
OpenStack-Ansible Documentation

OpenStack-Ansible Contributors

Jan 05, 2024

CONTENTS

1 Abstract 1

Python Module Index 215

Index 217

i

ii

CHAPTER

ONE

ABSTRACT

OpenStack-Ansible provides Ansible playbooks and roles for the deployment and configuration of an OpenStack
environment.

OpenStack-Ansible Train series was first released with the 20.0.0 tag on 16 December 2019.

Warning: This release has reached its End Of Life.

1.1 Operations Guide

This guide provides information about operating your OpenStack-Ansible deployment.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for step-by-step
instructions on how to deploy the OpenStack packages and dependencies on your cloud using OpenStack-Ansible.

For user guides, see the User Guide.

For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

This guide ranges from first operations to verify your deployment, to the major upgrades procedures.

1.1.1 Verify OpenStack-Ansible Cloud

This chapter is intended to document basic OpenStack operations to verify your OpenStack-Ansible deployment.

It explains how CLIs can be used as an admin and a user, to ensure the well-behavior of your cloud.

Check your OpenStack-Ansible cloud

This chapter goes through the verification steps for a basic operation of the OpenStack API and dashboard, as an
administrator.

Note: The utility container provides a CLI environment for additional configuration and testing.

1. Access the utility container:

$ lxc-attach -n `lxc-ls -1 | grep utility | head -n 1`

1

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://docs.openstack.org/openstack-ansible/train/user/index.html
https://docs.openstack.org/openstack-ansible/train/contributor/index.html
https://docs.openstack.org/openstack-ansible/train/reference/index.html

OpenStack-Ansible Documentation

2. Source the admin tenant credentials:

$. ~/openrc

3. Run an OpenStack command that uses one or more APIs. For example:

$ openstack user list --domain default
+----------------------------------+--------------------+
| ID | Name |
+----------------------------------+--------------------+
04007b990d9442b59009b98a828aa981	glance
0ccf5f2020ca4820847e109edd46e324	keystone
1dc5f638d4d840c690c23d5ea83c3429	neutron
3073d0fa5ced46f098215d3edb235d00	cinder
5f3839ee1f044eba921a7e8a23bb212d	admin
61bc8ee7cc9b4530bb18acb740ee752a	stack_domain_admin
77b604b67b79447eac95969aafc81339	alt_demo
85c5bf07393744dbb034fab788d7973f	nova
a86fc12ade404a838e3b08e1c9db376f	swift
bbac48963eff4ac79314c42fc3d7f1df	ceilometer
c3c9858cbaac4db9914e3695b1825e41	dispersion
cd85ca889c9e480d8ac458f188f16034	demo
efab6dc30c96480b971b3bd5768107ab	heat
+----------------------------------+--------------------+

4. With a web browser, access the Dashboard using the external load balancer IP address. This
is defined by the external_lb_vip_address option in the /etc/openstack_deploy/
openstack_user_config.yml file. The dashboard uses HTTPS on port 443.

5. Authenticate using the username admin and password defined by the keystone_auth_admin_password
option in the /etc/openstack_deploy/user_secrets.yml file.

6. Run an OpenStack command to reveal all endpoints from your deployment. For example:

$ openstack endpoint list
+----------------+-----------+--------------+----------------+---------+----------
↪→-+---+
| ID | Region | Service Name | Service Type | Enabled |
↪→Interface | URL |
+----------------+-----------+--------------+----------------+---------+----------
↪→-+---+
| [ID truncated] | RegionOne | cinderv2 | volumev2 | True | admin
↪→ | http://172.29.236.100:8776/v2/%(project_id)s |
| [ID truncated] | RegionOne | cinder | volume | True | public
↪→ | https://10.23.100.127:8776/v1/%(project_id)s |
| [ID truncated] | RegionOne | aodh | alarming | True | internal
↪→ | http://172.29.236.100:8042 |
| [ID truncated] | RegionOne | glance | image | True | public
↪→ | https://10.23.100.127:9292 |
| [ID truncated] | RegionOne | cinderv2 | volumev2 | True | internal
↪→ | http://172.29.236.100:8776/v2/%(project_id)s |
| [ID truncated] | RegionOne | heat-cfn | cloudformation | True | admin
↪→ | http://172.29.236.100:8000/v1 |
| [ID truncated] | RegionOne | neutron | network | True | admin
↪→ | http://172.29.236.100:9696 |
| [ID truncated] | RegionOne | aodh | alarming | True | public
↪→ | https://10.23.100.127:8042 |
| [ID truncated] | RegionOne | nova | compute | True | admin
↪→ | http://172.29.236.100:8774/v2.1/%(project_id)s |

(continues on next page)

2 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

| [ID truncated] | RegionOne | heat-cfn | cloudformation | True | internal
↪→ | http://172.29.236.100:8000/v1 |
| [ID truncated] | RegionOne | swift | object-store | True | public
↪→ | https://10.23.100.127:8080/v1/AUTH_%(project_id)s |
| [ID truncated] | RegionOne | designate | dns | True | admin
↪→ | http://172.29.236.100:9001 |
| [ID truncated] | RegionOne | cinderv2 | volumev2 | True | public
↪→ | https://10.23.100.127:8776/v2/%(project_id)s |
| [ID truncated] | RegionOne | keystone | identity | True | admin
↪→ | http://172.29.236.100:5000/v3 |
| [ID truncated] | RegionOne | ceilometer | metering | True | admin
↪→ | http://172.29.236.100:8777/ |
| [ID truncated] | RegionOne | nova | compute | True | public
↪→ | https://10.23.100.127:8774/v2.1/%(project_id)s |
| [ID truncated] | RegionOne | keystone | identity | True | internal
↪→ | http://172.29.236.100:5000/v3 |
| [ID truncated] | RegionOne | nova | compute | True | internal
↪→ | http://172.29.236.100:8774/v2.1/%(project_id)s |
| [ID truncated] | RegionOne | gnocchi | metric | True | public
↪→ | https://10.23.100.127:8041 |
| [ID truncated] | RegionOne | neutron | network | True | internal
↪→ | http://172.29.236.100:9696 |
| [ID truncated] | RegionOne | aodh | alarming | True | admin
↪→ | http://172.29.236.100:8042 |
| [ID truncated] | RegionOne | heat | orchestration | True | admin
↪→ | http://172.29.236.100:8004/v1/%(project_id)s |
| [ID truncated] | RegionOne | glance | image | True | internal
↪→ | http://172.29.236.100:9292 |
| [ID truncated] | RegionOne | designate | dns | True | internal
↪→ | http://172.29.236.100:9001 |
| [ID truncated] | RegionOne | cinder | volume | True | internal
↪→ | http://172.29.236.100:8776/v1/%(project_id)s |
| [ID truncated] | RegionOne | heat-cfn | cloudformation | True | public
↪→ | https://10.23.100.127:8000/v1 |
| [ID truncated] | RegionOne | ceilometer | metering | True | public
↪→ | https://10.23.100.127:8777 |
| [ID truncated] | RegionOne | designate | dns | True | public
↪→ | http://10.23.100.127:9001 |
| [ID truncated] | RegionOne | swift | object-store | True | admin
↪→ | http://172.29.236.100:8080/v1/AUTH_%(project_id)s |
| [ID truncated] | RegionOne | heat | orchestration | True | internal
↪→ | http://172.29.236.100:8004/v1/%(project_id)s |
| [ID truncated] | RegionOne | ceilometer | metering | True | internal
↪→ | http://172.29.236.100:8777 |
| [ID truncated] | RegionOne | cinder | volume | True | admin
↪→ | http://172.29.236.100:8776/v1/%(project_id)s |
| [ID truncated] | RegionOne | swift | object-store | True | internal
↪→ | http://172.29.236.100:8080/v1/AUTH_%(project_id)s |
| [ID truncated] | RegionOne | neutron | network | True | public
↪→ | https://10.23.100.127:9696 |
| [ID truncated] | RegionOne | heat | orchestration | True | public
↪→ | https://10.23.100.127:8004/v1/%(project_id)s |
| [ID truncated] | RegionOne | gnocchi | metric | True | admin
↪→ | http://172.29.236.100:8041 |
| [ID truncated] | RegionOne | gnocchi | metric | True | internal
↪→ | http://172.29.236.100:8041 |
| [ID truncated] | RegionOne | keystone | identity | True | public
↪→ | https://10.23.100.127:5000/v3 | (continues on next page)

1.1. Operations Guide 3

OpenStack-Ansible Documentation

(continued from previous page)

| [ID truncated] | RegionOne | glance | image | True | admin
↪→ | http://172.29.236.100:9292 |
+----------------+-----------+--------------+----------------+---------+----------
↪→-+---+

7. Run an OpenStack command to ensure all the compute services are working (the output depends on your con-
figuration) For example:

$ openstack compute service list
+----+------------------+--+----------+-----
↪→----+-------+----------------------------+
| ID | Binary | Host | Zone |
↪→Status | State | Updated At |
+----+------------------+--+----------+-----
↪→----+-------+----------------------------+
| 1 | nova-conductor | aio1-nova-conductor-container-5482ff27 | internal |
↪→enabled | up | 2018-02-14T15:34:42.000000 |
| 2 | nova-scheduler | aio1-nova-scheduler-container-0b594e89 | internal |
↪→enabled | up | 2018-02-14T15:34:47.000000 |
| 5 | nova-consoleauth | aio1-nova-console-container-835ca240 | internal |
↪→enabled | up | 2018-02-14T15:34:47.000000 |
| 6 | nova-compute | ubuntu-bionic | nova |
↪→enabled | up | 2018-02-14T15:34:42.000000 |
+----+------------------+--+----------+-----
↪→----+-------+----------------------------+

8. Run an OpenStack command to ensure the networking services are working (the output also depends on your
configuration) For example:

