documentation, join and use the openstack-docs@lists.openstack.org mailing list at
OpenStack Documentation Mailing List, join our IRC channel #openstack-doc on the freenode IRC network,
or report a bug.

The following books explain how to install an OpenStack cloud and its associated components:

• Installation Tutorial for openSUSE Leap 42.2 and SUSE Linux Enterprise Server 12 SP2

• Installation Tutorial for Red Hat Enterprise Linux 7 and CentOS 7

• Installation Tutorial for Ubuntu 16.04 (LTS)

The following books explain how to configure and run an OpenStack cloud:

• Architecture Design Guide

• Administrator Guide

• Configuration Reference

• Operations Guide

• Networking Guide

• High Availability Guide

• Security Guide

• Virtual Machine Image Guide

The following books explain how to use the OpenStack Dashboard and command-line clients:

• End User Guide

• Command-Line Interface Reference

The following documentation provides reference and guidance information for the OpenStack APIs:

• API Guide

The following guide provides how to contribute to OpenStack documentation:

• Documentation Contributor Guide

301

https://docs.openstack.org
mailto:openstack-docs@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
https://docs.openstack.org/ocata/install-guide-obs/
https://docs.openstack.org/ocata/install-guide-rdo/
https://docs.openstack.org/ocata/install-guide-ubuntu/
https://docs.openstack.org/arch-design/
https://docs.openstack.org/admin-guide/
https://docs.openstack.org/ocata/config-reference/
https://docs.openstack.org/ops-guide/
https://docs.openstack.org/ocata/networking-guide
https://docs.openstack.org/ha-guide/
https://docs.openstack.org/security-guide/
https://docs.openstack.org/image-guide/
https://docs.openstack.org/user-guide/
https://docs.openstack.org/cli-reference/
https://developer.openstack.org/api-guide/quick-start/
https://docs.openstack.org/contributor-guide/

Networking Guide (Release Version: 15.0.0)

ask.openstack.org

During the set up or testing of OpenStack, you might have questions about how a specific task is completed or
be in a situation where a feature does not work correctly. Use the ask.openstack.org site to ask questions and
get answers. When you visit the Ask OpenStack site, scan the recently asked questions to see whether your
question has already been answered. If not, ask a new question. Be sure to give a clear, concise summary in the
title and provide as much detail as possible in the description. Paste in your command output or stack traces,
links to screen shots, and any other information which might be useful.

OpenStack mailing lists

A great way to get answers and insights is to post your question or problematic scenario to the OpenStack
mailing list. You can learn from and help others who might have similar issues. To subscribe or view the
archives, go to the general OpenStack mailing list. If you are interested in the other mailing lists for specific
projects or development, refer to Mailing Lists.

The OpenStack wiki

The OpenStack wiki contains a broad range of topics but some of the information can be difficult to find or is a
few pages deep. Fortunately, the wiki search feature enables you to search by title or content. If you search for
specific information, such as about networking or OpenStack Compute, you can find a large amount of relevant
material. More is being added all the time, so be sure to check back often. You can find the search box in the
upper-right corner of any OpenStack wiki page.

The Launchpad Bugs area

The OpenStack community values your set up and testing efforts and wants your feedback. To log a bug, you
must sign up for a Launchpad account. You can view existing bugs and report bugs in the Launchpad Bugs
area. Use the search feature to determine whether the bug has already been reported or already been fixed. If it
still seems like your bug is unreported, fill out a bug report.

Some tips:

• Give a clear, concise summary.

• Provide as much detail as possible in the description. Paste in your command output or stack traces, links
to screen shots, and any other information which might be useful.

• Be sure to include the software and package versions that you are using, especially
if you are using a development branch, such as, "Kilo release" vs git commit

bc79c3ecc55929bac585d04a03475b72e06a3208.

• Any deployment-specific information is helpful, such as whether you are using Ubuntu 14.04 or are
performing a multi-node installation.

The following Launchpad Bugs areas are available:

• Bugs: OpenStack Block Storage (cinder)

• Bugs: OpenStack Compute (nova)

• Bugs: OpenStack Dashboard (horizon)

• Bugs: OpenStack Identity (keystone)

302 Community support

https://ask.openstack.org
https://ask.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
https://wiki.openstack.org/wiki/Mailing_Lists
https://wiki.openstack.org/
https://launchpad.net/+login
https://bugs.launchpad.net/cinder
https://bugs.launchpad.net/nova
https://bugs.launchpad.net/horizon
https://bugs.launchpad.net/keystone

Networking Guide (Release Version: 15.0.0)

• Bugs: OpenStack Image service (glance)

• Bugs: OpenStack Networking (neutron)

• Bugs: OpenStack Object Storage (swift)

• Bugs: Application catalog (murano)

• Bugs: Bare metal service (ironic)

• Bugs: Clustering service (senlin)

• Bugs: Container Infrastructure Management service (magnum)

• Bugs: Data processing service (sahara)

• Bugs: Database service (trove)

• Bugs: Deployment service (fuel)

• Bugs: DNS service (designate)

• Bugs: Key Manager Service (barbican)

• Bugs: Monitoring (monasca)

• Bugs: Orchestration (heat)

• Bugs: Rating (cloudkitty)

• Bugs: Shared file systems (manila)

• Bugs: Telemetry (ceilometer)

• Bugs: Telemetry v3 (gnocchi)

• Bugs: Workflow service (mistral)

• Bugs: Messaging service (zaqar)

• Bugs: OpenStack API Documentation (developer.openstack.org)

• Bugs: OpenStack Documentation (docs.openstack.org)

The OpenStack IRC channel

TheOpenStack community lives in the #openstack IRC channel on the Freenode network. You can hang out, ask
questions, or get immediate feedback for urgent and pressing issues. To install an IRC client or use a browser-
based client, go to https://webchat.freenode.net/. You can also use Colloquy (Mac OS X), mIRC (Windows),
or XChat (Linux). When you are in the IRC channel and want to share code or command output, the generally
accepted method is to use a Paste Bin. The OpenStack project has one at Paste. Just paste your longer amounts
of text or logs in the web form and you get a URL that you can paste into the channel. The OpenStack IRC
channel is #openstack on irc.freenode.net. You can find a list of all OpenStack IRC channels on the IRC
page on the wiki.

Documentation feedback

To provide feedback on documentation, join and use the openstack-docs@lists.openstack.org mailing list at
OpenStack Documentation Mailing List, or report a bug.

Community support 303

https://bugs.launchpad.net/glance
https://bugs.launchpad.net/neutron
https://bugs.launchpad.net/swift
https://bugs.launchpad.net/murano
https://bugs.launchpad.net/ironic
https://bugs.launchpad.net/senlin
https://bugs.launchpad.net/magnum
https://bugs.launchpad.net/sahara
https://bugs.launchpad.net/trove
https://bugs.launchpad.net/fuel
https://bugs.launchpad.net/designate
https://bugs.launchpad.net/barbican
https://bugs.launchpad.net/monasca
https://bugs.launchpad.net/heat
https://bugs.launchpad.net/cloudkitty
https://bugs.launchpad.net/manila
https://bugs.launchpad.net/ceilometer
https://bugs.launchpad.net/gnocchi
https://bugs.launchpad.net/mistral
https://bugs.launchpad.net/zaqar
https://bugs.launchpad.net/openstack-api-site
https://bugs.launchpad.net/openstack-manuals
https://webchat.freenode.net
http://colloquy.info/
http://www.mirc.com/
http://paste.openstack.org
https://wiki.openstack.org/wiki/IRC
https://wiki.openstack.org/wiki/IRC
mailto:openstack-docs@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug

Networking Guide (Release Version: 15.0.0)

OpenStack distribution packages

The following Linux distributions provide community-supported packages for OpenStack:

• Debian: https://wiki.debian.org/OpenStack

• CentOS, Fedora, and Red Hat Enterprise Linux: https://www.rdoproject.org/

• openSUSE and SUSE Linux Enterprise Server: https://en.opensuse.org/Portal:OpenStack

• Ubuntu: https://wiki.ubuntu.com/ServerTeam/CloudArchive

304 Community support

https://wiki.debian.org/OpenStack
https://www.rdoproject.org/
https://en.opensuse.org/Portal:OpenStack
https://wiki.ubuntu.com/ServerTeam/CloudArchive

GLOSSARY

Glossary

This glossary offers a list of terms and definitions to define a vocabulary for OpenStack-related concepts.

To add to OpenStack glossary, clone the openstack/openstack-manuals repository and update the source file
doc/common/glossary.rst through the OpenStack contribution process.

0-9

6to4 A mechanism that allows IPv6 packets to be transmitted over an IPv4 network, providing a strategy for
migrating to IPv6.

A

absolute limit Impassable limits for guest VMs. Settings include total RAM size, maximum number of vC-
PUs, and maximum disk size.

access control list (ACL) A list of permissions attached to an object. An ACL specifies which users or system
processes have access to objects. It also defines which operations can be performed on specified objects.
Each entry in a typical ACL specifies a subject and an operation. For instance, the ACL entry (Alice,
delete) for a file gives Alice permission to delete the file.

access key Alternative term for an Amazon EC2 access key. See EC2 access key.

account The Object Storage context of an account. Do not confuse with a user account from an authentication
service, such as Active Directory, /etc/passwd, OpenLDAP, OpenStack Identity, and so on.

account auditor Checks for missing replicas and incorrect or corrupted objects in a specified Object Storage
account by running queries against the back-end SQLite database.

account database A SQLite database that contains Object Storage accounts and related metadata and that the
accounts server accesses.

account reaper An Object Storage worker that scans for and deletes account databases and that the account
server has marked for deletion.

account server Lists containers in Object Storage and stores container information in the account database.

account service An Object Storage component that provides account services such as list, create, modify, and
audit. Do not confuse with OpenStack Identity service, OpenLDAP, or similar user-account services.

accounting The Compute service provides accounting information through the event notification and system
usage data facilities.

Active Directory Authentication and identity service byMicrosoft, based on LDAP. Supported in OpenStack.

active/active configuration In a high-availability setup with an active/active configuration, several systems
share the load together and if one fails, the load is distributed to the remaining systems.

active/passive configuration In a high-availability setup with an active/passive configuration, systems are set
up to bring additional resources online to replace those that have failed.

305

https://git.openstack.org/cgit/openstack/openstack-manuals

Networking Guide (Release Version: 15.0.0)

address pool A group of fixed and/or floating IP addresses that are assigned to a project and can be used by
or assigned to the VM instances in a project.

Address Resolution Protocol (ARP) The protocol by which layer-3 IP addresses are resolved into layer-2
link local addresses.

admin API A subset of API calls that are accessible to authorized administrators and are generally not ac-
cessible to end users or the public Internet. They can exist as a separate service (keystone) or can be a
subset of another API (nova).

admin server In the context of the Identity service, the worker process that provides access to the admin API.

administrator The person responsible for installing, configuring, and managing an OpenStack cloud.

Advanced Message Queuing Protocol (AMQP) The open standard messaging protocol used by OpenStack
components for intra-service communications, provided by RabbitMQ, Qpid, or ZeroMQ.

Advanced RISC Machine (ARM) Lower power consumption CPU often found in mobile and embedded
devices. Supported by OpenStack.

alert The Compute service can send alerts through its notification system, which includes a facility to create
custom notification drivers. Alerts can be sent to and displayed on the dashboard.

allocate The process of taking a floating IP address from the address pool so it can be associated with a fixed
IP on a guest VM instance.

Amazon Kernel Image (AKI) Both a VM container format and disk format. Supported by Image service.

Amazon Machine Image (AMI) Both a VM container format and disk format. Supported by Image service.

Amazon Ramdisk Image (ARI) Both a VM container format and disk format. Supported by Image service.

Anvil A project that ports the shell script-based project named DevStack to Python.

aodh Part of the OpenStack Telemetry service; provides alarming functionality.

Apache The Apache Software Foundation supports the Apache community of open-source software projects.
These projects provide software products for the public good.

Apache License 2.0 All OpenStack core projects are provided under the terms of the Apache License 2.0
license.

Apache Web Server The most common web server software currently used on the Internet.

API endpoint The daemon, worker, or service that a client communicates with to access anAPI. API endpoints
can provide any number of services, such as authentication, sales data, performance meters, Compute
VM commands, census data, and so on.

API extension Custom modules that extend some OpenStack core APIs.

API extension plug-in Alternative term for a Networking plug-in or Networking API extension.

API key Alternative term for an API token.

API server Any node running a daemon or worker that provides an API endpoint.

API token Passed to API requests and used by OpenStack to verify that the client is authorized to run the
requested operation.

API version In OpenStack, the API version for a project is part of the URL. For example, example.com/
nova/v1/foobar.

applet A Java program that can be embedded into a web page.

306 Glossary

Networking Guide (Release Version: 15.0.0)

Application Catalog service (murano) The project that provides an application catalog service so that users
can compose and deploy composite environments on an application abstraction level while managing
the application lifecycle.

Application Programming Interface (API) A collection of specifications used to access a service, appli-
cation, or program. Includes service calls, required parameters for each call, and the expected return
values.

application server A piece of software that makes available another piece of software over a network.

Application Service Provider (ASP) Companies that rent specialized applications that help businesses and
organizations provide additional services with lower cost.

arptables Tool used for maintaining Address Resolution Protocol packet filter rules in the Linux kernel fire-
wall modules. Used along with iptables, ebtables, and ip6tables in Compute to provide firewall services
for VMs.

associate The process associating a Compute floating IP address with a fixed IP address.

Asynchronous JavaScript and XML (AJAX) A group of interrelated web development techniques used on
the client-side to create asynchronous web applications. Used extensively in horizon.