$ openstack network agent list
+--------------------------------------+----------------------+-------------------
↪→---------------------+-------------------+-------+-------+----------------------
↪→-----+
| ID | Agent Type | Host
↪→ | Availability Zone | Alive | State | Binary
↪→ |
+--------------------------------------+----------------------+-------------------
↪→---------------------+-------------------+-------+-------+----------------------
↪→-----+
| 262b29fe-e60e-44b0-ae3c-065565f8deb7 | Metering agent | aio1-neutron-
↪→agents-container-2b0569d5 | None | :-) | UP | neutron-
↪→metering-agent |
| 41135f7f-9e6c-4122-b6b3-d131bfaae53e | Linux bridge agent | ubuntu-bionic
↪→ | None | :-) | UP | neutron-linuxbridge-
↪→agent |
| 615d12a8-e738-490a-8552-2a03c8544b51 | Metadata agent | aio1-neutron-
↪→agents-container-2b0569d5 | None | :-) | UP | neutron-
↪→metadata-agent |
| 99b2abd3-a330-4ca7-b524-ed176c10b31c | DHCP agent | aio1-neutron-
↪→agents-container-2b0569d5 | nova | :-) | UP | neutron-dhcp-
↪→agent |
| e0139a26-fbf7-4cee-a37f-90940dc5851f | Linux bridge agent | aio1-neutron-
↪→agents-container-2b0569d5 | None | :-) | UP | neutron-
↪→linuxbridge-agent |
| feb20ed4-4346-4ad9-b50c-41efd784f2e9 | L3 agent | aio1-neutron-
↪→agents-container-2b0569d5 | nova | :-) | UP | neutron-l3-
↪→agent |

(continues on next page)

4 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

+--------------------------------------+----------------------+-------------------
↪→---------------------+-------------------+-------+-------+----------------------
↪→-----+

9. Run an OpenStack command to ensure the block storage services are working (depends on your configuration).
For example:

$ openstack volume service list
+------------------+--+------+---------+--
↪→-----+----------------------------+
| Binary | Host | Zone | Status |
↪→State | Updated At |
+------------------+--+------+---------+--
↪→-----+----------------------------+
| cinder-scheduler | aio1-cinder-scheduler-container-ff4c6c1e | nova | enabled |
↪→up | 2018-02-14T15:37:21.000000 |
| cinder-volume | ubuntu-bionic@lvm | nova | enabled |
↪→up | 2018-02-14T15:37:25.000000 |
| cinder-backup | ubuntu-bionic | nova | enabled |
↪→up | 2018-02-14T15:37:21.000000 |
+------------------+--+------+---------+--
↪→-----+----------------------------+

10. Run an OpenStack command to ensure the image storage service is working (depends on your uploaded images).
For example:

$ openstack image list
+--------------------------------------+--------+--------+
| ID | Name | Status |
+--------------------------------------+--------+--------+
| 6092d7b3-87c1-4d6c-a822-66c0c6171bd3 | cirros | active |
+--------------------------------------+--------+--------+

11. Check the backend API health on your load balancer nodes. For example, if using haproxy, ensure no backend
is marked as DOWN:

$ hatop -s /var/run/haproxy.stat

Configure your first networks

A newly deployed OpenStack-Ansible has no networks by default. If you need to add networks, you can use the
openstack CLI, or you can use the ansible modules for it.

An example for the latter is in the openstack-ansible-ops repository, under the
openstack-service-setup.yml playbook.

Use the command line clients

This section describes some of the more common commands to use your OpenStack cloud.

Log in to any utility container or install the openstack client on your machine, and run the following commands:

The openstack flavor list command lists the flavors that are available. These are different disk sizes that can be
assigned to images:

1.1. Operations Guide 5

OpenStack-Ansible Documentation

$ openstack flavor list
+-----+-----------+-------+------+-----------+-------+-----------+
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |
+-----+-----------+-------+------+-----------+-------+-----------+
1	m1.tiny	512	1	0	1	True
2	m1.small	2048	20	0	1	True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5	m1.xlarge	16384	160	0	8	True
+-----+-----------+-------+------+-----------+-------+-----------+

The openstack floating ip list command lists the currently available floating IP addresses and the instances they are
associated with:

$ openstack floating ip list
+------------------+---------------------+------------------+---------+---------------
↪→----+---------------+
| ID | Floating IP Address | Fixed IP Address | Port | Floating
↪→Network | Project |
+------------------+---------------------+------------------+---------+---------------
↪→----+---------------+
| 0a88589a-ffac... | 192.168.12.7 | None | None | d831dac6-028c.
↪→.. | 32db2ccf2a... |
+------------------+---------------------+------------------+---------+---------------
↪→----+---------------+

For more information about OpenStack client utilities, see these links:

• OpenStack API Quick Start

• OpenStackClient commands

• Image Service (glance) CLI commands

• Image Service (glance) CLI command cheat sheet

• Compute (nova) CLI commands

• Compute (nova) CLI command cheat sheet

• Networking (neutron) CLI commands

• Networking (neutron) CLI command cheat sheet

• Block Storage (cinder) CLI commands

• Block Storage (cinder) CLI command cheat sheet

• python-keystoneclient

• python-glanceclient

• python-novaclient

• python-neutronclient

1.1.2 Managing your cloud

This chapter is intended to document OpenStack operations tasks that are integral to the operations support in an
OpenStack-Ansible deployment.

It explains operations such as managing images, instances, or networks.

6 Chapter 1. Abstract

https://docs.openstack.org/api-quick-start/index.html
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/glance/latest/cli/index.html
https://docs.openstack.org/python-glanceclient/latest/cli/glance.html
https://docs.openstack.org/nova/latest/cli/index.html
https://docs.openstack.org/python-novaclient/latest/cli/nova.html
https://docs.openstack.org/neutron/latest/cli/index.html
https://docs.openstack.org/python-neutronclient/latest/cli/neutron.html
https://docs.openstack.org/python-cinderclient/latest/user/shell.html
https://docs.openstack.org/python-cinderclient/latest/cli/details.html
https://pypi.org/project/python-keystoneclient/
https://pypi.org/project/python-glanceclient/
https://pypi.org/project/python-novaclient/
https://pypi.org/project/python-neutronclient/

OpenStack-Ansible Documentation

Managing images

An image represents the operating system, software, and any settings that instances may need depending on the project
goals. Create images first before creating any instances.

Adding images can be done through the Dashboard, or the command line. Another option available is the
python-openstackclient tool, which can be installed on the controller node, or on a workstation.

Adding an image using the Dashboard

In order to add an image using the Dashboard, prepare an image binary file, which must be accessible over HTTP
using a valid and direct URL. Images can be compressed using .zip or .tar.gz.

Note: Uploading images using the Dashboard will be available to users with administrator privileges. Operators can
set user access privileges.

1. Log in to the Dashboard.

2. Select the Admin tab in the navigation pane and click images.

3. Click the Create Image button. The Create an Image dialog box will appear.

4. Enter the details of the image, including the Image Location, which is where the URL location of the image is
required.

5. Click the Create Image button. The newly created image may take some time before it is completely uploaded
since the image arrives in an image queue.

Adding an image using the command line

The utility container provides a CLI environment for additional configuration and management.

1. Access the utility container:

$ lxc-attach -n `lxc-ls -1 | grep utility | head -n 1`

Use the openstack client within the utility container to manage all glance images. See the openstack client official
documentation on managing images.

Managing instances

This chapter describes how to create and access instances.

Creating an instance using the Dashboard

Using an image, create a new instance via the Dashboard options.

1. Log into the Dashboard, and select the Compute project from the drop down list.

2. Click the Images option.

3. Locate the image that will act as the instance base from the Images table.

4. Click Launch from the Actions column.

1.1. Operations Guide 7

https://docs.openstack.org/image-guide/create-images-manually.html
https://docs.openstack.org/image-guide/create-images-manually.html

OpenStack-Ansible Documentation

5. Check the Launch Instances dialog, and find the details tab. Enter the appropriate values for the instance.

1. In the Launch Instance dialog, click the Access & Security tab. Select the keypair. Set the security group
as default.

2. Click the Networking tab. This tab will be unavailable if OpenStack networking (neutron) has not been
enabled. If networking is enabled, select the networks on which the instance will reside.

3. Click the Volume Options tab. This tab will only be available if a Block Storage volume exists for the
instance. Select Dont boot from a volume for now.

For more information on attaching Block Storage volumes to instances for persistent storage, see the
Managing volumes for persistent storage section below.

4. Add customisation scripts, if needed, by clicking the Post-Creation tab. These run after the instance
has been created. Some instances support user data, such as root passwords, or admin users. Enter the
information specific to the instance here if required.

5. Click Advanced Options. Specify whether the instance uses a configuration drive to store metadata by
selecting a disk partition type.

6. Click Launch to create the instance. The instance will start on a compute node. The Instance page will open
and start creating a new instance. The Instance page that opens will list the instance name, size, status, and
task. Power state and public and private IP addresses are also listed here.

The process will take less than a minute to complete. Instance creation is complete when the status is listed as
active. Refresh the page to see the new active instance.

8 Chapter 1. Abstract

OpenStack-Ansible Documentation

Table 1: Launching an instance options
Field Name Required Details
Availability Zone Optional The availability zone in which the

image service creates the instance.
If no availability zones is defined,
no instances will be found. The
cloud provider sets the availability
zone to a specific value.

Instance Name Required The name of the new instance,
which becomes the initial host
name of the server. If the server
name is changed in the API or
directly changed, the Dashboard
names remain unchanged

Image Required The type of container format, one
of ami, ari, aki, bare, or ovf

Flavor Required The vCPU, Memory, and Disk
configuration. Note that larger fla-
vors can take a long time to cre-
ate. If creating an instance for
the first time and want something
small with which to test, select
m1.small.

Instance Count Required If creating multiple instances with
this configuration, enter an integer
up to the number permitted by the
quota, which is 10 by default.

Instance Boot Source Required Specify whether the instance will
be based on an image or a snap-
shot. If it is the first time creating
an instance, there will not yet be
any snapshots available.

Image Name Required The instance will boot from the
selected image. This option
will be pre-populated with the
instance selected from the ta-
ble. However, choose Boot
from Snapshot in Instance
Boot Source, and it will default to
Snapshot instead.

Security Groups Optional This option assigns security
groups to an instance. The
default security group activates
when no customised group is
specified here. Security Groups,
similar to a cloud firewall, define
which incoming network traffic is
forwarded to instances.

Keypair Optional Specify a key pair with this op-
tion. If the image uses a static key
set (not recommended), a key pair
is not needed.

Selected Networks Optional To add a network to an instance,
click the + in the Networks field.

Customisation Script Optional Specify a customisation script.
This script runs after the instance
launches and becomes active.

1.1. Operations Guide 9

OpenStack-Ansible Documentation

Creating an instance using the command line

On the command line, instance creation is managed with the openstack server create command. Before launching
an instance, determine what images and flavors are available to create a new instance using the openstack image list
and openstack flavor list commands.

1. Log in to any utility container.

2. Issue the openstack server create command with a name for the instance, along with the name of the image
and flavor to use:

$ openstack server create --image precise-image --flavor 2 --key-name example-key
↪→example-instance
+-------------------------------------+--------------------------------------+
| Property | Value |
+-------------------------------------+--------------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-SRV-ATTR:host	None
OS-EXT-SRV-ATTR:hypervisor_hostname	None
OS-EXT-SRV-ATTR:instance_name	instance-0000000d
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
accessIPv4	
accessIPv6	
adminPass	ATSEfRY9fZPx
config_drive	
created	2012-08-02T15:43:46Z
flavor	m1.small
hostId	
id	5bf46a3b-084c-4ce1-b06f-e460e875075b
image	precise-image
key_name	example-key
metadata	{}
name	example-instance
progress	0
status	BUILD
tenant_id	b4769145977045e2a9279c842b09be6a
updated	2012-08-02T15:43:46Z
user_id	5f2f2c28bdc844f9845251290b524e80
+-------------------------------------+--------------------------------------+

3. To check that the instance was created successfully, issue the openstack server list command:

$ openstack server list
+------------------+------------------+--------+-------------------+--------------
↪→-+
| ID | Name | Status | Networks | Image Name
↪→ |
+------------------+------------------+--------+-------------------+--------------
↪→-+
| [ID truncated] | example-instance | ACTIVE | public=192.0.2.0 | precise-
↪→image |
+------------------+------------------+--------+-------------------+--------------
↪→-+

10 Chapter 1. Abstract

OpenStack-Ansible Documentation

Managing an instance

1. Log in to the Dashboard. Select one of the projects, and click Instances.

2. Select an instance from the list of available instances.

3. Check the Actions column, and click on the More option. Select the instance state.

The Actions column includes the following options:

• Resize or rebuild any instance

• View the instance console log

• Edit the instance

• Modify security groups

• Pause, resume, or suspend the instance

• Soft or hard reset the instance

Note: Terminate the instance under the Actions column.

Managing volumes for persistent storage

Volumes attach to instances, enabling persistent storage. Volume storage provides a source of memory for instances.
Administrators can attach volumes to a running instance, or move a volume from one instance to another.

Nova instances live migration

Nova is capable of live migration instances from one host to a different host to support various operational tasks
including:

• Host Maintenance

• Host capacity management

• Resizing and moving instances to better hardware

Nova configuration drive implication

Depending on the OpenStack-Ansible version in use, Nova can be configured to force configuration drive attachments
to instances. In this case, a ISO9660 CD-ROM image will be made available to the instance via the /mnt mount
point. This can be used by tools, such as cloud-init, to gain access to instance metadata. This is an alternative way of
accessing the Nova EC2-style Metadata.

To allow live migration of Nova instances, this forced provisioning of the config (CD-ROM) drive needs either be
turned off, or the format of the configuration drive needs to be changed to a disk format like vfat, a format which both
Linux and Windows instances can access.

This work around is required for all Libvirt versions prior 1.2.17.

To turn off the forced provisioning of the config drive, add the following override to the /etc/
openstack_deploy/user_variables.yml file:

1.1. Operations Guide 11

OpenStack-Ansible Documentation

nova_force_config_drive: False

To change the format of the configuration drive, to a hard disk style format, use the following configuration inside the
same /etc/openstack_deploy/user_variables.yml file:

nova_nova_conf_overrides:
DEFAULT:
config_drive_format: vfat
force_config_drive: false

Tunneling versus direct transport

In the default configuration, Nova determines the correct transport URL for how to transfer the data from one host to
the other. Depending on the nova_virt_type override the following configurations are used:

• kvm defaults to qemu+tcp://%s/system

• qemu defaults to qemu+tcp://%s/system

• xen defaults to xenmigr://%s/system

Libvirt TCP port to transfer the data to migrate.

OpenStack-Ansible changes the default setting and used a encrypted SSH connection to transfer the instance data.

live_migration_uri = "qemu+ssh://nova@%s/system?no_verify=1&keyfile={{ nova_system_
↪→home_folder }}/.ssh/id_rsa"

Other configurations can be configured inside the /etc/openstack_deploy/user_variables.yml file:

nova_nova_conf_overrides:
libvirt:
live_migration_completion_timeout: 0
live_migration_progress_timeout: 0
live_migration_uri: "qemu+ssh://nova@%s/system?keyfile=/var/lib/nova/.ssh/id_rsa&

↪→no_verify=1"

Local versus shared storage

By default, live migration assumes that your Nova instances are stored on shared storage and KVM/Libvirt only need
to synchronize the memory and base image of the Nova instance to the new host. Live migrations on local storage
will fail as a result of that assumption. Migrations with local storage can be accomplished by allowing instance disk
migrations with the --block-migrate option.

Additional Nova flavor features like ephemeral storage or swap have an impact on live migration performance and
success.

Cinder attached volumes also require a Libvirt version larger or equal to 1.2.17.

Executing the migration

The live migration is accessible via the nova client.

nova live-migration [--block-migrate] [--force] <uuid> [<host>]

12 Chapter 1. Abstract

OpenStack-Ansible Documentation

Examplarery live migration on a local storage:

nova live-migration --block-migrate <uuid of the instance> <nova host>

Monitoring the status

Once the live migration request has been accepted, the status can be monitored with the nova client:

nova migration-list

+-----+------------+-----------+----------------+--------------+-----------+----------
↪→-+---------------+------------+------------+------------+------------+--------------
↪→---+
| Id | Source Node | Dest Node | Source Compute | Dest Compute | Dest Host | Status
↪→ | Instance UUID | Old Flavor | New Flavor | Created At | Updated At | Type
↪→ |
+----+-------------+-----------+----------------+--------------+-----------+----------
↪→-+---------------+------------+------------+------------+------------+--------------
↪→---+
| 6 | - | - | compute01 | compute02 | - |
↪→preparing | f95ee17a-d09c | 7 | 7 | date | date |
↪→live-migration |
+----+-------------+-----------+----------------+--------------+-----------+----------
↪→-+---------------+------------+------------+------------+------------+--------------
↪→---+

To filter the list, the options --host or --status can be used:

nova migration-list --status error

In cases where the live migration fails, both the source and destination compute nodes need to be checked for errors.
Usually it is sufficient to search for the instance UUID only to find errors related to the live migration.

Other forms of instance migration

Besides the live migration, Nova offers the option to migrate entire hosts in a online (live) or offline (cold) migration.

The following nova client commands are provided:

• host-evacuate-live

Live migrate all instances of the specified host to other hosts if resource utilzation allows. It is best to use shared
storage like Ceph or NFS for host evacuation.

• host-servers-migrate

This command is similar to host evacuation but migrates all instances off the specified host while they are
shutdown.

• resize

Changes the flavor of an Nova instance (increase) while rebooting and also migrates (cold) the instance to a
new host to accommodate the new resource requirements. This operation can take considerate amount of time,
depending disk image sizes.

1.1. Operations Guide 13

OpenStack-Ansible Documentation

Managing networks

Operational considerations, like compliance, can make it necessary to manage networks. For example, adding new
provider networks to the OpenStack-Ansible managed cloud. The following sections are the most common adminis-
trative tasks outlined to complete those tasks.

For more generic information on troubleshooting your network, see the Network Troubleshooting chapter in the Op-
erations Guide.

For more in-depth information on Networking, see the Networking Guide.

Add provider bridges using new network interfaces

Add each provider network to your cloud to be made known to OpenStack-Ansible and the operating system before
you can execute the necessary playbooks to complete the configuration.

OpenStack-Ansible configuration

All provider networks need to be added to the OpenStack-Ansible configuration.

Edit the file /etc/openstack_deploy/openstack_user_config.yml and add a new block underneath
the provider_networks section:

The container_bridge setting defines the physical network bridge used to connect the veth pair from the physical
host to the container. Inside the container, the container_interface setting defines the name at which the
physical network will be made available. The container_interface setting is not required when Neutron
agents are deployed on bare metal. Make sure that both settings are uniquely defined across their provider networks
and that the network interface is correctly configured inside your operating system. group_binds define where this
network need to attached to, to either containers or physical hosts and is ultimately dependent on the network stack
in use. For example, Linuxbridge versus OVS. The configuration range defines Neutron physical segmentation IDs
which are automatically used by end users when creating networks via mainly horizon and the Neutron API. Similar
is true for the net_name configuration which defines the addressable name inside the Neutron configuration. This
configuration also need to be unique across other provider networks.

For more information, see Configure the deployment in the OpenStack-Ansible Deployment Guide.

Updating the node with the new configuration

Run the appropriate playbooks depending on the group_binds section.