ATA over Ethernet (AoE) A disk storage protocol tunneled within Ethernet.

attach The process of connecting a VIF or vNIC to a L2 network in Networking. In the context of Compute,
this process connects a storage volume to an instance.

attachment (network) Association of an interface ID to a logical port. Plugs an interface into a port.

auditing Provided in Compute through the system usage data facility.

auditor A worker process that verifies the integrity of Object Storage objects, containers, and accounts. Au-
ditors is the collective term for the Object Storage account auditor, container auditor, and object auditor.

Austin The code name for the initial release of OpenStack. The first design summit took place in Austin,
Texas, US.

auth node Alternative term for an Object Storage authorization node.

authentication The process that confirms that the user, process, or client is really who they say they are
through private key, secret token, password, fingerprint, or similar method.

authentication token A string of text provided to the client after authentication. Must be provided by the user
or process in subsequent requests to the API endpoint.

AuthN The Identity service component that provides authentication services.

authorization The act of verifying that a user, process, or client is authorized to perform an action.

authorization node An Object Storage node that provides authorization services.

AuthZ The Identity component that provides high-level authorization services.

Auto ACK Configuration setting within RabbitMQ that enables or disables message acknowledgment. En-
abled by default.

auto declare A Compute RabbitMQ setting that determines whether a message exchange is automatically
created when the program starts.

availability zone An Amazon EC2 concept of an isolated area that is used for fault tolerance. Do not confuse
with an OpenStack Compute zone or cell.

Glossary 307

Networking Guide (Release Version: 15.0.0)

AWS CloudFormation template AWSCloudFormation allows AmazonWeb Services (AWS) users to create
and manage a collection of related resources. The Orchestration service supports a CloudFormation-
compatible format (CFN).

B

back end Interactions and processes that are obfuscated from the user, such as Compute volume mount, data
transmission to an iSCSI target by a daemon, or Object Storage object integrity checks.

back-end catalog The storage method used by the Identity service catalog service to store and retrieve infor-
mation about API endpoints that are available to the client. Examples include an SQL database, LDAP
database, or KVS back end.

back-end store The persistent data store used to save and retrieve information for a service, such as lists of
Object Storage objects, current state of guest VMs, lists of user names, and so on. Also, the method that
the Image service uses to get and store VM images. Options include Object Storage, locally mounted
file system, RADOS block devices, VMware datastore, and HTTP.

Backup, Restore, and Disaster Recovery service (freezer) The project that provides integrated tooling for
backing up, restoring, and recovering file systems, instances, or database backups.

bandwidth The amount of available data used by communication resources, such as the Internet. Represents
the amount of data that is used to download things or the amount of data available to download.

barbican Code name of the Key Manager service.

bare An Image service container format that indicates that no container exists for the VM image.

Bare Metal service (ironic) The OpenStack service that provides a service and associated libraries capable
of managing and provisioning physical machines in a security-aware and fault-tolerant manner.

base image An OpenStack-provided image.

Bell-LaPadula model A security model that focuses on data confidentiality and controlled access to classified
information. This model divides the entities into subjects and objects. The clearance of a subject is
compared to the classification of the object to determine if the subject is authorized for the specific
access mode. The clearance or classification scheme is expressed in terms of a lattice.

Benchmark service (rally) OpenStack project that provides a framework for performance analysis and bench-
marking of individual OpenStack components as well as full production OpenStack cloud deployments.

Bexar A grouped release of projects related to OpenStack that came out in February of 2011. It included only
Compute (nova) and Object Storage (swift). Bexar is the code name for the second release of OpenStack.
The design summit took place in San Antonio, Texas, US, which is the county seat for Bexar county.

binary Information that consists solely of ones and zeroes, which is the language of computers.

bit A bit is a single digit number that is in base of 2 (either a zero or one). Bandwidth usage is measured in
bits per second.

bits per second (BPS) The universal measurement of how quickly data is transferred from place to place.

block device A device that moves data in the form of blocks. These device nodes interface the devices, such
as hard disks, CD-ROM drives, flash drives, and other addressable regions of memory.

block migration Amethod of VM live migration used by KVM to evacuate instances from one host to another
with very little downtime during a user-initiated switchover. Does not require shared storage. Supported
by Compute.

308 Glossary

Networking Guide (Release Version: 15.0.0)

Block Storage API An API on a separate endpoint for attaching, detaching, and creating block storage for
compute VMs.

Block Storage service (cinder) The OpenStack service that implement services and libraries to provide on-
demand, self-service access to Block Storage resources via abstraction and automation on top of other
block storage devices.

BMC (Baseboard Management Controller) The intelligence in the IPMI architecture, which is a specialized
micro-controller that is embedded on the motherboard of a computer and acts as a server. Manages the
interface between system management software and platform hardware.

bootable disk image A type of VM image that exists as a single, bootable file.

Bootstrap Protocol (BOOTP) A network protocol used by a network client to obtain an IP address from a
configuration server. Provided in Compute through the dnsmasq daemon when using either the FlatD-
HCP manager or VLAN manager network manager.

Border Gateway Protocol (BGP) The Border Gateway Protocol is a dynamic routing protocol that connects
autonomous systems. Considered the backbone of the Internet, this protocol connects disparate networks
to form a larger network.

browser Any client software that enables a computer or device to access the Internet.

builder file Contains configuration information that Object Storage uses to reconfigure a ring or to re-create
it from scratch after a serious failure.

bursting The practice of utilizing a secondary environment to elastically build instances on-demand when the
primary environment is resource constrained.

button class A group of related button types within horizon. Buttons to start, stop, and suspend VMs are in
one class. Buttons to associate and disassociate floating IP addresses are in another class, and so on.

byte Set of bits that make up a single character; there are usually 8 bits to a byte.

C

cache pruner A program that keeps the Image service VM image cache at or below its configured maximum
size.

Cactus An OpenStack grouped release of projects that came out in the spring of 2011. It included Compute
(nova), Object Storage (swift), and the Image service (glance). Cactus is a city in Texas, US and is the
code name for the third release of OpenStack. When OpenStack releases went from three to six months
long, the code name of the release changed to match a geography nearest the previous summit.

CALL One of the RPC primitives used by the OpenStack message queue software. Sends a message and
waits for a response.

capability Defines resources for a cell, including CPU, storage, and networking. Can apply to the specific
services within a cell or a whole cell.

capacity cache A Compute back-end database table that contains the current workload, amount of free RAM,
and number of VMs running on each host. Used to determine on which host a VM starts.

capacity updater A notification driver that monitors VM instances and updates the capacity cache as needed.

CAST One of the RPC primitives used by the OpenStack message queue software. Sends a message and does
not wait for a response.

catalog A list of API endpoints that are available to a user after authentication with the Identity service.

Glossary 309

Networking Guide (Release Version: 15.0.0)

catalog service An Identity service that lists API endpoints that are available to a user after authentication
with the Identity service.

ceilometer Part of the OpenStack Telemetry service; gathers and stores metrics from other OpenStack services.

cell Provides logical partitioning of Compute resources in a child and parent relationship. Requests are passed
from parent cells to child cells if the parent cannot provide the requested resource.

cell forwarding ACompute option that enables parent cells to pass resource requests to child cells if the parent
cannot provide the requested resource.

cell manager The Compute component that contains a list of the current capabilities of each host within the
cell and routes requests as appropriate.

CentOS A Linux distribution that is compatible with OpenStack.

Ceph Massively scalable distributed storage system that consists of an object store, block store, and POSIX-
compatible distributed file system. Compatible with OpenStack.

CephFS The POSIX-compliant file system provided by Ceph.

certificate authority (CA) In cryptography, an entity that issues digital certificates. The digital certificate
certifies the ownership of a public key by the named subject of the certificate. This enables others
(relying parties) to rely upon signatures or assertions made by the private key that corresponds to the
certified public key. In this model of trust relationships, a CA is a trusted third party for both the subject
(owner) of the certificate and the party relying upon the certificate. CAs are characteristic of many public
key infrastructure (PKI) schemes. In OpenStack, a simple certificate authority is provided by Compute
for cloudpipe VPNs and VM image decryption.

Challenge-Handshake Authentication Protocol (CHAP) An iSCSI authentication method supported by
Compute.

chance scheduler A scheduling method used by Compute that randomly chooses an available host from the
pool.

changes since ACompute API parameter that downloads changes to the requested item since your last request,
instead of downloading a new, fresh set of data and comparing it against the old data.

Chef An operating system configuration management tool supporting OpenStack deployments.

child cell If a requested resource such as CPU time, disk storage, or memory is not available in the parent
cell, the request is forwarded to its associated child cells. If the child cell can fulfill the request, it does.
Otherwise, it attempts to pass the request to any of its children.

cinder Codename for Block Storage service.

CirrOS A minimal Linux distribution designed for use as a test image on clouds such as OpenStack.

Cisco neutron plug-in A Networking plug-in for Cisco devices and technologies, including UCS and Nexus.

cloud architect A person who plans, designs, and oversees the creation of clouds.

Cloud Auditing Data Federation (CADF) Cloud Auditing Data Federation (CADF) is a specification for
audit event data. CADF is supported by OpenStack Identity.

cloud computing A model that enables access to a shared pool of configurable computing resources, such as
networks, servers, storage, applications, and services, that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

cloud controller Collection of Compute components that represent the global state of the cloud; talks to
services, such as Identity authentication, Object Storage, and node/storage workers through a queue.

310 Glossary

Networking Guide (Release Version: 15.0.0)

cloud controller node A node that runs network, volume, API, scheduler, and image services. Each service
may be broken out into separate nodes for scalability or availability.

Cloud Data Management Interface (CDMI) SINA standard that defines a RESTful API for managing ob-
jects in the cloud, currently unsupported in OpenStack.

Cloud Infrastructure Management Interface (CIMI) An in-progress specification for cloud management.
Currently unsupported in OpenStack.

cloud-init A package commonly installed in VM images that performs initialization of an instance after boot
using information that it retrieves from the metadata service, such as the SSH public key and user data.

cloudadmin One of the default roles in the Compute RBAC system. Grants complete system access.

Cloudbase-Init A Windows project providing guest initialization features, similar to cloud-init.

cloudpipe A compute service that creates VPNs on a per-project basis.

cloudpipe image A pre-made VM image that serves as a cloudpipe server. Essentially, OpenVPN running on
Linux.

Clustering service (senlin) The project that implements clustering services and libraries for the management
of groups of homogeneous objects exposed by other OpenStack services.

command filter Lists allowed commands within the Compute rootwrap facility.

Common Internet File System (CIFS) A file sharing protocol. It is a public or open variation of the original
Server Message Block (SMB) protocol developed and used by Microsoft. Like the SMB protocol, CIFS
runs at a higher level and uses the TCP/IP protocol.

Common Libraries (oslo) The project that produces a set of python libraries containing code shared by Open-
Stack projects. The APIs provided by these libraries should be high quality, stable, consistent, docu-
mented and generally applicable.

community project A project that is not officially endorsed by the OpenStack Foundation. If the project is
successful enough, it might be elevated to an incubated project and then to a core project, or it might be
merged with the main code trunk.

compression Reducing the size of files by special encoding, the file can be decompressed again to its original
content. OpenStack supports compression at the Linux file system level but does not support compression
for things such as Object Storage objects or Image service VM images.

Compute API (Nova API) The nova-api daemon provides access to nova services. Can communicate with
other APIs, such as the Amazon EC2 API.

compute controller The Compute component that chooses suitable hosts on which to start VM instances.

compute host Physical host dedicated to running compute nodes.

compute node A node that runs the nova-compute daemon that manages VM instances that provide a wide
range of services, such as web applications and analytics.

Compute service (nova) The OpenStack core project that implements services and associated libraries to
provide massively-scalable, on-demand, self-service access to compute resources, including bare metal,
virtual machines, and containers.

compute worker The Compute component that runs on each compute node and manages the VM instance
lifecycle, including run, reboot, terminate, attach/detach volumes, and so on. Provided by the nova-
compute daemon.

concatenated object A set of segment objects that Object Storage combines and sends to the client.

Glossary 311

Networking Guide (Release Version: 15.0.0)

conductor In Compute, conductor is the process that proxies database requests from the compute process.
Using conductor improves security because compute nodes do not need direct access to the database.

congress Code name for the Governance service.

consistency window The amount of time it takes for a new Object Storage object to become accessible to all
clients.

console log Contains the output from a Linux VM console in Compute.

container Organizes and stores objects in Object Storage. Similar to the concept of a Linux directory but
cannot be nested. Alternative term for an Image service container format.

container auditor Checks for missing replicas or incorrect objects in specified Object Storage containers
through queries to the SQLite back-end database.

container database A SQLite database that stores Object Storage containers and container metadata. The
container server accesses this database.

container format Awrapper used by the Image service that contains a VM image and its associated metadata,
such as machine state, OS disk size, and so on.

Container Infrastructure Management service (magnum) The project which provides a set of services for
provisioning, scaling, and managing container orchestration engines.

container server An Object Storage server that manages containers.

container service The Object Storage component that provides container services, such as create, delete, list,
and so on.

content delivery network (CDN) Acontent delivery network is a specialized network that is used to distribute
content to clients, typically located close to the client for increased performance.

controller node Alternative term for a cloud controller node.

core API Depending on context, the core API is either the OpenStack API or the main API of a specific core
project, such as Compute, Networking, Image service, and so on.

core service An official OpenStack service defined as core by DefCore Committee. Currently, consists of
Block Storage service (cinder), Compute service (nova), Identity service (keystone), Image service
(glance), Networking service (neutron), and Object Storage service (swift).

cost Under the Compute distributed scheduler, this is calculated by looking at the capabilities of each host
relative to the flavor of the VM instance being requested.

credentials Data that is only known to or accessible by a user and used to verify that the user is who he says
he is. Credentials are presented to the server during authentication. Examples include a password, secret
key, digital certificate, and fingerprint.