For example, if you update the networks requiring a change in all nodes with a linux bridge agent, assuming you have
infra nodes named infra01, infra02, and infra03, run:

openstack-ansible containers-deploy.yml --limit localhost,infra01,infra01-host_
↪→containers
openstack-ansible containers-deploy.yml --limit localhost,infra02,infra02-host_
↪→containers
openstack-ansible containers-deploy.yml --limit localhost,infra03,infra03-host_
↪→containers

Then update the neutron configuration.

14 Chapter 1. Abstract

https://wiki.openstack.org/wiki/OpsGuide/Network_Troubleshooting
https://docs.openstack.org/neutron/latest/admin/
https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/configure.html

OpenStack-Ansible Documentation

openstack-ansible os-neutron-install.yml --limit localhost,infra01,infra01-host_
↪→containers
openstack-ansible os-neutron-install.yml --limit localhost,infra02,infra02-host_
↪→containers
openstack-ansible os-neutron-install.yml --limit localhost,infra03,infra03-host_
↪→containers

Then update your compute nodes if necessary.

Remove provider bridges from OpenStack

Similar to adding a provider network, the removal process uses the same procedure but in a reversed order. The
Neutron ports will need to be removed, prior to the removal of the OpenStack-Ansible configuration.

1. Unassign all Neutron floating IPs:

Note: Export the Neutron network that is about to be removed as single UUID.

export NETWORK_UUID=<uuid>
for p in $(neutron port-list -c id --device_owner compute:nova --network_id=$
↪→{NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/ {print $2}'); do
floatid=$(neutron floatingip-list -c id --port_id=$p | awk '/([A-Fa-z0-9]+-){3}

↪→/ { print $2 }')
if [-n "$floatid"]; then
echo "Disassociating floating IP $floatid from port $p"
neutron floatingip-disassociate $floatid

fi
done

2. Remove all Neutron ports from the instances:

export NETWORK_UUID=<uuid>
for p in $(neutron port-list -c id -c device_id --device_owner compute:nova --
↪→network_id=${NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/ {print $2}'); do
echo "Removing Neutron compute port $p"
neutron port-delete $p

done

3. Remove Neutron router ports and DHCP agents:

export NETWORK_UUID=<uuid>
for line in $(neutron port-list -c id -c device_id --device_owner network:router_
↪→interface --network_id=${NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/ {print $2 "+"
↪→$4}'); do
p=$(echo "$line"| cut -d'+' -f1); r=$(echo "$line"| cut -d'+' -f2)
echo "Removing Neutron router port $p from $r"
neutron router-interface-delete $r port=$p

done

for agent in $(neutron agent-list -c id --agent_type='DHCP Agent' --network_id=$
↪→{NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/ {print $2}'); do
echo "Remove network $NETWORK_UUID from Neutron DHCP Agent $agent"
neutron dhcp-agent-network-remove "${agent}" $NETWORK_UUID

done

1.1. Operations Guide 15

OpenStack-Ansible Documentation

4. Remove the Neutron network:

export NETWORK_UUID=<uuid>
neutron net-delete $NETWORK_UUID

5. Remove the provider network from the provider_networks configuration of the OpenStack-Ansible con-
figuration /etc/openstack_deploy/openstack_user_config.yml and re-run the following play-
books:

openstack-ansible lxc-containers-create.yml --limit infra01:infra01-host_
↪→containers
openstack-ansible lxc-containers-create.yml --limit infra02:infra02-host_
↪→containers
openstack-ansible lxc-containers-create.yml --limit infra03:infra03-host_
↪→containers
openstack-ansible os-neutron-install.yml --tags neutron-config

Restart a Networking agent container

Under some circumstances, configuration or temporary issues, one specific or all neutron agents container need to be
restarted.

This can be accomplished with multiple commands:

1. Example of rebooting still accessible containers.

This example will issue a reboot to the container named with neutron_agents_container_hostname_name
from inside:

ansible -m shell neutron_agents_container_hostname_name -a 'reboot'

2. Example of rebooting one container at a time, 60 seconds apart:

ansible -m shell neutron_agents_container -a 'sleep 60; reboot' --forks 1

3. If the container does not respond, it can be restarted from the physical network host:

ansible -m shell network_hosts -a 'for c in $(lxc-ls -1 |grep neutron_agents_
↪→container); do lxc-stop -n $c && lxc-start -d -n $c; done' --forks 1

1.1.3 Maintenance tasks

This chapter is intended for OpenStack-Ansible specific maintenance tasks.

Galera cluster maintenance

Routine maintenance includes gracefully adding or removing nodes from the cluster without impacting operation and
also starting a cluster after gracefully shutting down all nodes.

MySQL instances are restarted when creating a cluster, when adding a node, when the service is not running, or when
changes are made to the /etc/mysql/my.cnf configuration file.

16 Chapter 1. Abstract

OpenStack-Ansible Documentation

Verify cluster status

Compare the output of the following command with the following output. It should give you information about the
status of your cluster.

ansible galera_container -m shell -a "mysql -h 127.0.0.1 \
-e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2)

node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2)

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 7
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

In this example, only one node responded.

Gracefully shutting down the MariaDB service on all but one node allows the remaining operational node to continue
processing SQL requests. When gracefully shutting down multiple nodes, perform the actions sequentially to retain
operation.

Start a cluster

Gracefully shutting down all nodes destroys the cluster. Starting or restarting a cluster from zero nodes requires
creating a new cluster on one of the nodes.

1. Start a new cluster on the most advanced node. Change to the playbooks directory and check the seqno
value in the grastate.dat file on all of the nodes:

ansible galera_container -m shell -a "cat /var/lib/mysql/grastate.dat"
node2_galera_container-49a47d25 | success | rc=0 >>
GALERA saved state version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: 31
cert_index:

node3_galera_container-3ea2cbd3 | success | rc=0 >>
GALERA saved state version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: 31
cert_index:

node4_galera_container-76275635 | success | rc=0 >>
GALERA saved state version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: 31
cert_index:

In this example, all nodes in the cluster contain the same positive seqno values as they were synchronized just
prior to graceful shutdown. If all seqno values are equal, any node can start the new cluster.

1.1. Operations Guide 17

OpenStack-Ansible Documentation

for init
/etc/init.d/mysql start --wsrep-new-cluster
for systemd
systemctl set-environment _WSREP_NEW_CLUSTER='--wsrep-new-cluster'
systemctl start mysql
systemctl set-environment _WSREP_NEW_CLUSTER=''

Please also have a look at upstream starting a cluster page

This can also be done with the help of ansible using the shell module:

ansible galera_container -m shell -a "/etc/init.d/mysql start --wsrep-new-
↪→cluster" --limit galera_container[0]

This command results in a cluster containing a single node. The wsrep_cluster_size value shows the
number of nodes in the cluster.

node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2)

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 1
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

2. Restart MariaDB on the other nodes (replace [0] from previous ansible command with [1:]) and verify that they
rejoin the cluster.

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 3
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 3
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 3
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

18 Chapter 1. Abstract

https://galeracluster.com/documentation-webpages/startingcluster.html

OpenStack-Ansible Documentation

Galera cluster recovery

Run the galera-install playbook using the galera-bootstrap tag to automatically recover a node or an
entire environment.

1. Run the following Ansible command to show the failed nodes:

openstack-ansible galera-install.yml --tags galera-bootstrap

The cluster comes back online after completion of this command. If this fails, please review restarting the cluster and
recovering the primary component in the galera documentation as theyre invaluable for a full cluster recovery.

Recover a single-node failure

If a single node fails, the other nodes maintain quorum and continue to process SQL requests.

1. Change to the playbooks directory and run the following Ansible command to determine the failed node:

ansible galera_container -m shell -a "mysql -h 127.0.0.1 \
-e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server through
socket '/var/run/mysqld/mysqld.sock' (111)

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

In this example, node 3 has failed.

2. Restart MariaDB on the failed node and verify that it rejoins the cluster.

3. If MariaDB fails to start, run the mysqld command and perform further analysis on the output. As a last resort,
rebuild the container for the node.

Recover a multi-node failure

When all but one node fails, the remaining node cannot achieve quorum and stops processing SQL requests. In this
situation, failed nodes that recover cannot join the cluster because it no longer exists.

1. Run the following Ansible command to show the failed nodes:

ansible galera_container -m shell -a "mysql \
-h 127.0.0.1 -e 'show status like \"%wsrep_cluster_%\";'"
node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server

(continues on next page)

1.1. Operations Guide 19

https://galeracluster.com/library/training/tutorials/restarting-cluster.html
https://galeracluster.com/documentation-webpages/pcrecovery.html

OpenStack-Ansible Documentation

(continued from previous page)

through socket '/var/run/mysqld/mysqld.sock' (111)

node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 18446744073709551615
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status non-Primary

In this example, nodes 2 and 3 have failed. The remaining operational server indicates non-Primary because
it cannot achieve quorum.

2. Run the following command to rebootstrap the operational node into the cluster:

mysql -e "SET GLOBAL wsrep_provider_options='pc.bootstrap=yes';"
node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 15
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

The remaining operational node becomes the primary node and begins processing SQL requests.

3. Restart MariaDB on the failed nodes and verify that they rejoin the cluster:

ansible galera_container -m shell -a "mysql \
-h 127.0.0.1 -e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17

(continues on next page)

20 Chapter 1. Abstract

https://galeracluster.com/documentation-webpages/quorumreset.html

OpenStack-Ansible Documentation

(continued from previous page)

wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

4. If MariaDB fails to start on any of the failed nodes, run the mysqld command and perform further analysis on
the output. As a last resort, rebuild the container for the node.