CRL A Certificate Revocation List (CRL) in a PKI model is a list of certificates that have been revoked. End
entities presenting these certificates should not be trusted.

Cross-Origin Resource Sharing (CORS) A mechanism that allows many resources (for example, fonts,
JavaScript) on a web page to be requested from another domain outside the domain from which the
resource originated. In particular, JavaScript’s AJAX calls can use the XMLHttpRequest mechanism.

Crowbar An open source community project by SUSE that aims to provide all necessary services to quickly
deploy and manage clouds.

current workload An element of the Compute capacity cache that is calculated based on the number of build,
snapshot, migrate, and resize operations currently in progress on a given host.

312 Glossary

Networking Guide (Release Version: 15.0.0)

customer Alternative term for project.

customization module A user-created Python module that is loaded by horizon to change the look and feel
of the dashboard.

D

daemon A process that runs in the background and waits for requests. May or may not listen on a TCP or
UDP port. Do not confuse with a worker.

Dashboard (horizon) OpenStack project which provides an extensible, unified, web-based user interface for
all OpenStack services.

data encryption Both Image service and Compute support encrypted virtual machine (VM) images (but not
instances). In-transit data encryption is supported in OpenStack using technologies such as HTTPS,
SSL, TLS, and SSH. Object Storage does not support object encryption at the application level but may
support storage that uses disk encryption.

Data loss prevention (DLP) software Software programs used to protect sensitive information and prevent
it from leaking outside a network boundary through the detection and denying of the data transportation.

Data Processing service (sahara) OpenStack project that provides a scalable data-processing stack and as-
sociated management interfaces.

data store A database engine supported by the Database service.

database ID A unique ID given to each replica of an Object Storage database.

database replicator An Object Storage component that copies changes in the account, container, and object
databases to other nodes.

Database service (trove) An integrated project that provides scalable and reliable Cloud Database-as-a-
Service functionality for both relational and non-relational database engines.

deallocate The process of removing the association between a floating IP address and a fixed IP address. Once
this association is removed, the floating IP returns to the address pool.

Debian A Linux distribution that is compatible with OpenStack.

deduplication The process of finding duplicate data at the disk block, file, and/or object level to minimize
storage use—currently unsupported within OpenStack.

default panel The default panel that is displayed when a user accesses the dashboard.

default project New users are assigned to this project if no project is specified when a user is created.

default token An Identity service token that is not associated with a specific project and is exchanged for a
scoped token.

delayed delete An optionwithin Image service so that an image is deleted after a predefined number of seconds
instead of immediately.

delivery mode Setting for the Compute RabbitMQ message delivery mode; can be set to either transient or
persistent.

denial of service (DoS) Denial of service (DoS) is a short form for denial-of-service attack. This is amalicious
attempt to prevent legitimate users from using a service.

deprecated auth An option within Compute that enables administrators to create and manage users through
the nova-manage command as opposed to using the Identity service.

Glossary 313

Networking Guide (Release Version: 15.0.0)

designate Code name for the DNS service.

Desktop-as-a-Service A platform that provides a suite of desktop environments that users access to receive
a desktop experience from any location. This may provide general use, development, or even homoge-
neous testing environments.

developer One of the default roles in the Compute RBAC system and the default role assigned to a new user.

device ID Maps Object Storage partitions to physical storage devices.

device weight Distributes partitions proportionately across Object Storage devices based on the storage ca-
pacity of each device.

DevStack Community project that uses shell scripts to quickly build complete OpenStack development envi-
ronments.

DHCP agent OpenStack Networking agent that provides DHCP services for virtual networks.

Diablo A grouped release of projects related to OpenStack that came out in the fall of 2011, the fourth release
of OpenStack. It included Compute (nova 2011.3), Object Storage (swift 1.4.3), and the Image service
(glance). Diablo is the code name for the fourth release of OpenStack. The design summit took place in
the Bay Area near Santa Clara, California, US and Diablo is a nearby city.

direct consumer An element of the Compute RabbitMQ that comes to life when a RPC call is executed. It
connects to a direct exchange through a unique exclusive queue, sends the message, and terminates.

direct exchange A routing table that is created within the Compute RabbitMQ during RPC calls; one is created
for each RPC call that is invoked.

direct publisher Element of RabbitMQ that provides a response to an incoming MQ message.

disassociate The process of removing the association between a floating IP address and fixed IP and thus
returning the floating IP address to the address pool.

Discretionary Access Control (DAC) Governs the ability of subjects to access objects, while enabling users
to make policy decisions and assign security attributes. The traditional UNIX system of users, groups,
and read-write-execute permissions is an example of DAC.

disk encryption The ability to encrypt data at the file system, disk partition, or whole-disk level. Supported
within Compute VMs.

disk format The underlying format that a disk image for a VM is stored as within the Image service back-end
store. For example, AMI, ISO, QCOW2, VMDK, and so on.

dispersion In Object Storage, tools to test and ensure dispersion of objects and containers to ensure fault
tolerance.

distributed virtual router (DVR) Mechanism for highly available multi-host routing when using OpenStack
Networking (neutron).

Django A web framework used extensively in horizon.

DNS record A record that specifies information about a particular domain and belongs to the domain.

DNS service (designate) OpenStack project that provides scalable, on demand, self service access to author-
itative DNS services, in a technology-agnostic manner.

dnsmasq Daemon that provides DNS, DHCP, BOOTP, and TFTP services for virtual networks.

domain An Identity API v3 entity. Represents a collection of projects, groups and users that defines admin-
istrative boundaries for managing OpenStack Identity entities. On the Internet, separates a website from
other sites. Often, the domain name has two or more parts that are separated by dots. For example,

314 Glossary

Networking Guide (Release Version: 15.0.0)

yahoo.com, usa.gov, harvard.edu, or mail.yahoo.com. Also, a domain is an entity or container of all
DNS-related information containing one or more records.

Domain Name System (DNS) A system by which Internet domain name-to-address and address-to-name res-
olutions are determined. DNS helps navigate the Internet by translating the IP address into an address
that is easier to remember. For example, translating 111.111.111.1 into www.yahoo.com. All domains
and their components, such as mail servers, utilize DNS to resolve to the appropriate locations. DNS
servers are usually set up in a master-slave relationship such that failure of the master invokes the slave.
DNS servers might also be clustered or replicated such that changes made to one DNS server are au-
tomatically propagated to other active servers. In Compute, the support that enables associating DNS
entries with floating IP addresses, nodes, or cells so that hostnames are consistent across reboots.

download The transfer of data, usually in the form of files, from one computer to another.

durable exchange The Compute RabbitMQ message exchange that remains active when the server restarts.

durable queue A Compute RabbitMQ message queue that remains active when the server restarts.

Dynamic Host Configuration Protocol (DHCP) A network protocol that configures devices that are con-
nected to a network so that they can communicate on that network by using the Internet Protocol (IP).
The protocol is implemented in a client-server model where DHCP clients request configuration data,
such as an IP address, a default route, and one or more DNS server addresses from a DHCP server. A
method to automatically configure networking for a host at boot time. Provided by both Networking and
Compute.

Dynamic HyperText Markup Language (DHTML) Pages that use HTML, JavaScript, and Cascading Style
Sheets to enable users to interact with a web page or show simple animation.

E

east-west traffic Network traffic between servers in the same cloud or data center. See also north-south traffic.

EBS boot volume AnAmazon EBS storage volume that contains a bootable VM image, currently unsupported
in OpenStack.

ebtables Filtering tool for a Linux bridging firewall, enabling filtering of network traffic passing through
a Linux bridge. Used in Compute along with arptables, iptables, and ip6tables to ensure isolation of
network communications.

EC2 The Amazon commercial compute product, similar to Compute.

EC2 access key Used along with an EC2 secret key to access the Compute EC2 API.

EC2 API OpenStack supports accessing the Amazon EC2 API through Compute.

EC2 Compatibility API A Compute component that enables OpenStack to communicate with Amazon EC2.

EC2 secret key Used along with an EC2 access key when communicating with the Compute EC2 API; used
to digitally sign each request.

Elastic Block Storage (EBS) The Amazon commercial block storage product.

encapsulation The practice of placing one packet type within another for the purposes of abstracting or se-
curing data. Examples include GRE, MPLS, or IPsec.

encryption OpenStack supports encryption technologies such as HTTPS, SSH, SSL, TLS, digital certificates,
and data encryption.

endpoint See API endpoint.

Glossary 315

Networking Guide (Release Version: 15.0.0)

endpoint registry Alternative term for an Identity service catalog.

endpoint template A list of URL and port number endpoints that indicate where a service, such as Object
Storage, Compute, Identity, and so on, can be accessed.

entity Any piece of hardware or software that wants to connect to the network services provided by Net-
working, the network connectivity service. An entity can make use of Networking by implementing a
VIF.

ephemeral image A VM image that does not save changes made to its volumes and reverts them to their
original state after the instance is terminated.

ephemeral volume Volume that does not save the changes made to it and reverts to its original state when the
current user relinquishes control.

Essex A grouped release of projects related to OpenStack that came out in April 2012, the fifth release of
OpenStack. It included Compute (nova 2012.1), Object Storage (swift 1.4.8), Image (glance), Identity
(keystone), and Dashboard (horizon). Essex is the code name for the fifth release of OpenStack. The
design summit took place in Boston, Massachusetts, US and Essex is a nearby city.

ESXi An OpenStack-supported hypervisor.

ETag MD5 hash of an object within Object Storage, used to ensure data integrity.

euca2ools A collection of command-line tools for administering VMs; most are compatible with OpenStack.

Eucalyptus Kernel Image (EKI) Used along with an ERI to create an EMI.

Eucalyptus Machine Image (EMI) VM image container format supported by Image service.

Eucalyptus Ramdisk Image (ERI) Used along with an EKI to create an EMI.

evacuate The process of migrating one or all virtual machine (VM) instances from one host to another, com-
patible with both shared storage live migration and block migration.

exchange Alternative term for a RabbitMQ message exchange.

exchange type A routing algorithm in the Compute RabbitMQ.

exclusive queue Connected to by a direct consumer in RabbitMQ—Compute, the message can be consumed
only by the current connection.

extended attributes (xattr) File system option that enables storage of additional information beyond owner,
group, permissions, modification time, and so on. The underlying Object Storage file system must sup-
port extended attributes.

extension Alternative term for an API extension or plug-in. In the context of Identity service, this is a call
that is specific to the implementation, such as adding support for OpenID.

external network A network segment typically used for instance Internet access.

extra specs Specifies additional requirements when Compute determines where to start a new instance. Ex-
amples include a minimum amount of network bandwidth or a GPU.

F

FakeLDAP An easy method to create a local LDAP directory for testing Identity and Compute. Requires
Redis.

fan-out exchange Within RabbitMQ and Compute, it is the messaging interface that is used by the scheduler
service to receive capability messages from the compute, volume, and network nodes.

316 Glossary

Networking Guide (Release Version: 15.0.0)

federated identity A method to establish trusts between identity providers and the OpenStack cloud.

Fedora A Linux distribution compatible with OpenStack.

Fibre Channel Storage protocol similar in concept to TCP/IP; encapsulates SCSI commands and data.

Fibre Channel over Ethernet (FCoE) The fibre channel protocol tunneled within Ethernet.

fill-first scheduler The Compute scheduling method that attempts to fill a host with VMs rather than starting
new VMs on a variety of hosts.

filter The step in the Compute scheduling process when hosts that cannot run VMs are eliminated and not
chosen.

firewall Used to restrict communications between hosts and/or nodes, implemented in Compute using iptables,
arptables, ip6tables, and ebtables.

FireWall-as-a-Service (FWaaS) A Networking extension that provides perimeter firewall functionality.

fixed IP address An IP address that is associated with the same instance each time that instance boots, is
generally not accessible to end users or the public Internet, and is used for management of the instance.

Flat Manager The Compute component that gives IP addresses to authorized nodes and assumes DHCP, DNS,
and routing configuration and services are provided by something else.

flat mode injection A Compute networking method where the OS network configuration information is in-
jected into the VM image before the instance starts.

flat network Virtual network type that uses neither VLANs nor tunnels to segregate project traffic. Each
flat network typically requires a separate underlying physical interface defined by bridge mappings.
However, a flat network can contain multiple subnets.

FlatDHCP Manager The Compute component that provides dnsmasq (DHCP, DNS, BOOTP, TFTP) and
radvd (routing) services.

flavor Alternative term for a VM instance type.

flavor ID UUID for each Compute or Image service VM flavor or instance type.

floating IP address An IP address that a project can associate with a VM so that the instance has the same
public IP address each time that it boots. You create a pool of floating IP addresses and assign them to
instances as they are launched to maintain a consistent IP address for maintaining DNS assignment.

Folsom A grouped release of projects related to OpenStack that came out in the fall of 2012, the sixth release
of OpenStack. It includes Compute (nova), Object Storage (swift), Identity (keystone), Networking
(neutron), Image service (glance), and Volumes or Block Storage (cinder). Folsom is the code name
for the sixth release of OpenStack. The design summit took place in San Francisco, California, US and
Folsom is a nearby city.

FormPost Object Storage middleware that uploads (posts) an image through a form on a web page.

freezer Code name for the Backup, Restore, and Disaster Recovery service.

front end The point where a user interacts with a service; can be an API endpoint, the dashboard, or a
command-line tool.

G

gateway An IP address, typically assigned to a router, that passes network traffic between different networks.

Glossary 317

Networking Guide (Release Version: 15.0.0)

generic receive offload (GRO) Feature of certain network interface drivers that combines many smaller re-
ceived packets into a large packet before delivery to the kernel IP stack.

generic routing encapsulation (GRE) Protocol that encapsulates a wide variety of network layer protocols
inside virtual point-to-point links.

glance Codename for the Image service.

glance API server Alternative name for the Image API.

glance registry Alternative term for the Image service image registry.

global endpoint template The Identity service endpoint template that contains services available to all
projects.

GlusterFS A file system designed to aggregate NAS hosts, compatible with OpenStack.

gnocchi Part of the OpenStack Telemetry service; provides an indexer and time-series database.

golden image Amethod of operating system installation where a finalized disk image is created and then used
by all nodes without modification.

Governance service (congress) The project that provides Governance-as-a-Service across any collection of
cloud services in order to monitor, enforce, and audit policy over dynamic infrastructure.

Graphic Interchange Format (GIF) A type of image file that is commonly used for animated images on web
pages.

Graphics Processing Unit (GPU) Choosing a host based on the existence of a GPU is currently unsupported
in OpenStack.

Green Threads The cooperative threading model used by Python; reduces race conditions and only context
switches when specific library calls are made. Each OpenStack service is its own thread.

Grizzly The code name for the seventh release of OpenStack. The design summit took place in San Diego,
California, US and Grizzly is an element of the state flag of California.

Group An Identity v3 API entity. Represents a collection of users that is owned by a specific domain.

guest OS An operating system instance running under the control of a hypervisor.

H

Hadoop Apache Hadoop is an open source software framework that supports data-intensive distributed ap-
plications.

Hadoop Distributed File System (HDFS) A distributed, highly fault-tolerant file system designed to run on
low-cost commodity hardware.

handover An object state in Object Storage where a new replica of the object is automatically created due to
a drive failure.

HAProxy Provides a high availability load balancer and proxy server for TCP and HTTP-based applications
that spreads requests across multiple servers.

hard reboot A type of reboot where a physical or virtual power button is pressed as opposed to a graceful,
proper shutdown of the operating system.

Havana The code name for the eighth release of OpenStack. The design summit took place in Portland,
Oregon, US and Havana is an unincorporated community in Oregon.

318 Glossary

Networking Guide (Release Version: 15.0.0)

health monitor Determines whether back-end members of a VIP pool can process a request. A pool can
have several health monitors associated with it. When a pool has several monitors associated with it, all
monitors check each member of the pool. All monitors must declare a member to be healthy for it to stay
active.

heat Codename for the Orchestration service.

Heat Orchestration Template (HOT) Heat input in the format native to OpenStack.

high availability (HA) A high availability system design approach and associated service implementation
ensures that a prearranged level of operational performance will bemet during a contractual measurement
period. High availability systems seek to minimize system downtime and data loss.

horizon Codename for the Dashboard.

horizon plug-in A plug-in for the OpenStack Dashboard (horizon).

host A physical computer, not a VM instance (node).

host aggregate Amethod to further subdivide availability zones into hypervisor pools, a collection of common
hosts.

Host Bus Adapter (HBA) Device plugged into a PCI slot, such as a fibre channel or network card.

hybrid cloud A hybrid cloud is a composition of two or more clouds (private, community or public) that
remain distinct entities but are bound together, offering the benefits of multiple deployment models.
Hybrid cloud can also mean the ability to connect colocation, managed and/or dedicated services with
cloud resources.

Hyper-V One of the hypervisors supported by OpenStack.

hyperlink Any kind of text that contains a link to some other site, commonly found in documents where
clicking on a word or words opens up a different website.

Hypertext Transfer Protocol (HTTP) An application protocol for distributed, collaborative, hypermedia in-
formation systems. It is the foundation of data communication for the World Wide Web. Hypertext is
structured text that uses logical links (hyperlinks) between nodes containing text. HTTP is the protocol
to exchange or transfer hypertext.

Hypertext Transfer Protocol Secure (HTTPS) An encrypted communications protocol for secure commu-
nication over a computer network, with especially wide deployment on the Internet. Technically, it is
not a protocol in and of itself; rather, it is the result of simply layering the Hypertext Transfer Proto-
col (HTTP) on top of the TLS or SSL protocol, thus adding the security capabilities of TLS or SSL to
standard HTTP communications. Most OpenStack API endpoints and many inter-component communi-
cations support HTTPS communication.

hypervisor Software that arbitrates and controls VM access to the actual underlying hardware.

hypervisor pool A collection of hypervisors grouped together through host aggregates.

I

Icehouse The code name for the ninth release of OpenStack. The design summit took place in Hong Kong
and Ice House is a street in that city.

ID number Unique numeric ID associated with each user in Identity, conceptually similar to a Linux or LDAP
UID.

Identity API Alternative term for the Identity service API.

Glossary 319

Networking Guide (Release Version: 15.0.0)

Identity back end The source used by Identity service to retrieve user information; an OpenLDAP server, for
example.

identity provider A directory service, which allows users to login with a user name and password. It is a
typical source of authentication tokens.

Identity service (keystone) The project that facilitates API client authentication, service discovery, dis-
tributed multi-project authorization, and auditing. It provides a central directory of users mapped to
the OpenStack services they can access. It also registers endpoints for OpenStack services and acts as a
common authentication system.

Identity service API The API used to access the OpenStack Identity service provided through keystone.

IETF Internet Engineering Task Force (IETF) is an open standards organization that develops Internet stan-
dards, particularly the standards pertaining to TCP/IP.

image A collection of files for a specific operating system (OS) that you use to create or rebuild a server.
OpenStack provides pre-built images. You can also create custom images, or snapshots, from servers
that you have launched. Custom images can be used for data backups or as “gold” images for additional
servers.

Image API The Image service API endpoint for management of VM images. Processes client requests for
VMs, updates Image service metadata on the registry server, and communicates with the store adapter to
upload VM images from the back-end store.

image cache Used by Image service to obtain images on the local host rather than re-downloading them from
the image server each time one is requested.

image ID Combination of a URI and UUID used to access Image service VM images through the image API.

image membership A list of projects that can access a given VM image within Image service.

image owner The project who owns an Image service virtual machine image.

image registry A list of VM images that are available through Image service.

Image service (glance) The OpenStack service that provide services and associated libraries to store, browse,
share, distribute andmanage bootable disk images, other data closely associatedwith initializing compute
resources, and metadata definitions.

image status The current status of a VM image in Image service, not to be confused with the status of a
running instance.

image store The back-end store used by Image service to store VM images, options include Object Storage,
locally mounted file system, RADOS block devices, VMware datastore, or HTTP.

image UUID UUID used by Image service to uniquely identify each VM image.

incubated project A community project may be elevated to this status and is then promoted to a core project.

Infrastructure Optimization service (watcher) OpenStack project that aims to provide a flexible and scal-
able resource optimization service for multi-project OpenStack-based clouds.

Infrastructure-as-a-Service (IaaS) IaaS is a provisioning model in which an organization outsources phys-
ical components of a data center, such as storage, hardware, servers, and networking components. A
service provider owns the equipment and is responsible for housing, operating and maintaining it. The
client typically pays on a per-use basis. IaaS is a model for providing cloud services.

ingress filtering The process of filtering incoming network traffic. Supported by Compute.

320 Glossary

Networking Guide (Release Version: 15.0.0)

INI format The OpenStack configuration files use an INI format to describe options and their values. It
consists of sections and key value pairs.

injection The process of putting a file into a virtual machine image before the instance is started.

Input/Output Operations Per Second (IOPS) IOPS are a common performance measurement used to
benchmark computer storage devices like hard disk drives, solid state drives, and storage area networks.

instance A running VM, or a VM in a known state such as suspended, that can be used like a hardware server.

instance ID Alternative term for instance UUID.

instance state The current state of a guest VM image.

instance tunnels network A network segment used for instance traffic tunnels between compute nodes and
the network node.

instance type Describes the parameters of the various virtual machine images that are available to users;
includes parameters such as CPU, storage, and memory. Alternative term for flavor.

instance type ID Alternative term for a flavor ID.

instance UUID Unique ID assigned to each guest VM instance.

Intelligent Platform Management Interface (IPMI) IPMI is a standardized computer system interface used
by system administrators for out-of-band management of computer systems and monitoring of their op-
eration. In layman’s terms, it is a way to manage a computer using a direct network connection, whether
it is turned on or not; connecting to the hardware rather than an operating system or login shell.

interface A physical or virtual device that provides connectivity to another device or medium.

interface ID Unique ID for a Networking VIF or vNIC in the form of a UUID.

Internet Control Message Protocol (ICMP) A network protocol used by network devices for control mes-
sages. For example, ping uses ICMP to test connectivity.

Internet protocol (IP) Principal communications protocol in the internet protocol suite for relaying datagrams
across network boundaries.

Internet Service Provider (ISP) Any business that provides Internet access to individuals or businesses.

Internet Small Computer System Interface (iSCSI) Storage protocol that encapsulates SCSI frames for
transport over IP networks. Supported by Compute, Object Storage, and Image service.

IP address Number that is unique to every computer system on the Internet. Two versions of the Internet
Protocol (IP) are in use for addresses: IPv4 and IPv6.

IP Address Management (IPAM) The process of automating IP address allocation, deallocation, and man-
agement. Currently provided by Compute, melange, and Networking.

ip6tables Tool used to set up, maintain, and inspect the tables of IPv6 packet filter rules in the Linux kernel.
In OpenStack Compute, ip6tables is used along with arptables, ebtables, and iptables to create firewalls
for both nodes and VMs.

ipset Extension to iptables that allows creation of firewall rules that match entire “sets” of IP addresses si-
multaneously. These sets reside in indexed data structures to increase efficiency, particularly on systems
with a large quantity of rules.

iptables Used along with arptables and ebtables, iptables create firewalls in Compute. iptables are the tables
provided by the Linux kernel firewall (implemented as different Netfilter modules) and the chains and
rules it stores. Different kernel modules and programs are currently used for different protocols: iptables

Glossary 321

Networking Guide (Release Version: 15.0.0)

applies to IPv4, ip6tables to IPv6, arptables to ARP, and ebtables to Ethernet frames. Requires root
privilege to manipulate.

ironic Codename for the Bare Metal service.

iSCSI Qualified Name (IQN) IQN is the format most commonly used for iSCSI names, which uniquely
identify nodes in an iSCSI network. All IQNs follow the pattern iqn.yyyy-mm.domain:identifier, where
‘yyyy-mm’ is the year and month in which the domain was registered, ‘domain’ is the reversed domain
name of the issuing organization, and ‘identifier’ is an optional string which makes each IQN under the
same domain unique. For example, ‘iqn.2015-10.org.openstack.408ae959bce1’.

ISO9660 One of the VM image disk formats supported by Image service.

itsec A default role in the Compute RBAC system that can quarantine an instance in any project.

J

Java A programming language that is used to create systems that involve more than one computer by way of
a network.

JavaScript A scripting language that is used to build web pages.

JavaScript Object Notation (JSON) One of the supported response formats in OpenStack.

jumbo frame Feature in modern Ethernet networks that supports frames up to approximately 9000 bytes.

Juno The code name for the tenth release of OpenStack. The design summit took place in Atlanta, Georgia,
US and Juno is an unincorporated community in Georgia.

K

Kerberos A network authentication protocol which works on the basis of tickets. Kerberos allows nodes
communication over a non-secure network, and allows nodes to prove their identity to one another in a
secure manner.

kernel-based VM (KVM) An OpenStack-supported hypervisor. KVM is a full virtualization solution for
Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V), ARM, IBM Power,
and IBM zSeries. It consists of a loadable kernel module, that provides the core virtualization infrastruc-
ture and a processor specific module.

Key Manager service (barbican) The project that produces a secret storage and generation system capable
of providing key management for services wishing to enable encryption features.

keystone Codename of the Identity service.

Kickstart A tool to automate system configuration and installation on Red Hat, Fedora, and CentOS-based
Linux distributions.

Kilo The code name for the eleventh release of OpenStack. The design summit took place in Paris, France.
Due to delays in the name selection, the release was known only as K. Because k is the unit symbol
for kilo and the kilogram reference artifact is stored near Paris in the Pavillon de Breteuil in Sèvres, the
community chose Kilo as the release name.

L

large object An object within Object Storage that is larger than 5 GB.

322 Glossary

Networking Guide (Release Version: 15.0.0)

Launchpad The collaboration site for OpenStack.

Layer-2 (L2) agent OpenStack Networking agent that provides layer-2 connectivity for virtual networks.

Layer-2 network Term used in the OSI network architecture for the data link layer. The data link layer is
responsible for media access control, flow control and detecting and possibly correcting errors that may
occur in the physical layer.

Layer-3 (L3) agent OpenStackNetworking agent that provides layer-3 (routing) services for virtual networks.

Layer-3 network Term used in the OSI network architecture for the network layer. The network layer is
responsible for packet forwarding including routing from one node to another.

Liberty The code name for the twelfth release of OpenStack. The design summit took place in Vancouver,
Canada and Liberty is the name of a village in the Canadian province of Saskatchewan.

libvirt Virtualization API library used by OpenStack to interact with many of its supported hypervisors.

Lightweight Directory Access Protocol (LDAP) An application protocol for accessing and maintaining dis-
tributed directory information services over an IP network.

Linux Unix-like computer operating system assembled under the model of free and open-source software
development and distribution.

Linux bridge Software that enables multiple VMs to share a single physical NIC within Compute.

Linux Bridge neutron plug-in Enables a Linux bridge to understand aNetworking port, interface attachment,
and other abstractions.

Linux containers (LXC) An OpenStack-supported hypervisor.

live migration The ability within Compute tomove running virtual machine instances from one host to another
with only a small service interruption during switchover.

load balancer A load balancer is a logical device that belongs to a cloud account. It is used to distribute
workloads between multiple back-end systems or services, based on the criteria defined as part of its
configuration.

load balancing The process of spreading client requests between two or more nodes to improve performance
and availability.