Recover a complete environment failure

Restore from backup if all of the nodes in a Galera cluster fail (do not shutdown gracefully). Change to the playbook
directory and run the following command to determine if all nodes in the cluster have failed:

ansible galera_container -m shell -a "cat /var/lib/mysql/grastate.dat"
node3_galera_container-3ea2cbd3 | success | rc=0 >>
GALERA saved state
version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: -1
cert_index:

node2_galera_container-49a47d25 | success | rc=0 >>
GALERA saved state
version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: -1
cert_index:

node4_galera_container-76275635 | success | rc=0 >>
GALERA saved state
version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: -1
cert_index:

All the nodes have failed if mysqld is not running on any of the nodes and all of the nodes contain a seqno value of
-1.

If any single node has a positive seqno value, then that node can be used to restart the cluster. However, because
there is no guarantee that each node has an identical copy of the data, we do not recommend to restart the cluster using
the --wsrep-new-cluster command on one node.

Rebuild a container

Recovering from certain failures require rebuilding one or more containers.

1. Disable the failed node on the load balancer.

Note: Do not rely on the load balancer health checks to disable the node. If the node is not disabled, the load
balancer sends SQL requests to it before it rejoins the cluster and cause data inconsistencies.

2. Destroy the container and remove MariaDB data stored outside of the container:

1.1. Operations Guide 21

OpenStack-Ansible Documentation

lxc-stop -n node3_galera_container-3ea2cbd3
lxc-destroy -n node3_galera_container-3ea2cbd3
rm -rf /openstack/node3_galera_container-3ea2cbd3/*

In this example, node 3 failed.

3. Run the host setup playbook to rebuild the container on node 3:

openstack-ansible setup-hosts.yml -l node3 \
-l node3_galera_container-3ea2cbd3

The playbook restarts all other containers on the node.

4. Run the infrastructure playbook to configure the container specifically on node 3:

openstack-ansible setup-infrastructure.yml \
--limit node3_galera_container-3ea2cbd3

Warning: The new container runs a single-node Galera cluster, which is a dangerous state because the
environment contains more than one active database with potentially different data.

ansible galera_container -m shell -a "mysql \
-h 127.0.0.1 -e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 1
wsrep_cluster_size 1
wsrep_cluster_state_uuid da078d01-29e5-11e4-a051-03d896dbdb2d
wsrep_cluster_status Primary

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 4
wsrep_cluster_size 2
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 4
wsrep_cluster_size 2
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

5. Restart MariaDB in the new container and verify that it rejoins the cluster.

Note: In larger deployments, it may take some time for the MariaDB daemon to start in the new container. It
will be synchronizing data from the other MariaDB servers during this time. You can monitor the status during
this process by tailing the /var/log/mysql_logs/galera_server_error.log log file.

Lines starting with WSREP_SST will appear during the sync process and you should see a line with WSREP:
SST complete, seqno: <NUMBER> if the sync was successful.

22 Chapter 1. Abstract

OpenStack-Ansible Documentation

ansible galera_container -m shell -a "mysql \
-h 127.0.0.1 -e 'show status like \"%wsrep_cluster_%\";'"
node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 5
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 5
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 5
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

6. Enable the previously failed node on the load balancer.

RabbitMQ cluster maintenance

A RabbitMQ broker is a logical grouping of one or several Erlang nodes with each node running the RabbitMQ
application and sharing users, virtual hosts, queues, exchanges, bindings, and runtime parameters. A collection of
nodes is often referred to as a cluster. For more information on RabbitMQ clustering, see RabbitMQ cluster.

Within OpenStack-Ansible, all data and states required for operation of the RabbitMQ cluster is replicated across all
nodes including the message queues providing high availability. RabbitMQ nodes address each other using domain
names. The hostnames of all cluster members must be resolvable from all cluster nodes, as well as any machines where
CLI tools related to RabbitMQ might be used. There are alternatives that may work in more restrictive environments.
For more details on that setup, see Inet Configuration.

Note: There is currently an Ansible bug in regards to HOSTNAME. If the host .bashrc holds a var named
HOSTNAME, the container where the lxc_container module attaches will inherit this var and potentially set the
wrong $HOSTNAME. See the Ansible fix which will be released in Ansible version 2.3.

Create a RabbitMQ cluster

RabbitMQ clusters can be formed in two ways:

• Manually with rabbitmqctl

• Declaratively (list of cluster nodes in a config, with rabbitmq-autocluster, or
rabbitmq-clusterer plugins)

Note: RabbitMQ brokers can tolerate the failure of individual nodes within the cluster. These nodes can start and
stop at will as long as they have the ability to reach previously known members at the time of shutdown.

1.1. Operations Guide 23

https://www.rabbitmq.com/clustering.html
http://erlang.org/doc/apps/erts/inet_cfg.html
https://github.com/ansible/ansible/pull/22246

OpenStack-Ansible Documentation

There are two types of nodes you can configure: disk and RAM nodes. Most commonly, you will use your nodes as
disk nodes (preferred). Whereas RAM nodes are more of a special configuration used in performance clusters.

RabbitMQ nodes and the CLI tools use an erlang cookie to determine whether or not they have permission to
communicate. The cookie is a string of alphanumeric characters and can be as short or as long as you would like.

Note: The cookie value is a shared secret and should be protected and kept private.

The default location of the cookie on *nix environments is /var/lib/rabbitmq/.erlang.cookie or in
$HOME/.erlang.cookie.

Tip: While troubleshooting, if you notice one node is refusing to join the cluster, it is definitely worth checking if
the erlang cookie matches the other nodes. When the cookie is misconfigured (for example, not identical), RabbitMQ
will log errors such as Connection attempt from disallowed node and Could not auto-cluster. See clustering for more
information.

To form a RabbitMQ Cluster, you start by taking independent RabbitMQ brokers and re-configuring these nodes into
a cluster configuration.

Using a 3 node example, you would be telling nodes 2 and 3 to join the cluster of the first node.

1. Login to the 2nd and 3rd node and stop the rabbitmq application.

2. Join the cluster, then restart the application:

rabbit2$ rabbitmqctl stop_app
Stopping node rabbit@rabbit2 ...done.
rabbit2$ rabbitmqctl join_cluster rabbit@rabbit1
Clustering node rabbit@rabbit2 with [rabbit@rabbit1] ...done.
rabbit2$ rabbitmqctl start_app
Starting node rabbit@rabbit2 ...done.

Check the RabbitMQ cluster status

1. Run rabbitmqctl cluster_status from either node.

You will see rabbit1 and rabbit2 are both running as before.

The difference is that the cluster status section of the output, both nodes are now grouped together:

rabbit1$ rabbitmqctl cluster_status
Cluster status of node rabbit@rabbit1 ...
[{nodes,[{disc,[rabbit@rabbit1,rabbit@rabbit2]}]},
{running_nodes,[rabbit@rabbit2,rabbit@rabbit1]}]
...done.

To add the third RabbitMQ node to the cluster, repeat the above process by stopping the RabbitMQ application on the
third node.

1. Join the cluster, and restart the application on the third node.

2. Execute rabbitmq cluster_status to see all 3 nodes:

rabbit1$ rabbitmqctl cluster_status
Cluster status of node rabbit@rabbit1 ...

(continues on next page)

24 Chapter 1. Abstract

https://www.rabbitmq.com/clustering.html

OpenStack-Ansible Documentation

(continued from previous page)

[{nodes,[{disc,[rabbit@rabbit1,rabbit@rabbit2,rabbit@rabbit3]}]},
{running_nodes,[rabbit@rabbit3,rabbit@rabbit2,rabbit@rabbit1]}]
...done.

Stop and restart a RabbitMQ cluster

To stop and start the cluster, keep in mind the order in which you shut the nodes down. The last node you stop, needs
to be the first node you start. This node is the master.

If you start the nodes out of order, you could run into an issue where it thinks the current master should not be the
master and drops the messages to ensure that no new messages are queued while the real master is down.

RabbitMQ and mnesia

Mnesia is a distributed database that RabbitMQ uses to store information about users, exchanges, queues, and bindings.
Messages, however are not stored in the database.

For more information about Mnesia, see the Mnesia overview.

To view the locations of important Rabbit files, see File Locations.

Repair a partitioned RabbitMQ cluster for a single-node

Invariably due to something in your environment, you are likely to lose a node in your cluster. In this scenario, multiple
LXC containers on the same host are running Rabbit and are in a single Rabbit cluster.

If the host still shows as part of the cluster, but it is not running, execute:

rabbitmqctl start_app

However, you may notice some issues with your application as clients may be trying to push messages to the un-
responsive node. To remedy this, forget the node from the cluster by executing the following:

1. Ensure RabbitMQ is not running on the node:

rabbitmqctl stop_app

2. On the Rabbit2 node, execute:

rabbitmqctl forget_cluster_node rabbit@rabbit1

By doing this, the cluster can continue to run effectively and you can repair the failing node.

Important: Watch out when you restart the node, it will still think it is part of the cluster and will require you to reset
the node. After resetting, you should be able to rejoin it to other nodes as needed.

rabbit1$ rabbitmqctl start_app
Starting node rabbit@rabbit1 ...

Error: inconsistent_cluster: Node rabbit@rabbit1 thinks it's clustered with node
↪→rabbit@rabbit2, but rabbit@rabbit2 disagrees

(continues on next page)

1.1. Operations Guide 25

http://erlang.org/doc/apps/mnesia/Mnesia_overview.html
https://www.rabbitmq.com/relocate.html

OpenStack-Ansible Documentation

(continued from previous page)

rabbit1$ rabbitmqctl reset
Resetting node rabbit@rabbit1 ...done.
rabbit1$ rabbitmqctl start_app
Starting node rabbit@mcnulty ...
...done.

Repair a partitioned RabbitMQ cluster for a multi-node cluster

The same concepts apply to a multi-node cluster that exist in a single-node cluster. The only difference is that the
various nodes will actually be running on different hosts. The key things to keep in mind when dealing with a multi-
node cluster are:

• When the entire cluster is brought down, the last node to go down must be the first node to be brought online.
If this does not happen, the nodes will wait 30 seconds for the last disc node to come back online, and fail
afterwards.

If the last node to go offline cannot be brought back up, it can be removed from the cluster using the
forget_cluster_node command.

• If all cluster nodes stop in a simultaneous and uncontrolled manner, (for example, with a power cut) you can be
left with a situation in which all nodes think that some other node stopped after them. In this case you can use
the force_boot command on one node to make it bootable again.

Consult the rabbitmqctl manpage for more information.

Running ad-hoc Ansible plays

Being familiar with running ad-hoc Ansible commands is helpful when operating your OpenStack-Ansible deploy-
ment. For example, if we look at the structure of the following ansible command:

$ ansible example_group -m shell -a 'hostname'

This command calls on Ansible to run the example_group using the -m shell module with the -a argument being
the hostname command. You can substitute the group for any other groups you may have defined. For example, if you
had compute_hosts in one group and infra_hosts in another, supply either group name and run the commands.
You can also use the * wild card if you only know the first part of the group name, for example, compute_h*. The
-m argument is for module.

Modules can be used to control system resources, or handle the execution of system commands. For a more informa-
tion about modules , see Module Index and About Modules.

If you need to run a particular command against a subset of a group, you could use the limit flag -l. For example, if
a compute_hosts group contained compute1, compute2, compute3, and compute4, and you only needed
to execute a command on compute1 and compute4:

$ ansible example_group -m shell -a 'hostname' -l compute1,compute4

Note: Each host is comma-separated with no spaces.

Note: Run the ad-hoc Ansible commands from the openstack-ansible/playbooks directory.

26 Chapter 1. Abstract

https://docs.ansible.com/ansible/modules_by_category.html
https://docs.ansible.com/ansible/modules.html

OpenStack-Ansible Documentation

For more information, see Inventory and Patterns.

Running the shell module

The two most common modules used are the shell and copy modules. The shell module takes the command
name followed by a list of space delimited arguments. It is almost like the command module, but runs the command
through a shell (/bin/sh) on the remote node.

For example, you could use the shell module to check the amount of disk space on a set of Compute hosts:

$ ansible compute_hosts -m shell -a 'df -h'

To check on the status of your Galera cluster:

$ ansible galera_container -m shell -a "mysql -h 127.0.0.1\
-e 'show status like \"%wsrep_cluster_%\";'"

When a module is being used as an ad-hoc command, there are a few parameters that are not required. For example,
for the chdir command, there is no need to chdir=/home/user ls when running Ansible from the CLI:

$ ansible compute_hosts -m shell -a 'ls -la /home/user'

For more information, see shell - Execute commands in nodes.

Running the copy module

The copy module copies a file on a local machine to remote locations. Use the fetch module to copy files from remote
locations to the local machine. If you need variable interpolation in copied files, use the template module. For more
information, see copy - Copies files to remote locations.

The following example shows how to move a file from your deployment host to the /tmp directory on a set of remote
machines:

$ ansible remote_machines -m copy -a 'src=/root/FILE \
dest=/tmp/FILE'

If you want to gather files from remote machines, use the fetch module. The fetch module stores files locally in a file
tree, organized by the hostname from remote machines and stores them locally in a file tree, organized by hostname.

Note: This module transfers log files that might not be present, so a missing remote file will not be an error unless
fail_on_missing is set to yes.

The following examples shows the nova-compute.log file being pulled from a single Compute host:

root@libertylab:/opt/rpc-openstack/openstack-ansible/playbooks# ansible compute_hosts
↪→-m fetch -a 'src=/var/log/nova/nova-compute.log dest=/tmp'
aio1 | success >> {

"changed": true,
"checksum": "865211db6285dca06829eb2215ee6a897416fe02",
"dest": "/tmp/aio1/var/log/nova/nova-compute.log",
"md5sum": "dbd52b5fd65ea23cb255d2617e36729c",
"remote_checksum": "865211db6285dca06829eb2215ee6a897416fe02",
"remote_md5sum": null

(continues on next page)

1.1. Operations Guide 27

https://docs.ansible.com/ansible/intro_inventory.html
https://docs.ansible.com/ansible/intro_patterns.html
https://docs.ansible.com/ansible/shell_module.html
https://docs.ansible.com/ansible/copy_module.html

OpenStack-Ansible Documentation

(continued from previous page)

}

root@libertylab:/opt/rpc-openstack/openstack-ansible/playbooks# ls -la /tmp/aio1/var/
↪→log/nova/nova-compute.log
-rw-r--r-- 1 root root 2428624 Dec 15 01:23 /tmp/aio1/var/log/nova/nova-compute.log

Using tags

Tags are similar to the limit flag for groups except tags are used to only run specific tasks within a playbook. For more
information on tags, see Tags and Understanding ansible tags.

Ansible forks

The default MaxSessions setting for the OpenSSH Daemon is 10. Each Ansible fork makes use of a session. By
default, Ansible sets the number of forks to 5. However, you can increase the number of forks used in order to improve
deployment performance in large environments.

Note that more than 10 forks will cause issues for any playbooks which use delegate_to or local_action in
the tasks. It is recommended that the number of forks are not raised when executing against the control plane, as this
is where delegation is most often used.

The number of forks used may be changed on a permanent basis by including the appropriate change to the
ANSIBLE_FORKS in your .bashrc file. Alternatively it can be changed for a particular playbook execution by
using the --forks CLI parameter. For example, the following executes the nova playbook against the control plane
with 10 forks, then against the compute nodes with 50 forks.

openstack-ansible --forks 10 os-nova-install.yml --limit compute_containers
openstack-ansible --forks 50 os-nova-install.yml --limit compute_hosts

For more information about forks, please see the following references:

• OpenStack-Ansible Bug 1479812

• Ansible forks entry for ansible.cfg

• Ansible Performance Tuning

Container management

With Ansible, the OpenStack installation process is entirely automated using playbooks written in YAML. After
installation, the settings configured by the playbooks can be changed and modified. Services and containers can
shift to accommodate certain environment requirements. Scaling services is achieved by adjusting services within
containers, or adding new deployment groups. It is also possible to destroy containers if needed after changes and
modifications are complete.

Scale individual services

Individual OpenStack services, and other open source project services, run within containers. It is possible to scale
out these services by modifying the /etc/openstack_deploy/openstack_user_config.yml file.

1. Navigate into the /etc/openstack_deploy/openstack_user_config.yml file.

28 Chapter 1. Abstract

http://ansible-docs.readthedocs.io/zh/stable-2.0/rst/playbooks_tags.html
http://www.caphrim.net/ansible/2015/05/24/understanding-ansible-tags.html
https://bugs.launchpad.net/openstack-ansible/+bug/1479812
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html#cmdoption-ansible-playbook-f
https://www.ansible.com/blog/ansible-performance-tuning

OpenStack-Ansible Documentation

2. Access the deployment groups section of the configuration file. Underneath the deployment group name, add an
affinity value line to container scales OpenStack services:

infra_hosts:
infra1:

ip: 10.10.236.100
Rabbitmq
affinity:

galera_container: 1
rabbit_mq_container: 2

In this example, galera_container has a container value of one. In practice, any containers that do not
need adjustment can remain at the default value of one, and should not be adjusted above or below the value of
one.

The affinity value for each container is set at one by default. Adjust the affinity value to zero for situations where
the OpenStack services housed within a specific container will not be needed when scaling out other required
services.

3. Update the container number listed under the affinity configuration to the desired number. The above
example has galera_container set at one and rabbit_mq_container at two, which scales RabbitMQ
services, but leaves Galera services fixed.

4. Run the appropriate playbook commands after changing the configuration to create the new containers, and
install the appropriate services.

For example, run the openstack-ansible lxc-containers-create.yml rabbitmq-install.yml commands from the
openstack-ansible/playbooks repository to complete the scaling process described in the example
above:

$ cd openstack-ansible/playbooks
$ openstack-ansible lxc-containers-create.yml rabbitmq-install.yml

Destroy and recreate containers

Resolving some issues may require destroying a container, and rebuilding that container from the begin-
ning. It is possible to destroy and re-create a container with the lxc-containers-destroy.yml and
lxc-containers-create.yml commands. These Ansible scripts reside in the openstack-ansible/
playbooks repository.

1. Navigate to the openstack-ansible directory.

2. Run the openstack-ansible lxc-containers-destroy.yml commands, specifying the target containers and the
container to be destroyed.

$ openstack-ansible lxc-containers-destroy.yml --limit "CONTAINER_NAME"
$ openstack-ansible lxc-containers-create.yml --limit "CONTAINER_NAME"

3. Replace ‘‘CONTAINER_NAME‘‘ with the target container.

Firewalls

OpenStack-Ansible does not configure firewalling for its infrastructure. It is up to the deployer to define the perimeter
and its firewalling configuration.

By default, OpenStack-Ansible relies on Ansible SSH connections, and needs the TCP port 22 to be opened on all
hosts internally.

1.1. Operations Guide 29

OpenStack-Ansible Documentation

For more information on generic OpenStack firewalling, see the Firewalls and default ports

You can find in each of the roles respective documentatione, the default variables for the ports used within the scope
of the role. Reviewing the documentation allow you to find the variable names if you want to use a different port.

Note: OpenStack-Ansibles group vars conveniently expose the vars outside of the role scope in case you are relying
on the OpenStack-Ansible groups to configure your firewall.

Finding ports for your external load balancer

As explained in the previous section, you can find (in each role documentation) the default variables used for the public
interface endpoint ports.

For example, the os_glance documentation lists the variable glance_service_publicuri. This contains the
port used for the reaching the service externally. In this example, it is equal to glance_service_port, whose
value is 9292.