Load-Balancer-as-a-Service (LBaaS) Enables Networking to distribute incoming requests evenly between
designated instances.

Load-balancing service (octavia) The project that aims to rovide scalable, on demand, self service access to
load-balancer services, in technology-agnostic manner.

Logical Volume Manager (LVM) Provides a method of allocating space onmass-storage devices that is more
flexible than conventional partitioning schemes.

M

magnum Code name for the Containers Infrastructure Management service.

management API Alternative term for an admin API.

management network A network segment used for administration, not accessible to the public Internet.

manager Logical groupings of related code, such as the Block Storage volume manager or network manager.

manifest Used to track segments of a large object within Object Storage.

Glossary 323

Networking Guide (Release Version: 15.0.0)

manifest object A special Object Storage object that contains the manifest for a large object.

manila Codename for OpenStack Shared File Systems service.

manila-share Responsible for managing Shared File System Service devices, specifically the back-end de-
vices.

maximum transmission unit (MTU) Maximum frame or packet size for a particular network medium. Typ-
ically 1500 bytes for Ethernet networks.

mechanism driver A driver for theModular Layer 2 (ML2) neutron plug-in that provides layer-2 connectivity
for virtual instances. A single OpenStack installation can use multiple mechanism drivers.

melange Project name for OpenStack Network Information Service. To be merged with Networking.

membership The association between an Image service VM image and a project. Enables images to be shared
with specified projects.

membership list A list of projects that can access a given VM image within Image service.

memcached A distributed memory object caching system that is used by Object Storage for caching.

memory overcommit The ability to start new VM instances based on the actual memory usage of a host, as
opposed to basing the decision on the amount of RAM each running instance thinks it has available. Also
known as RAM overcommit.

message broker The software package used to provide AMQP messaging capabilities within Compute. De-
fault package is RabbitMQ.

message bus The main virtual communication line used by all AMQP messages for inter-cloud communica-
tions within Compute.

message queue Passes requests from clients to the appropriate workers and returns the output to the client
after the job completes.

Message service (zaqar) The project that provides a messaging service that affords a variety of distributed
application patterns in an efficient, scalable and highly available manner, and to create and maintain
associated Python libraries and documentation.

Meta-Data Server (MDS) Stores CephFS metadata.

Metadata agent OpenStack Networking agent that provides metadata services for instances.

migration The process of moving a VM instance from one host to another.

mistral Code name forWorkflow service.

Mitaka The code name for the thirteenth release of OpenStack. The design summit took place in Tokyo,
Japan. Mitaka is a city in Tokyo.

Modular Layer 2 (ML2) neutron plug-in Can concurrently use multiple layer-2 networking technologies,
such as 802.1Q and VXLAN, in Networking.

monasca Codename for OpenStackMonitoring.

Monitor (LBaaS) LBaaS feature that provides availability monitoring using the ping command, TCP, and
HTTP/HTTPS GET.

Monitor (Mon) A Ceph component that communicates with external clients, checks data state and consis-
tency, and performs quorum functions.

Monitoring (monasca) The OpenStack service that provides a multi-project, highly scalable, performant,
fault-tolerant monitoring-as-a-service solution for metrics, complex event processing and logging. To

324 Glossary

Networking Guide (Release Version: 15.0.0)

build an extensible platform for advanced monitoring services that can be used by both operators and
projects to gain operational insight and visibility, ensuring availability and stability.

multi-factor authentication Authentication method that uses two or more credentials, such as a password
and a private key. Currently not supported in Identity.

multi-host High-availabilitymode for legacy (nova) networking. Each compute node handles NAT andDHCP
and acts as a gateway for all of the VMs on it. A networking failure on one compute node doesn’t affect
VMs on other compute nodes.

multinic Facility in Compute that allows each virtual machine instance to have more than one VIF connected
to it.

murano Codename for the Application Catalog service.

N

Nebula Released as open source by NASA in 2010 and is the basis for Compute.

netadmin One of the default roles in the Compute RBAC system. Enables the user to allocate publicly acces-
sible IP addresses to instances and change firewall rules.

NetApp volume driver Enables Compute to communicate with NetApp storage devices through the NetApp
OnCommand Provisioning Manager.

network A virtual network that provides connectivity between entities. For example, a collection of virtual
ports that share network connectivity. In Networking terminology, a network is always a layer-2 network.

Network Address Translation (NAT) Process of modifying IP address information while in transit. Sup-
ported by Compute and Networking.

network controller A Compute daemon that orchestrates the network configuration of nodes, including IP
addresses, VLANs, and bridging. Also manages routing for both public and private networks.

Network File System (NFS) A method for making file systems available over the network. Supported by
OpenStack.

network ID Unique ID assigned to each network segment within Networking. Same as network UUID.

network manager The Compute component that manages various network components, such as firewall
rules, IP address allocation, and so on.

network namespace Linux kernel feature that provides independent virtual networking instances on a single
host with separate routing tables and interfaces. Similar to virtual routing and forwarding (VRF) services
on physical network equipment.

network node Any compute node that runs the network worker daemon.

network segment Represents a virtual, isolated OSI layer-2 subnet in Networking.

Network Service Header (NSH) Provides a mechanism for metadata exchange along the instantiated service
path.

Network Time Protocol (NTP) Method of keeping a clock for a host or node correct via communication with
a trusted, accurate time source.

network UUID Unique ID for a Networking network segment.

network worker The nova-network worker daemon; provides services such as giving an IP address to a
booting nova instance.

Glossary 325

Networking Guide (Release Version: 15.0.0)

Networking API (Neutron API) API used to access OpenStack Networking. Provides an extensible archi-
tecture to enable custom plug-in creation.

Networking service (neutron) The OpenStack project which implements services and associated libraries to
provide on-demand, scalable, and technology-agnostic network abstraction.

neutron Codename for OpenStack Networking service.

neutron API An alternative name for Networking API.

neutron manager Enables Compute and Networking integration, which enables Networking to perform net-
work management for guest VMs.

neutron plug-in Interface within Networking that enables organizations to create custom plug-ins for ad-
vanced features, such as QoS, ACLs, or IDS.

Newton The code name for the fourteenth release of OpenStack. The design summit took place in Austin,
Texas, US. The release is named after “Newton House” which is located at 1013 E. Ninth St., Austin,
TX. which is listed on the National Register of Historic Places.

Nexenta volume driver Provides support for NexentaStor devices in Compute.

NFV Orchestration Service (tacker) OpenStack service that aims to implement Network Function Virtu-
alization (NFV) orchestration services and libraries for end-to-end life-cycle management of network
services and Virtual Network Functions (VNFs).

Nginx An HTTP and reverse proxy server, a mail proxy server, and a generic TCP/UDP proxy server.

No ACK Disables server-side message acknowledgment in the Compute RabbitMQ. Increases performance
but decreases reliability.

node A VM instance that runs on a host.

non-durable exchange Message exchange that is cleared when the service restarts. Its data is not written to
persistent storage.

non-durable queue Message queue that is cleared when the service restarts. Its data is not written to persistent
storage.

non-persistent volume Alternative term for an ephemeral volume.

north-south traffic Network traffic between a user or client (north) and a server (south), or traffic into the
cloud (south) and out of the cloud (north). See also east-west traffic.

nova Codename for OpenStack Compute service.

Nova API Alternative term for the Compute API.

nova-network ACompute component that manages IP address allocation, firewalls, and other network-related
tasks. This is the legacy networking option and an alternative to Networking.

O

object A BLOB of data held by Object Storage; can be in any format.

object auditor Opens all objects for an object server and verifies the MD5 hash, size, and metadata for each
object.

object expiration A configurable option within Object Storage to automatically delete objects after a specified
amount of time has passed or a certain date is reached.

326 Glossary

Networking Guide (Release Version: 15.0.0)

object hash Unique ID for an Object Storage object.

object path hash Used by Object Storage to determine the location of an object in the ring. Maps objects to
partitions.

object replicator An Object Storage component that copies an object to remote partitions for fault tolerance.

object server An Object Storage component that is responsible for managing objects.

Object Storage API API used to access OpenStack Object Storage.

Object Storage Device (OSD) The Ceph storage daemon.

Object Storage service (swift) The OpenStack core project that provides eventually consistent and redundant
storage and retrieval of fixed digital content.

object versioning Allows a user to set a flag on an Object Storage container so that all objects within the
container are versioned.

Ocata The code name for the fifteenth release of OpenStack. The design summit will take place in Barcelona,
Spain. Ocata is a beach north of Barcelona.

Octavia Code name for the Load-balancing service.

Oldie Term for an Object Storage process that runs for a long time. Can indicate a hung process.

Open Cloud Computing Interface (OCCI) A standardized interface for managing compute, data, and net-
work resources, currently unsupported in OpenStack.

Open Virtualization Format (OVF) Standard for packaging VM images. Supported in OpenStack.

Open vSwitch Open vSwitch is a production quality, multilayer virtual switch licensed under the open source
Apache 2.0 license. It is designed to enable massive network automation through programmatic exten-
sion, while still supporting standard management interfaces and protocols (for example NetFlow, sFlow,
SPAN, RSPAN, CLI, LACP, 802.1ag).

Open vSwitch (OVS) agent Provides an interface to the underlying Open vSwitch service for the Networking
plug-in.

Open vSwitch neutron plug-in Provides support for Open vSwitch in Networking.

OpenLDAP An open source LDAP server. Supported by both Compute and Identity.

OpenStack OpenStack is a cloud operating system that controls large pools of compute, storage, and net-
working resources throughout a data center, all managed through a dashboard that gives administrators
control while empowering their users to provision resources through a web interface. OpenStack is an
open source project licensed under the Apache License 2.0.

OpenStack code name Each OpenStack release has a code name. Code names ascend in alphabetical order:
Austin, Bexar, Cactus, Diablo, Essex, Folsom, Grizzly, Havana, Icehouse, Juno, Kilo, Liberty, Mitaka,
Newton, Ocata, Pike, and Queens. Code names are cities or counties near where the corresponding
OpenStack design summit took place. An exception, called the Waldon exception, is granted to elements
of the state flag that sound especially cool. Code names are chosen by popular vote.

openSUSE A Linux distribution that is compatible with OpenStack.

operator The person responsible for planning and maintaining an OpenStack installation.

optional service An official OpenStack service defined as optional by DefCore Committee. Currently, con-
sists of Dashboard (horizon), Telemetry service (Telemetry), Orchestration service (heat), Database ser-
vice (trove), Bare Metal service (ironic), and so on.

Glossary 327

Networking Guide (Release Version: 15.0.0)

Orchestration service (heat) The OpenStack service which orchestrates composite cloud applications using
a declarative template format through an OpenStack-native REST API.

orphan In the context of Object Storage, this is a process that is not terminated after an upgrade, restart, or
reload of the service.

Oslo Codename for the Common Libraries project.

P

panko Part of the OpenStack Telemetry service; provides event storage.

parent cell If a requested resource, such as CPU time, disk storage, or memory, is not available in the parent
cell, the request is forwarded to associated child cells.

partition A unit of storage within Object Storage used to store objects. It exists on top of devices and is
replicated for fault tolerance.

partition index Contains the locations of all Object Storage partitions within the ring.

partition shift value Used by Object Storage to determine which partition data should reside on.

path MTU discovery (PMTUD) Mechanism in IP networks to detect end-to-endMTU and adjust packet size
accordingly.

pause A VM state where no changes occur (no changes in memory, network communications stop, etc); the
VM is frozen but not shut down.

PCI passthrough Gives guest VMs exclusive access to a PCI device. Currently supported in OpenStack
Havana and later releases.

persistent message A message that is stored both in memory and on disk. The message is not lost after a
failure or restart.

persistent volume Changes to these types of disk volumes are saved.

personality file A file used to customize a Compute instance. It can be used to inject SSH keys or a specific
network configuration.

Pike The code name for the sixteenth release of OpenStack. The design summit will take place in Boston,
Massachusetts, US. The release is named after the Massachusetts Turnpike, abbreviated commonly as
the Mass Pike, which is the easternmost stretch of Interstate 90.

Platform-as-a-Service (PaaS) Provides to the consumer the ability to deploy applications through a program-
ming language or tools supported by the cloud platform provider. An example of Platform-as-a-Service
is an Eclipse/Java programming platform provided with no downloads required.

plug-in Software component providing the actual implementation for Networking APIs, or for Compute APIs,
depending on the context.

policy service Component of Identity that provides a rule-management interface and a rule-based authoriza-
tion engine.

policy-based routing (PBR) Provides a mechanism to implement packet forwarding and routing according
to the policies defined by the network administrator.

pool A logical set of devices, such as web servers, that you group together to receive and process traffic.
The load balancing function chooses which member of the pool handles the new requests or connections
received on the VIP address. Each VIP has one pool.

328 Glossary

Networking Guide (Release Version: 15.0.0)

pool member An application that runs on the back-end server in a load-balancing system.

port A virtual network port within Networking; VIFs / vNICs are connected to a port.

port UUID Unique ID for a Networking port.

preseed A tool to automate system configuration and installation on Debian-based Linux distributions.

private image An Image service VM image that is only available to specified projects.

private IP address An IP address used for management and administration, not available to the public Inter-
net.

private network The Network Controller provides virtual networks to enable compute servers to interact
with each other and with the public network. All machines must have a public and private network
interface. A private network interface can be a flat or VLAN network interface. A flat network interface
is controlled by the flat_interface with flat managers. A VLAN network interface is controlled by the
vlan_interface option with VLAN managers.

project Projects represent the base unit of “ownership” in OpenStack, in that all resources in OpenStack should
be owned by a specific project. In OpenStack Identity, a project must be owned by a specific domain.

project ID Unique ID assigned to each project by the Identity service.

project VPN Alternative term for a cloudpipe.

promiscuous mode Causes the network interface to pass all traffic it receives to the host rather than passing
only the frames addressed to it.

protected property Generally, extra properties on an Image service image to which only cloud administra-
tors have access. Limits which user roles can perform CRUD operations on that property. The cloud
administrator can configure any image property as protected.

provider An administrator who has access to all hosts and instances.

proxy node A node that provides the Object Storage proxy service.

proxy server Users of Object Storage interact with the service through the proxy server, which in turn looks
up the location of the requested data within the ring and returns the results to the user.

public API An API endpoint used for both service-to-service communication and end-user interactions.

public image An Image service VM image that is available to all projects.

public IP address An IP address that is accessible to end-users.

public key authentication Authentication method that uses keys rather than passwords.

public network The Network Controller provides virtual networks to enable compute servers to interact with
each other and with the public network. All machines must have a public and private network interface.
The public network interface is controlled by the public_interface option.

Puppet An operating system configuration-management tool supported by OpenStack.

Python Programming language used extensively in OpenStack.

Q

QEMU Copy On Write 2 (QCOW2) One of the VM image disk formats supported by Image service.

Qpid Message queue software supported by OpenStack; an alternative to RabbitMQ.

Glossary 329

Networking Guide (Release Version: 15.0.0)

Quality of Service (QoS) The ability to guarantee certain network or storage requirements to satisfy a Service
Level Agreement (SLA) between an application provider and end users. Typically includes performance
requirements like networking bandwidth, latency, jitter correction, and reliability as well as storage per-
formance in Input/Output Operations Per Second (IOPS), throttling agreements, and performance expec-
tations at peak load.

quarantine If Object Storage finds objects, containers, or accounts that are corrupt, they are placed in this
state, are not replicated, cannot be read by clients, and a correct copy is re-replicated.

Queens The code name for the seventeenth release of OpenStack. The design summit will take place in
Sydney, Australia. The release is named after the Queens Pound river in the South Coast region of New
South Wales.

Quick EMUlator (QEMU) QEMU is a generic and open source machine emulator and virtualizer. One of
the hypervisors supported by OpenStack, generally used for development purposes.

quota In Compute and Block Storage, the ability to set resource limits on a per-project basis.

R

RabbitMQ The default message queue software used by OpenStack.

Rackspace Cloud Files Released as open source by Rackspace in 2010; the basis for Object Storage.

RADOS Block Device (RBD) Ceph component that enables a Linux block device to be striped over multiple
distributed data stores.

radvd The router advertisement daemon, used by the Compute VLAN manager and FlatDHCP manager to
provide routing services for VM instances.

rally Codename for the Benchmark service.

RAM filter The Compute setting that enables or disables RAM overcommitment.

RAM overcommit The ability to start new VM instances based on the actual memory usage of a host, as
opposed to basing the decision on the amount of RAM each running instance thinks it has available.
Also known as memory overcommit.

rate limit Configurable option within Object Storage to limit database writes on a per-account and/or per-
container basis.

raw One of the VM image disk formats supported by Image service; an unstructured disk image.

rebalance The process of distributing Object Storage partitions across all drives in the ring; used during initial
ring creation and after ring reconfiguration.

reboot Either a soft or hard reboot of a server. With a soft reboot, the operating system is signaled to restart,
which enables a graceful shutdown of all processes. A hard reboot is the equivalent of power cycling
the server. The virtualization platform should ensure that the reboot action has completed successfully,
even in cases in which the underlying domain/VM is paused or halted/stopped.

rebuild Removes all data on the server and replaces it with the specified image. Server ID and IP addresses
remain the same.

Recon An Object Storage component that collects meters.

record Belongs to a particular domain and is used to specify information about the domain. There are several
types of DNS records. Each record type contains particular information used to describe the purpose of

330 Glossary

Networking Guide (Release Version: 15.0.0)

that record. Examples include mail exchange (MX) records, which specify the mail server for a particular
domain; and name server (NS) records, which specify the authoritative name servers for a domain.

record ID A number within a database that is incremented each time a change is made. Used by Object
Storage when replicating.

Red Hat Enterprise Linux (RHEL) A Linux distribution that is compatible with OpenStack.

reference architecture A recommended architecture for an OpenStack cloud.

region A discrete OpenStack environment with dedicated API endpoints that typically shares only the Identity
(keystone) with other regions.

registry Alternative term for the Image service registry.

registry server An Image service that provides VM image metadata information to clients.

Reliable, Autonomic Distributed Object Store (RADOS)

A collection of components that provides object storage within Ceph. Similar to OpenStack Object
Storage.

Remote Procedure Call (RPC) The method used by the Compute RabbitMQ for intra-service communica-
tions.

replica Provides data redundancy and fault tolerance by creating copies of Object Storage objects, accounts,
and containers so that they are not lost when the underlying storage fails.

replica count The number of replicas of the data in an Object Storage ring.

replication The process of copying data to a separate physical device for fault tolerance and performance.

replicator The Object Storage back-end process that creates and manages object replicas.

request ID Unique ID assigned to each request sent to Compute.

rescue image A special type of VM image that is booted when an instance is placed into rescue mode. Allows
an administrator to mount the file systems for an instance to correct the problem.

resize Converts an existing server to a different flavor, which scales the server up or down. The original server
is saved to enable rollback if a problem occurs. All resizes must be tested and explicitly confirmed, at
which time the original server is removed.

RESTful A kind of web service API that uses REST, or Representational State Transfer. REST is the style of
architecture for hypermedia systems that is used for the World Wide Web.

ring An entity that maps Object Storage data to partitions. A separate ring exists for each service, such as
account, object, and container.

ring builder Builds and manages rings within Object Storage, assigns partitions to devices, and pushes the
configuration to other storage nodes.

role A personality that a user assumes to perform a specific set of operations. A role includes a set of rights
and privileges. A user assuming that role inherits those rights and privileges.

Role Based Access Control (RBAC) Provides a predefined list of actions that the user can perform, such
as start or stop VMs, reset passwords, and so on. Supported in both Identity and Compute and can be
configured using the dashboard.

role ID Alphanumeric ID assigned to each Identity service role.

Glossary 331

Networking Guide (Release Version: 15.0.0)

Root Cause Analysis (RCA) service (Vitrage) OpenStack project that aims to organize, analyze and visual-
ize OpenStack alarms and events, yield insights regarding the root cause of problems and deduce their
existence before they are directly detected.

rootwrap A feature of Compute that allows the unprivileged “nova” user to run a specified list of commands
as the Linux root user.

round-robin scheduler Type of Compute scheduler that evenly distributes instances among available hosts.

router A physical or virtual network device that passes network traffic between different networks.

routing key The Compute direct exchanges, fanout exchanges, and topic exchanges use this key to determine
how to process a message; processing varies depending on exchange type.

RPC driver Modular system that allows the underlying message queue software of Compute to be changed.
For example, from RabbitMQ to ZeroMQ or Qpid.

rsync Used by Object Storage to push object replicas.

RXTX cap Absolute limit on the amount of network traffic a Compute VM instance can send and receive.

RXTX quota Soft limit on the amount of network traffic a Compute VM instance can send and receive.

S

sahara Codename for the Data Processing service.

SAML assertion Contains information about a user as provided by the identity provider. It is an indication
that a user has been authenticated.

scheduler manager A Compute component that determines where VM instances should start. Uses modular
design to support a variety of scheduler types.

scoped token An Identity service API access token that is associated with a specific project.

scrubber Checks for and deletes unused VMs; the component of Image service that implements delayed
delete.

secret key String of text known only by the user; used along with an access key to make requests to the
Compute API.

secure boot Process whereby the system firmware validates the authenticity of the code involved in the boot
process.

secure shell (SSH) Open source tool used to access remote hosts through an encrypted communications chan-
nel, SSH key injection is supported by Compute.

security group A set of network traffic filtering rules that are applied to a Compute instance.

segmented object An Object Storage large object that has been broken up into pieces. The re-assembled
object is called a concatenated object.

self-service For IaaS, ability for a regular (non-privileged) account to manage a virtual infrastructure compo-
nent such as networks without involving an administrator.

SELinux Linux kernel security module that provides the mechanism for supporting access control policies.

senlin Code name for the Clustering service.

332 Glossary

Networking Guide (Release Version: 15.0.0)

server Computer that provides explicit services to the client software running on that system, often managing
a variety of computer operations. A server is a VM instance in the Compute system. Flavor and image
are requisite elements when creating a server.

server image Alternative term for a VM image.

server UUID Unique ID assigned to each guest VM instance.

service An OpenStack service, such as Compute, Object Storage, or Image service. Provides one or more
endpoints through which users can access resources and perform operations.

service catalog Alternative term for the Identity service catalog.

Service Function Chain (SFC) For a given service, SFC is the abstracted view of the required service func-
tions and the order in which they are to be applied.

service ID Unique ID assigned to each service that is available in the Identity service catalog.

Service Level Agreement (SLA) Contractual obligations that ensure the availability of a service.

service project Special project that contains all services that are listed in the catalog.

service provider A system that provides services to other system entities. In case of federated identity, Open-
Stack Identity is the service provider.

service registration An Identity service feature that enables services, such as Compute, to automatically reg-
ister with the catalog.

service token An administrator-defined token used by Compute to communicate securely with the Identity
service.

session back end The method of storage used by horizon to track client sessions, such as local memory,
cookies, a database, or memcached.

session persistence A feature of the load-balancing service. It attempts to force subsequent connections to a
service to be redirected to the same node as long as it is online.

session storage A horizon component that stores and tracks client session information. Implemented through
the Django sessions framework.

share A remote, mountable file system in the context of the Shared File Systems service. You can mount a
share to, and access a share from, several hosts by several users at a time.

share network An entity in the context of the Shared File Systems service that encapsulates interaction with
the Networking service. If the driver you selected runs in the mode requiring such kind of interaction,
you need to specify the share network to create a share.

Shared File Systems API A Shared File Systems service that provides a stable RESTful API. The service au-
thenticates and routes requests throughout the Shared File Systems service. There is python-manilaclient
to interact with the API.

Shared File Systems service (manila) The service that provides a set of services for management of shared
file systems in a multi-project cloud environment, similar to how OpenStack provides block-based stor-
age management through the OpenStack Block Storage service project. With the Shared File Systems
service, you can create a remote file system and mount the file system on your instances. You can also
read and write data from your instances to and from your file system.

shared IP address An IP address that can be assigned to a VM instance within the shared IP group. Public IP
addresses can be shared across multiple servers for use in various high-availability scenarios. When an
IP address is shared to another server, the cloud network restrictions are modified to enable each server
to listen to and respond on that IP address. You can optionally specify that the target server network

Glossary 333

Networking Guide (Release Version: 15.0.0)

configuration be modified. Shared IP addresses can be used with many standard heartbeat facilities,
such as keepalive, that monitor for failure and manage IP failover.

shared IP group A collection of servers that can share IPs with other members of the group. Any server in a
group can share one or more public IPs with any other server in the group. With the exception of the first
server in a shared IP group, servers must be launched into shared IP groups. A server may be a member
of only one shared IP group.

shared storage Block storage that is simultaneously accessible by multiple clients, for example, NFS.

Sheepdog Distributed block storage system for QEMU, supported by OpenStack.

Simple Cloud Identity Management (SCIM) Specification for managing identity in the cloud, currently un-
supported by OpenStack.

Simple Protocol for Independent Computing Environments (SPICE) SPICE provides remote desktop ac-
cess to guest virtual machines. It is an alternative to VNC. SPICE is supported by OpenStack.

Single-root I/O Virtualization (SR-IOV) A specification that, when implemented by a physical PCIe device,
enables it to appear as multiple separate PCIe devices. This enables multiple virtualized guests to share
direct access to the physical device, offering improved performance over an equivalent virtual device.
Currently supported in OpenStack Havana and later releases.

SmokeStack Runs automated tests against the core OpenStack API; written in Rails.

snapshot A point-in-time copy of an OpenStack storage volume or image. Use storage volume snapshots to
back up volumes. Use image snapshots to back up data, or as “gold” images for additional servers.

soft reboot A controlled reboot where a VM instance is properly restarted through operating system com-
mands.

Software Development Lifecycle Automation service (solum) OpenStack project that aims to make cloud
services easier to consume and integrate with application development process by automating the source-
to-image process, and simplifying app-centric deployment.

Software-defined networking (SDN) Provides an approach for network administrators to manage computer
network services through abstraction of lower-level functionality.

SolidFire Volume Driver The Block Storage driver for the SolidFire iSCSI storage appliance.

solum Code name for the Software Development Lifecycle Automation service.

spread-first scheduler The Compute VM scheduling algorithm that attempts to start a new VM on the host
with the least amount of load.

SQLAlchemy An open source SQL toolkit for Python, used in OpenStack.

SQLite A lightweight SQL database, used as the default persistent storage method in many OpenStack ser-
vices.

stack A set of OpenStack resources created and managed by the Orchestration service according to a given
template (either an AWS CloudFormation template or a Heat Orchestration Template (HOT)).

StackTach Community project that captures Compute AMQP communications; useful for debugging.

static IP address Alternative term for a fixed IP address.

StaticWeb WSGI middleware component of Object Storage that serves container data as a static web page.

storage back end The method that a service uses for persistent storage, such as iSCSI, NFS, or local disk.