As a hint, you could find the whole list of public URI defaults by executing the following:

cd /etc/ansible/roles
grep -R -e publicuri -e port *

Note: Haproxy can be configured with OpenStack-Ansible. The automatically generated /etc/haproxy/
haproxy.cfg file have enough information on the ports to open for your environment.

Prune Inventory Backup Archive

The inventory backup archive will require maintenance over a long enough period of time.

Bulk pruning

Its possible to do mass pruning of the inventory backup. The following example will prune all but the last 15 inventories
from the running archive.

ARCHIVE="/etc/openstack_deploy/backup_openstack_inventory.tar"
tar -tvf ${ARCHIVE} | \

head -n -15 | awk '{print $6}' | \
xargs -n 1 tar -vf ${ARCHIVE} --delete

Selective Pruning

To prune the inventory archive selectively first identify the files you wish to remove by listing them out.

tar -tvf /etc/openstack_deploy/backup_openstack_inventory.tar

-rw-r--r-- root/root 110096 2018-05-03 10:11 openstack_inventory.json-20180503_
↪→151147.json

(continues on next page)

30 Chapter 1. Abstract

https://docs.openstack.org/install-guide/firewalls-default-ports.html
https://opendev.org/openstack/openstack-ansible/src/inventory/group_vars/all/all.yml
https://docs.openstack.org/openstack-ansible-os_glance/latest/#default-variables
https://opendev.org/openstack/openstack-ansible/src/commit/6520d0bb2c689ed7caa5df581be6a966133cdce0/inventory/group_vars/haproxy/haproxy.yml

OpenStack-Ansible Documentation

(continued from previous page)

-rw-r--r-- root/root 110090 2018-05-03 10:11 openstack_inventory.json-20180503_
↪→151205.json
-rw-r--r-- root/root 110098 2018-05-03 10:12 openstack_inventory.json-20180503_
↪→151217.json

Now delete the targeted inventory archive.

tar -vf /etc/openstack_deploy/backup_openstack_inventory.tar --delete openstack_
↪→inventory.json-20180503_151205.json

1.1.4 Scaling your environment

This is a draft environment scaling page for the proposed OpenStack-Ansible operations guide.

Add a new infrastructure host

While three infrastructure hosts are recommended, if further hosts are needed in an environment, it is possible to create
additional nodes.

Warning: Make sure you back up your current OpenStack environment before adding any new nodes. See Back
up and restore your cloud for more information.

1. Add the node to the infra_hosts stanza of the /etc/openstack_deploy/
openstack_user_config.yml

infra_hosts:
[...]
NEW_infra<node-ID>:
ip: 10.17.136.32

NEW_infra<node-ID2>:
ip: 10.17.136.33

2. Change to playbook folder on the deployment host.

cd /opt/openstack-ansible/playbooks

3. Update the inventory to add new hosts. Make sure new rsyslog container names are updated. Send the updated
results to dev/null.

/opt/openstack-ansible/inventory/dynamic_inventory.py > /dev/null

4. Create the /root/add_host.limit file, which contains all new node host names and their containers. Add
localhost to the list of hosts to be able to access deployment host facts.

localhost
NEW_infra<node-ID>
NEW_infra<node-ID2>
NEW_infra<node-ID>_containers
NEW_infra<node-ID2>_containers

5. Run the setup-everything.yml playbook with the limit argument.

1.1. Operations Guide 31

OpenStack-Ansible Documentation

openstack-ansible setup-everything.yml --limit @/root/add_host.limit

Test new infra nodes

After creating a new infra node, test that the node runs correctly by launching a new instance. Ensure that the new
node can respond to a networking connection test through the ping command. Log in to your monitoring system,
and verify that the monitors return a green signal for the new node.

Add a compute host

Use the following procedure to add a compute host to an operational cluster.

1. Configure the host as a target host. See the target hosts configuration section of the deploy guide. for more
information.

2. Edit the /etc/openstack_deploy/openstack_user_config.yml file and add the host to the
compute_hosts stanza.

If necessary, also modify the used_ips stanza.

3. If the cluster is utilizing Telemetry/Metering (ceilometer), edit the /etc/openstack_deploy/conf.d/
ceilometer.yml file and add the host to the metering-compute_hosts stanza.

4. Run the following commands to add the host. Replace NEW_HOST_NAME with the name of the new host.

cd /opt/openstack-ansible/playbooks
openstack-ansible setup-hosts.yml --limit localhost,NEW_HOST_NAME
ansible nova_all -m setup -a 'filter=ansible_local gather_subset="!all"'
openstack-ansible setup-openstack.yml --limit localhost,NEW_HOST_NAME

Test new compute nodes

After creating a new node, test that the node runs correctly by launching an instance on the new node.

$ openstack server create --image IMAGE --flavor m1.tiny \
--key-name KEY --availability-zone ZONE:HOST:NODE \
--nic net-id=UUID SERVER

Ensure that the new instance can respond to a networking connection test through the ping command. Log in to your
monitoring system, and verify that the monitors return a green signal for the new node.

Remove a compute host

The openstack-ansible-ops repository contains a playbook for removing a compute host from an OpenStack-Ansible
environment. To remove a compute host, follow the below procedure.

Note: This guide describes how to remove a compute node from an OpenStack-Ansible environment completely.
Perform these steps with caution, as the compute node will no longer be in service after the steps have been completed.
This guide assumes that all data and instances have been properly migrated.

32 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/targethosts.html
https://opendev.org/openstack/openstack-ansible-ops

OpenStack-Ansible Documentation

1. Disable all OpenStack services running on the compute node. This can include, but is not limited to, the
nova-compute service and the neutron agent service.

Note: Ensure this step is performed first

Run these commands on the compute node to be removed
stop nova-compute
stop neutron-linuxbridge-agent

2. Clone the openstack-ansible-ops repository to your deployment host:

$ git clone https://opendev.org/openstack/openstack-ansible-ops \
/opt/openstack-ansible-ops

3. Run the remove_compute_node.yml Ansible playbook with the host_to_be_removed user variable
set:

$ cd /opt/openstack-ansible-ops/ansible_tools/playbooks
openstack-ansible remove_compute_node.yml \
-e host_to_be_removed="<name-of-compute-host>"

4. After the playbook completes, remove the compute node from the OpenStack-Ansible configuration file in /
etc/openstack_deploy/openstack_user_config.yml.

Recover a compute host failure

The following procedure addresses Compute node failure if shared storage is used.

Note: If shared storage is not used, data can be copied from the /var/lib/nova/instances directory on the
failed Compute node ${FAILED_NODE} to another node ${RECEIVING_NODE}before performing the following
procedure. Please note this method is not supported.

1. Re-launch all instances on the failed node.

2. Invoke the MySQL command line tool

3. Generate a list of instance UUIDs hosted on the failed node:

mysql> select uuid from instances where host = '${FAILED_NODE}' and deleted = 0;

4. Set instances on the failed node to be hosted on a different node:

mysql> update instances set host ='${RECEIVING_NODE}' where host = '${FAILED_NODE}
↪→' \
and deleted = 0;

5. Reboot each instance on the failed node listed in the previous query to regenerate the XML files:

nova reboot hard $INSTANCE_UUID

6. Find the volumes to check the instance has successfully booted and is at the login :

1.1. Operations Guide 33

OpenStack-Ansible Documentation

mysql> select nova.instances.uuid as instance_uuid, cinder.volumes.id \
as voume_uuid, cinder.volumes.status, cinder.volumes.attach_status, \
cinder.volumes.mountpoint, cinder.volumes,display_name from \
cinder.volumes inner join nova.instances on cinder.volumes.instance_uuid=nova.
↪→instances.uuid \
where nova.instances.host = '${FAILED_NODE}';

7. If rows are found, detach and re-attach the volumes using the values listed in the previous query:

nova volume-detach $INSTANCE_UUID $VOLUME_UUID && \
nova volume-attach $INSTANCE_UUID $VOLUME_UUID $VOLUME_MOUNTPOINT

8. Rebuild or replace the failed node as described in add-compute-host.

Replacing failed hardware

It is essential to plan and know how to replace failed hardware in your cluster without compromising your cloud
environment.

Consider the following to help establish a hardware replacement plan:

• What type of node am I replacing hardware on?

• Can the hardware replacement be done without the host going down? For example, a single disk in a RAID-10.

• If the host DOES have to be brought down for the hardware replacement, how should the resources on that host
be handled?

If you have a Compute (nova) host that has a disk failure on a RAID-10, you can swap the failed disk without powering
the host down. On the other hand, if the RAM has failed, you would have to power the host down. Having a plan in
place for how you will manage these types of events is a vital part of maintaining your OpenStack environment.

For a Compute host, shut down the instance on the host before it goes down. For a Block Storage (cinder) host using
non-redundant storage, shut down any instances with volumes attached that require that mount point. Unmount the
drive within your operating system and re-mount the drive once the Block Storage host is back online.