334 Glossary

Networking Guide (Release Version: 15.0.0)

storage manager A XenAPI component that provides a pluggable interface to support a wide variety of per-
sistent storage back ends.

storage manager back end A persistent storage method supported by XenAPI, such as iSCSI or NFS.

storage node An Object Storage node that provides container services, account services, and object services;
controls the account databases, container databases, and object storage.

storage services Collective name for the Object Storage object services, container services, and account ser-
vices.

strategy Specifies the authentication source used by Image service or Identity. In the Database service, it
refers to the extensions implemented for a data store.

subdomain A domain within a parent domain. Subdomains cannot be registered. Subdomains enable you to
delegate domains. Subdomains can themselves have subdomains, so third-level, fourth-level, fifth-level,
and deeper levels of nesting are possible.

subnet Logical subdivision of an IP network.

SUSE Linux Enterprise Server (SLES) A Linux distribution that is compatible with OpenStack.

suspend Alternative term for a paused VM instance.

swap Disk-based virtual memory used by operating systems to provide more memory than is actually available
on the system.

swauth An authentication and authorization service for Object Storage, implemented through WSGI middle-
ware; uses Object Storage itself as the persistent backing store.

swift Codename for OpenStack Object Storage service.

swift All in One (SAIO) Creates a full Object Storage development environment within a single VM.

swift middleware Collective term for Object Storage components that provide additional functionality.

swift proxy server Acts as the gatekeeper to Object Storage and is responsible for authenticating the user.

swift storage node A node that runs Object Storage account, container, and object services.

sync point Point in time since the last container and accounts database sync among nodes within Object
Storage.

sysadmin One of the default roles in the Compute RBAC system. Enables a user to add other users to a
project, interact with VM images that are associated with the project, and start and stop VM instances.

system usage A Compute component that, along with the notification system, collects meters and usage in-
formation. This information can be used for billing.

T

tacker Code name for the NFV Orchestration service

Telemetry service (telemetry) The OpenStack project which collects measurements of the utilization of the
physical and virtual resources comprising deployed clouds, persists this data for subsequent retrieval and
analysis, and triggers actions when defined criteria are met.

TempAuth An authentication facility within Object Storage that enables Object Storage itself to perform
authentication and authorization. Frequently used in testing and development.

Tempest Automated software test suite designed to run against the trunk of the OpenStack core project.

Glossary 335

Networking Guide (Release Version: 15.0.0)

TempURL An Object Storage middleware component that enables creation of URLs for temporary object
access.

tenant A group of users; used to isolate access to Compute resources. An alternative term for a project.

Tenant API An API that is accessible to projects.

tenant endpoint An Identity service API endpoint that is associated with one or more projects.

tenant ID An alternative term for project ID.

token An alpha-numeric string of text used to access OpenStack APIs and resources.

token services An Identity service component that manages and validates tokens after a user or project has
been authenticated.

tombstone Used to mark Object Storage objects that have been deleted; ensures that the object is not updated
on another node after it has been deleted.

topic publisher A process that is created when a RPC call is executed; used to push the message to the topic
exchange.

Torpedo Community project used to run automated tests against the OpenStack API.

transaction ID Unique ID assigned to each Object Storage request; used for debugging and tracing.

transient Alternative term for non-durable.

transient exchange Alternative term for a non-durable exchange.

transient message A message that is stored in memory and is lost after the server is restarted.

transient queue Alternative term for a non-durable queue.

TripleO OpenStack-on-OpenStack program. The code name for the OpenStack Deployment program.

trove Codename for OpenStack Database service.

trusted platform module (TPM) Specialized microprocessor for incorporating cryptographic keys into de-
vices for authenticating and securing a hardware platform.

U

Ubuntu A Debian-based Linux distribution.

unscoped token Alternative term for an Identity service default token.

updater Collective term for a group of Object Storage components that processes queued and failed updates
for containers and objects.

user In OpenStack Identity, entities represent individual API consumers and are owned by a specific domain.
In OpenStack Compute, a user can be associated with roles, projects, or both.

user data A blob of data that the user can specify when they launch an instance. The instance can access this
data through the metadata service or config drive. Commonly used to pass a shell script that the instance
runs on boot.

User Mode Linux (UML) An OpenStack-supported hypervisor.

336 Glossary

Networking Guide (Release Version: 15.0.0)

V

VIF UUID Unique ID assigned to each Networking VIF.

Virtual Central Processing Unit (vCPU) Subdivides physical CPUs. Instances can then use those divisions.

Virtual Disk Image (VDI) One of the VM image disk formats supported by Image service.

Virtual Extensible LAN (VXLAN) A network virtualization technology that attempts to reduce the scalabil-
ity problems associated with large cloud computing deployments. It uses a VLAN-like encapsulation
technique to encapsulate Ethernet frames within UDP packets.

Virtual Hard Disk (VHD) One of the VM image disk formats supported by Image service.

virtual IP address (VIP) An Internet Protocol (IP) address configured on the load balancer for use by clients
connecting to a service that is load balanced. Incoming connections are distributed to back-end nodes
based on the configuration of the load balancer.

virtual machine (VM) An operating system instance that runs on top of a hypervisor. Multiple VMs can run
at the same time on the same physical host.

virtual network An L2 network segment within Networking.

Virtual Network Computing (VNC) Open source GUI and CLI tools used for remote console access to VMs.
Supported by Compute.

Virtual Network InterFace (VIF) An interface that is plugged into a port in a Networking network. Typically
a virtual network interface belonging to a VM.

virtual networking A generic term for virtualization of network functions such as switching, routing, load
balancing, and security using a combination of VMs and overlays on physical network infrastructure.

virtual port Attachment point where a virtual interface connects to a virtual network.

virtual private network (VPN) Provided by Compute in the form of cloudpipes, specialized instances that
are used to create VPNs on a per-project basis.

virtual server Alternative term for a VM or guest.

virtual switch (vSwitch) Software that runs on a host or node and provides the features and functions of a
hardware-based network switch.

virtual VLAN Alternative term for a virtual network.

VirtualBox An OpenStack-supported hypervisor.

Vitrage Code name for the Root Cause Analysis service.

VLAN manager ACompute component that provides dnsmasq and radvd and sets up forwarding to and from
cloudpipe instances.

VLAN network The Network Controller provides virtual networks to enable compute servers to interact with
each other and with the public network. All machines must have a public and private network interface.
A VLAN network is a private network interface, which is controlled by the vlan_interface option
with VLAN managers.

VM disk (VMDK) One of the VM image disk formats supported by Image service.

VM image Alternative term for an image.

VM Remote Control (VMRC) Method to access VM instance consoles using a web browser. Supported by
Compute.

Glossary 337

Networking Guide (Release Version: 15.0.0)

VMware API Supports interaction with VMware products in Compute.

VMware NSX Neutron plug-in Provides support for VMware NSX in Neutron.

VNC proxy A Compute component that provides users access to the consoles of their VM instances through
VNC or VMRC.

volume Disk-based data storage generally represented as an iSCSI target with a file system that supports
extended attributes; can be persistent or ephemeral.

Volume API Alternative name for the Block Storage API.

volume controller A Block Storage component that oversees and coordinates storage volume actions.

volume driver Alternative term for a volume plug-in.

volume ID Unique ID applied to each storage volume under the Block Storage control.

volume manager A Block Storage component that creates, attaches, and detaches persistent storage volumes.

volume node A Block Storage node that runs the cinder-volume daemon.

volume plug-in Provides support for new and specialized types of back-end storage for the Block Storage
volume manager.

volume worker A cinder component that interacts with back-end storage to manage the creation and deletion
of volumes and the creation of compute volumes, provided by the cinder-volume daemon.

vSphere An OpenStack-supported hypervisor.

W

Watcher Code name for the Infrastructure Optimization service.

weight Used by Object Storage devices to determine which storage devices are suitable for the job. Devices
are weighted by size.

weighted cost The sum of each cost used when deciding where to start a new VM instance in Compute.

weighting A Compute process that determines the suitability of the VM instances for a job for a particular
host. For example, not enough RAM on the host, too many CPUs on the host, and so on.

worker A daemon that listens to a queue and carries out tasks in response to messages. For example, the
cinder-volume worker manages volume creation and deletion on storage arrays.

Workflow service (mistral) The OpenStack service that provides a simple YAML-based language to write
workflows (tasks and transition rules) and a service that allows to upload them, modify, run them at scale
and in a highly available manner, manage and monitor workflow execution state and state of individual
tasks.

X

X.509 X.509 is themost widely used standard for defining digital certificates. It is a data structure that contains
the subject (entity) identifiable information such as its name along with its public key. The certificate can
contain a few other attributes as well depending upon the version. The most recent and standard version
of X.509 is v3.

Xen Xen is a hypervisor using amicrokernel design, providing services that allowmultiple computer operating
systems to execute on the same computer hardware concurrently.

338 Glossary

Networking Guide (Release Version: 15.0.0)

Xen API The Xen administrative API, which is supported by Compute.

Xen Cloud Platform (XCP) An OpenStack-supported hypervisor.

Xen Storage Manager Volume Driver A Block Storage volume plug-in that enables communication with
the Xen Storage Manager API.

XenServer An OpenStack-supported hypervisor.

XFS High-performance 64-bit file system created by Silicon Graphics. Excels in parallel I/O operations and
data consistency.

Z

zaqar Codename for theMessage service.

ZeroMQ Message queue software supported by OpenStack. An alternative to RabbitMQ. Also spelled 0MQ.

Zuul Tool used in OpenStack development to ensure correctly ordered testing of changes in parallel.

Glossary 339

INDEX

Symbols
6to4, 305

A
absolute limit, 305
access control list (ACL), 305
access key, 305
account, 305
account auditor, 305
account database, 305
account reaper, 305
account server, 305
account service, 305
accounting, 305
Active Directory, 305
active/active configuration, 305
active/passive configuration, 305
address pool, 306
Address Resolution Protocol (ARP), 306
admin API, 306
admin server, 306
administrator, 306
Advanced Message Queuing Protocol (AMQP), 306
Advanced RISC Machine (ARM), 306
alert, 306
allocate, 306
Amazon Kernel Image (AKI), 306
Amazon Machine Image (AMI), 306
Amazon Ramdisk Image (ARI), 306
Anvil, 306
aodh, 306
Apache, 306
Apache License 2.0, 306
Apache Web Server, 306
API endpoint, 306
API extension, 306
API extension plug-in, 306
API key, 306
API server, 306
API token, 306
API version, 306

applet, 306
Application Catalog service (murano), 307
Application Programming Interface (API), 307
application server, 307
Application Service Provider (ASP), 307
arptables, 307
associate, 307
Asynchronous JavaScript and XML (AJAX), 307
ATA over Ethernet (AoE), 307
attach, 307
attachment (network), 307
auditing, 307
auditor, 307
Austin, 307
auth node, 307
authentication, 307
authentication token, 307
AuthN, 307
authorization, 307
authorization node, 307
AuthZ, 307
Auto ACK, 307
auto declare, 307
availability zone, 307
AWS CloudFormation template, 308

B
back end, 308
back-end catalog, 308
back-end store, 308
Backup, Restore, and Disaster Recovery service

(freezer), 308
bandwidth, 308
barbican, 308
bare, 308
Bare Metal service (ironic), 308
base image, 308
Bell-LaPadula model, 308
Benchmark service (rally), 308
Bexar, 308
binary, 308

340

Networking Guide (Release Version: 15.0.0)

bit, 308
bits per second (BPS), 308
block device, 308
block migration, 308
Block Storage API, 309
Block Storage service (cinder), 309
BMC (Baseboard Management Controller), 309
bootable disk image, 309
Bootstrap Protocol (BOOTP), 309
Border Gateway Protocol (BGP), 309
browser, 309
builder file, 309
bursting, 309
button class, 309
byte, 309

C
cache pruner, 309
Cactus, 309
CALL, 309
capability, 309
capacity cache, 309
capacity updater, 309
CAST, 309
catalog, 309
catalog service, 310
ceilometer, 310
cell, 310
cell forwarding, 310
cell manager, 310
CentOS, 310
Ceph, 310
CephFS, 310
certificate authority (CA), 310
Challenge-Handshake Authentication Protocol

(CHAP), 310
chance scheduler, 310
changes since, 310
Chef, 310
child cell, 310
cinder, 310
CirrOS, 310
Cisco neutron plug-in, 310
cloud architect, 310
Cloud Auditing Data Federation (CADF), 310
cloud computing, 310
cloud controller, 310
cloud controller node, 311
Cloud Data Management Interface (CDMI), 311
Cloud Infrastructure Management Interface (CIMI),

311

cloud-init, 311
cloudadmin, 311
Cloudbase-Init, 311
cloudpipe, 311
cloudpipe image, 311
Clustering service (senlin), 311
command filter, 311
Common Internet File System (CIFS), 311
Common Libraries (oslo), 311
community project, 311
compression, 311
Compute API (Nova API), 311
compute controller, 311
compute host, 311
compute node, 311
Compute service (nova), 311
compute worker, 311
concatenated object, 311
conductor, 312
congress, 312
consistency window, 312
console log, 312
container, 312
container auditor, 312
container database, 312
container format, 312
Container Infrastructure Management service (mag-

num), 312
container server, 312
container service, 312
content delivery network (CDN), 312
controller node, 312
core API, 312
core service, 312
cost, 312
credentials, 312
CRL, 312
Cross-Origin Resource Sharing (CORS), 312
Crowbar, 312
current workload, 312
customer, 313
customization module, 313

D
daemon, 313
Dashboard (horizon), 313
data encryption, 313
Data loss prevention (DLP) software, 313
Data Processing service (sahara), 313
data store, 313
database ID, 313

Index 341

Networking Guide (Release Version: 15.0.0)

database replicator, 313
Database service (trove), 313
deallocate, 313
Debian, 313
deduplication, 313
default panel, 313
default project, 313
default token, 313
delayed delete, 313
delivery mode, 313
denial of service (DoS), 313
deprecated auth, 313
designate, 314
Desktop-as-a-Service, 314
developer, 314
device ID, 314
device weight, 314
DevStack, 314
DHCP agent, 314
Diablo, 314
direct consumer, 314
direct exchange, 314
direct publisher, 314
disassociate, 314
Discretionary Access Control (DAC), 314
disk encryption, 314
disk format, 314
dispersion, 314
distributed virtual router (DVR), 314
Django, 314
DNS record, 314
DNS service (designate), 314
dnsmasq, 314
domain, 314
Domain Name System (DNS), 315
download, 315
durable exchange, 315
durable queue, 315
Dynamic Host Configuration Protocol (DHCP), 315
Dynamic HyperText Markup Language (DHTML),

315

E
east-west traffic, 315
EBS boot volume, 315
ebtables, 315
EC2, 315
EC2 access key, 315
EC2 API, 315
EC2 Compatibility API, 315
EC2 secret key, 315

Elastic Block Storage (EBS), 315
encapsulation, 315
encryption, 315
endpoint, 315
endpoint registry, 316
endpoint template, 316
entity, 316
ephemeral image, 316
ephemeral volume, 316
Essex, 316
ESXi, 316
ETag, 316
euca2ools, 316
Eucalyptus Kernel Image (EKI), 316
Eucalyptus Machine Image (EMI), 316
Eucalyptus Ramdisk Image (ERI), 316
evacuate, 316
exchange, 316
exchange type, 316
exclusive queue, 316
extended attributes (xattr), 316
extension, 316
external network, 316
extra specs, 316

F
FakeLDAP, 316
fan-out exchange, 316
federated identity, 317
Fedora, 317
Fibre Channel, 317
Fibre Channel over Ethernet (FCoE), 317
fill-first scheduler, 317
filter, 317
firewall, 317
FireWall-as-a-Service (FWaaS), 317
fixed IP address, 317
Flat Manager, 317
flat mode injection, 317
flat network, 317
FlatDHCP Manager, 317
flavor, 317
flavor ID, 317
floating IP address, 317
Folsom, 317
FormPost, 317
freezer, 317
front end, 317

G
gateway, 317
generic receive offload (GRO), 318

342 Index

Networking Guide (Release Version: 15.0.0)

generic routing encapsulation (GRE), 318
glance, 318
glance API server, 318
glance registry, 318
global endpoint template, 318
GlusterFS, 318
gnocchi, 318
golden image, 318
Governance service (congress), 318
Graphic Interchange Format (GIF), 318
Graphics Processing Unit (GPU), 318
Green Threads, 318
Grizzly, 318
Group, 318
guest OS, 318

H
Hadoop, 318
Hadoop Distributed File System (HDFS), 318
handover, 318
HAProxy, 318
hard reboot, 318
Havana, 318
health monitor, 319
heat, 319
Heat Orchestration Template (HOT), 319
high availability (HA), 319
horizon, 319
horizon plug-in, 319
host, 319
host aggregate, 319
Host Bus Adapter (HBA), 319
hybrid cloud, 319
Hyper-V, 319
hyperlink, 319
Hypertext Transfer Protocol (HTTP), 319
Hypertext Transfer Protocol Secure (HTTPS), 319
hypervisor, 319
hypervisor pool, 319

I
Icehouse, 319
ID number, 319
Identity API, 319
Identity back end, 320
identity provider, 320
Identity service (keystone), 320
Identity service API, 320
IETF, 320
image, 320
Image API, 320
image cache, 320

image ID, 320
image membership, 320
image owner, 320
image registry, 320
Image service (glance), 320
image status, 320
image store, 320
image UUID, 320
incubated project, 320
Infrastructure Optimization service (watcher), 320
Infrastructure-as-a-Service (IaaS), 320
ingress filtering, 320
INI format, 321
injection, 321
Input/Output Operations Per Second (IOPS), 321
instance, 321
instance ID, 321
instance state, 321
instance tunnels network, 321
instance type, 321
instance type ID, 321
instance UUID, 321
Intelligent Platform Management Interface (IPMI),

321
interface, 321
interface ID, 321
Internet Control Message Protocol (ICMP), 321
Internet protocol (IP), 321
Internet Service Provider (ISP), 321
Internet Small Computer System Interface (iSCSI),

321
IP address, 321
IP Address Management (IPAM), 321
ip6tables, 321
ipset, 321
iptables, 321
ironic, 322
iSCSI Qualified Name (IQN), 322
ISO9660, 322
itsec, 322

J
Java, 322
JavaScript, 322
JavaScript Object Notation (JSON), 322
jumbo frame, 322
Juno, 322

K
Kerberos, 322
kernel-based VM (KVM), 322
Key Manager service (barbican), 322

Index 343

Networking Guide (Release Version: 15.0.0)

keystone, 322
Kickstart, 322
Kilo, 322

L
large object, 322
Launchpad, 323
Layer-2 (L2) agent, 323
Layer-2 network, 323
Layer-3 (L3) agent, 323
Layer-3 network, 323
Liberty, 323
libvirt, 323
Lightweight Directory Access Protocol (LDAP), 323
Linux, 323
Linux bridge, 323
Linux Bridge neutron plug-in, 323
Linux containers (LXC), 323
live migration, 323
load balancer, 323
load balancing, 323
Load-Balancer-as-a-Service (LBaaS), 323
Load-balancing service (octavia), 323
Logical Volume Manager (LVM), 323

M
magnum, 323
management API, 323
management network, 323
manager, 323
manifest, 323
manifest object, 324
manila, 324
manila-share, 324
maximum transmission unit (MTU), 324
mechanism driver, 324
melange, 324
membership, 324
membership list, 324
memcached, 324
memory overcommit, 324
message broker, 324
message bus, 324
message queue, 324
Message service (zaqar), 324
Meta-Data Server (MDS), 324
Metadata agent, 324
migration, 324
mistral, 324
Mitaka, 324
Modular Layer 2 (ML2) neutron plug-in, 324
monasca, 324

Monitor (LBaaS), 324
Monitor (Mon), 324
Monitoring (monasca), 324
multi-factor authentication, 325
multi-host, 325
multinic, 325
murano, 325

N
Nebula, 325
netadmin, 325
NetApp volume driver, 325
network, 325
Network Address Translation (NAT), 325
network controller, 325
Network File System (NFS), 325
network ID, 325
network manager, 325
network namespace, 325
network node, 325
network segment, 325
Network Service Header (NSH), 325
Network Time Protocol (NTP), 325
network UUID, 325
network worker, 325
Networking API (Neutron API), 326
Networking service (neutron), 326
neutron, 326
neutron API, 326
neutron manager, 326
neutron plug-in, 326
Newton, 326
Nexenta volume driver, 326
NFV Orchestration Service (tacker), 326
Nginx, 326
No ACK, 326
node, 326
non-durable exchange, 326
non-durable queue, 326
non-persistent volume, 326
north-south traffic, 326
nova, 326
Nova API, 326
nova-network, 326

O
object, 326
object auditor, 326
object expiration, 326
object hash, 327
object path hash, 327
object replicator, 327

344 Index

Networking Guide (Release Version: 15.0.0)

object server, 327
Object Storage API, 327
Object Storage Device (OSD), 327
Object Storage service (swift), 327
object versioning, 327
Ocata, 327
Octavia, 327
Oldie, 327
Open Cloud Computing Interface (OCCI), 327
Open Virtualization Format (OVF), 327
Open vSwitch, 327
Open vSwitch (OVS) agent, 327
Open vSwitch neutron plug-in, 327
OpenLDAP, 327
OpenStack, 327
OpenStack code name, 327
openSUSE, 327
operator, 327
optional service, 327
Orchestration service (heat), 328
orphan, 328
Oslo, 328

P
panko, 328
parent cell, 328
partition, 328
partition index, 328
partition shift value, 328
path MTU discovery (PMTUD), 328
pause, 328
PCI passthrough, 328
persistent message, 328
persistent volume, 328
personality file, 328
Pike, 328
Platform-as-a-Service (PaaS), 328
plug-in, 328
policy service, 328
policy-based routing (PBR), 328
pool, 328
pool member, 329
port, 329
port UUID, 329
preseed, 329
private image, 329
private IP address, 329
private network, 329
project, 329
project ID, 329
project VPN, 329

promiscuous mode, 329
protected property, 329
provider, 329
proxy node, 329
proxy server, 329
public API, 329
public image, 329
public IP address, 329
public key authentication, 329
public network, 329
Puppet, 329
Python, 329

Q
QEMU Copy On Write 2 (QCOW2), 329
Qpid, 329
Quality of Service (QoS), 330
quarantine, 330
Queens, 330
Quick EMUlator (QEMU), 330
quota, 330

R
RabbitMQ, 330
Rackspace Cloud Files, 330
RADOS Block Device (RBD), 330
radvd, 330
rally, 330
RAM filter, 330
RAM overcommit, 330
rate limit, 330
raw, 330
rebalance, 330
reboot, 330
rebuild, 330
Recon, 330
record, 330
record ID, 331
Red Hat Enterprise Linux (RHEL), 331
reference architecture, 331
region, 331
registry, 331
registry server, 331
Reliable, Autonomic Distributed Object Store, 331
Remote Procedure Call (RPC), 331
replica, 331
replica count, 331
replication, 331
replicator, 331
request ID, 331
rescue image, 331
resize, 331

Index 345

Networking Guide (Release Version: 15.0.0)

RESTful, 331
ring, 331
ring builder, 331
role, 331
Role Based Access Control (RBAC), 331
role ID, 331
Root Cause Analysis (RCA) service (Vitrage), 332
rootwrap, 332
round-robin scheduler, 332
router, 332
routing key, 332
RPC driver, 332
rsync, 332
RXTX cap, 332
RXTX quota, 332

S
sahara, 332
SAML assertion, 332
scheduler manager, 332
scoped token, 332
scrubber, 332
secret key, 332
secure boot, 332
secure shell (SSH), 332
security group, 332
segmented object, 332
self-service, 332
SELinux, 332
senlin, 332
server, 333
server image, 333
server UUID, 333
service, 333
service catalog, 333
Service Function Chain (SFC), 333
service ID, 333
Service Level Agreement (SLA), 333
service project, 333
service provider, 333
service registration, 333
service token, 333
session back end, 333
session persistence, 333
session storage, 333
share, 333
share network, 333
Shared File Systems API, 333
Shared File Systems service (manila), 333
shared IP address, 333
shared IP group, 334

shared storage, 334
Sheepdog, 334
Simple Cloud Identity Management (SCIM), 334
Simple Protocol for Independent Computing Environ-

ments (SPICE), 334
Single-root I/O Virtualization (SR-IOV), 334
SmokeStack, 334
snapshot, 334
soft reboot, 334
Software Development Lifecycle Automation service

(solum), 334
Software-defined networking (SDN), 334
SolidFire Volume Driver, 334
solum, 334
spread-first scheduler, 334
SQLAlchemy, 334
SQLite, 334
stack, 334
StackTach, 334
static IP address, 334
StaticWeb, 334
storage back end, 334
storage manager, 335
storage manager back end, 335
storage node, 335
storage services, 335
strategy, 335
subdomain, 335
subnet, 335
SUSE Linux Enterprise Server (SLES), 335
suspend, 335
swap, 335
swauth, 335
swift, 335
swift All in One (SAIO), 335
swift middleware, 335
swift proxy server, 335
swift storage node, 335
sync point, 335
sysadmin, 335
system usage, 335

T
tacker, 335
Telemetry service (telemetry), 335
TempAuth, 335
Tempest, 335
TempURL, 336
tenant, 336
Tenant API, 336
tenant endpoint, 336

346 Index

Networking Guide (Release Version: 15.0.0)

tenant ID, 336
token, 336
token services, 336
tombstone, 336
topic publisher, 336
Torpedo, 336
transaction ID, 336
transient, 336
transient exchange, 336
transient message, 336
transient queue, 336
TripleO, 336
trove, 336
trusted platform module (TPM), 336

U
Ubuntu, 336
unscoped token, 336
updater, 336
user, 336
user data, 336
User Mode Linux (UML), 336

V
VIF UUID, 337
Virtual Central Processing Unit (vCPU), 337
Virtual Disk Image (VDI), 337
Virtual Extensible LAN (VXLAN), 337
Virtual Hard Disk (VHD), 337
virtual IP address (VIP), 337
virtual machine (VM), 337
virtual network, 337
Virtual Network Computing (VNC), 337
Virtual Network InterFace (VIF), 337
virtual networking, 337
virtual port, 337
virtual private network (VPN), 337
virtual server, 337
virtual switch (vSwitch), 337
virtual VLAN, 337
VirtualBox, 337
Vitrage, 337
VLAN manager, 337
VLAN network, 337
VM disk (VMDK), 337
VM image, 337
VM Remote Control (VMRC), 337
VMware API, 338
VMware NSX Neutron plug-in, 338
VNC proxy, 338
volume, 338
Volume API, 338

volume controller, 338
volume driver, 338
volume ID, 338
volume manager, 338
volume node, 338
volume plug-in, 338
volume worker, 338
vSphere, 338

W
Watcher, 338
weight, 338
weighted cost, 338
weighting, 338
worker, 338
Workflow service (mistral), 338

X
X.509, 338
Xen, 338
Xen API, 339
Xen Cloud Platform (XCP), 339
Xen Storage Manager Volume Driver, 339
XenServer, 339
XFS, 339

Z
zaqar, 339
ZeroMQ, 339
Zuul, 339

Index 347

	Abstract
	Contents
	Conventions
	Introduction
	Configuration
	Deployment examples
	Operations
	Migration
	Miscellaneous

	Appendix
	Community support

	Glossary
	Glossary

	Index