Shutting down the Compute host

If a Compute host needs to be shut down:

1. Disable the nova-compute binary:

nova service-disable --reason "Hardware replacement" HOSTNAME nova-compute

2. List all running instances on the Compute host:

nova list --all-t --host <compute_name> | awk '/ACTIVE/ {print $2}' > \
/home/user/running_instances && for i in `cat /home/user/running_instances`; do
↪→nova stop $i ; done

3. Use SSH to connect to the Compute host.

4. Confirm all instances are down:

virsh list --all

5. Shut down the Compute host:

34 Chapter 1. Abstract

OpenStack-Ansible Documentation

shutdown -h now

6. Once the Compute host comes back online, confirm everything is in working order and start the instances on the
host. For example:

cat /home/user/running_instances
do nova start $instance
done

7. Enable the nova-compute service in the environment:

nova service-enable HOSTNAME nova-compute

Shutting down the Block Storage host

If a LVM backed Block Storage host needs to be shut down:

1. Disable the cinder-volume service:

cinder service-list --host CINDER SERVICE NAME INCLUDING @BACKEND
cinder service-disable CINDER SERVICE NAME INCLUDING @BACKEND \
cinder-volume --reason 'RAM maintenance'

2. List all instances with Block Storage volumes attached:

mysql cinder -BNe 'select instance_uuid from volumes where deleted=0 \
and host like "%<cinder host>%"' | tee /home/user/running_instances

3. Shut down the instances:

cat /home/user/running_instances | xargs -n1 nova stop

4. Verify the instances are shutdown:

cat /home/user/running_instances | xargs -n1 nova show | fgrep vm_state

5. Shut down the Block Storage host:

shutdown -h now

6. Replace the failed hardware and validate the new hardware is functioning.

7. Enable the cinder-volume service:

cinder service-enable CINDER SERVICE NAME INCLUDING @BACKEND cinder-volume

8. Verify the services on the host are reconnected to the environment:

cinder service-list --host CINDER SERVICE NAME INCLUDING @BACKEND

9. Start your instances and confirm all of the instances are started:

cat /home/user/running_instances | xargs -n1 nova start
cat /home/user/running_instances | xargs -n1 nova show | fgrep vm_state

1.1. Operations Guide 35

OpenStack-Ansible Documentation

Destroying Containers

1. To destroy a container, execute the following:

cd /opt/openstack-ansible/playbooks
openstack-ansible lxc-containers-destroy --limit localhost,<container
↪→name|container group>

Note: You will be asked two questions:

Are you sure you want to destroy the LXC containers? Are you sure you want to destroy the
LXC container data?

The first will just remove the container but leave the data in the bind mounts and logs. The
second will remove the data in the bind mounts and logs too.

Warning: If you remove the containers and data for the entire galera_server container group you will lose all
your databases! Also, if you destroy the first container in many host groups you will lose other important items
like certificates, keys, etc. Be sure that you understand what youre doing when using this tool.

1. To create the containers again, execute the following:

cd /opt/openstack-ansible/playbooks
openstack-ansible lxc-containers-create --limit localhost,lxc_hosts,<container
↪→name|container
group>

The lxc_hosts host group must be included as the playbook and roles executed require the use of facts from the
hosts.

Accessibility for multi-region Object Storage

In multi-region Object Storage utilizing separate database backends, objects are retrievable from an alternate location
if the default_project_id for a user in the keystone database is the same across each database backend.

Important: It is recommended to perform the following steps before a failure occurs to avoid having to dump and
restore the database.

If a failure does occur, follow these steps to restore the database from the Primary (failed) Region:

1. Record the Primary Region output of the default_project_id for the specified user from the user table in
the keystone database:

Note: The user is admin in this example.

mysql -e "SELECT default_project_id from keystone.user WHERE \
name='admin';"

+----------------------------------+
| default_project_id |

(continues on next page)

36 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

+----------------------------------+
| 76ef6df109744a03b64ffaad2a7cf504 |
+-----------------+

2. Record the Secondary Region output of the default_project_id for the specified user from the user table
in the keystone database:

mysql -e "SELECT default_project_id from keystone.user WHERE \
name='admin';"

+----------------------------------+
| default_project_id |
+----------------------------------+
| 69c46f8ad1cf4a058aa76640985c |
+----------------------------------+

3. In the Secondary Region, update the references to the project_id to match the ID from the Primary Region:

export PRIMARY_REGION_TENANT_ID="76ef6df109744a03b64ffaad2a7cf504"
export SECONDARY_REGION_TENANT_ID="69c46f8ad1cf4a058aa76640985c"

mysql -e "UPDATE keystone.assignment set \
target_id='${PRIMARY_REGION_TENANT_ID}' \
WHERE target_id='${SECONDARY_REGION_TENANT_ID}';"

mysql -e "UPDATE keystone.user set \
default_project_id='${PRIMARY_REGION_TENANT_ID}' WHERE \
default_project_id='${SECONDARY_REGION_TENANT_ID}';"

mysql -e "UPDATE keystone.project set \
id='${PRIMARY_REGION_TENANT_ID}' WHERE \
id='${SECONDARY_REGION_TENANT_ID}';"

The user in the Secondary Region now has access to objects PUT in the Primary Region. The Secondary Region can
PUT objects accessible by the user in the Primary Region.

1.1.5 Monitoring your environment

This is a draft monitoring system page for the proposed OpenStack-Ansible operations guide.

1.1.6 Back up and restore your cloud

For disaster recovery purposes, it is a good practice to perform regular backups of the database, configuration files,
network information, and OpenStack service details in your environment. For an OpenStack cloud deployed using
OpenStack-Ansible, back up the /etc/openstack_deploy/ directory.

Back up and restore the /etc/openstack_deploy/ directory

The /etc/openstack_deploy/ directory contains a live inventory, host structure, network information, pass-
words, and options that are applied to the configuration files for each service in your OpenStack deployment. Back up
the /etc/openstack_deploy/ directory to a remote location.

To restore the /etc/openstack_deploy/ directory, copy the backup of the directory to your cloud environment.

1.1. Operations Guide 37

OpenStack-Ansible Documentation

Database backups and recovery

MySQL data is available on the infrastructure nodes. You can recover databases, and rebuild the galera cluster. For
more information, see Galera cluster recovery.

1.1.7 Troubleshooting

This chapter is intended to help troubleshoot and resolve operational issues in an OpenStack-Ansible deployment.

Networking

This section focuses on troubleshooting general host-to-host communication required for the OpenStack control plane
to function properly.

This does not cover any networking related to instance connectivity.

These instructions assume an OpenStack-Ansible installation using LXC containers, VXLAN overlay, and the Lin-
uxbridge ml2 driver.

Network List

1. HOST_NET (Physical Host Management and Access to Internet)

2. CONTAINER_NET (LXC container network used Openstack Services)

3. OVERLAY_NET (VXLAN overlay network)

Useful network utilities and commands:

ip link show [dev INTERFACE_NAME]
arp -n [-i INTERFACE_NAME]
ip [-4 | -6] address show [dev INTERFACE_NAME]
ping <TARGET_IP_ADDRESS>
tcpdump [-n -nn] < -i INTERFACE_NAME > [host SOURCE_IP_ADDRESS]
brctl show [BRIDGE_ID]
iptables -nL
arping [-c NUMBER] [-d] <TARGET_IP_ADDRESS>

Troubleshooting host-to-host traffic on HOST_NET

Perform the following checks:

• Check physical connectivity of hosts to physical network

• Check interface bonding (if applicable)

• Check VLAN configurations and any necessary trunking to edge ports on physical switch

• Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if applicable)

• Check that hosts are in the same IP subnet or have proper routing between them

• Check there are no iptables applied to the hosts that would deny traffic

IP addresses should be applied to physical interface, bond interface, tagged sub-interface, or in some cases the bridge
interface:

38 Chapter 1. Abstract

OpenStack-Ansible Documentation

ip address show dev bond0
14: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500..UP...
link/ether a0:a0:a0:a0:a0:01 brd ff:ff:ff:ff:ff:ff
inet 10.240.0.44/22 brd 10.240.3.255 scope global bond0

valid_lft forever preferred_lft forever
...

Troubleshooting host-to-host traffic on CONTAINER_NET

Perform the following checks:

• Check physical connectivity of hosts to physical network

• Check interface bonding (if applicable)

• Check VLAN configurations and any necessary trunking to edge ports on physical switch

• Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if applicable)

• Check that hosts are in the same subnet or have proper routing between them

• Check there are no iptables applied to the hosts that would deny traffic

• Check to verify that physical interface is in the bridge

• Check to verify that veth-pair end from container is in br-mgmt

IP address should be applied to br-mgmt:

ip address show dev br-mgmt
18: br-mgmt: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...UP...
link/ether a0:a0:a0:a0:a0:01 brd ff:ff:ff:ff:ff:ff
inet 172.29.236.44/22 brd 172.29.239.255 scope global br-mgmt

valid_lft forever preferred_lft forever
...

IP address should be applied to eth1 inside the LXC container:

ip address show dev eth1
59: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...UP...
link/ether b1:b1:b1:b1:b1:01 brd ff:ff:ff:ff:ff:ff
inet 172.29.236.55/22 brd 172.29.239.255 scope global eth1

valid_lft forever preferred_lft forever
...

br-mgmt should contain veth-pair ends from all containers and a physical interface or tagged-subinterface:

brctl show br-mgmt
bridge name bridge id STP enabled interfaces
br-mgmt 8000.abcdef12345 no 11111111_eth1

22222222_eth1
...
bond0.100
99999999_eth1
...

1.1. Operations Guide 39

OpenStack-Ansible Documentation

Troubleshooting host-to-host traffic on OVERLAY_NET

Perform the following checks:

• Check physical connectivity of hosts to physical network

• Check interface bonding (if applicable)

• Check VLAN configurations and any necessary trunking to edge ports on physical switch

• Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if applicable)

• Check that hosts are in the same subnet or have proper routing between them

• Check there are no iptables applied to the hosts that would deny traffic

• Check to verify that physcial interface is in the bridge

• Check to verify that veth-pair end from container is in br-vxlan

IP address should be applied to br-vxlan:

ip address show dev br-vxlan
21: br-vxlan: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...UP...
link/ether a0:a0:a0:a0:a0:02 brd ff:ff:ff:ff:ff:ff
inet 172.29.240.44/22 brd 172.29.243.255 scope global br-vxlan

valid_lft forever preferred_lft forever
...

IP address should be applied to eth10 inside the required LXC containers:

ip address show dev eth10
67: eth10: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 150...UP...
link/ether b1:b1:b1:b1:b1:02 brd ff:ff:ff:ff:ff:ff
inet 172.29.240.55/22 brd 172.29.243.255 scope global eth10

valid_lft forever preferred_lft forever
...

br-vxlan should contain veth-pair ends from required LXC containers and a physical interface or tagged-
subinterface:

brctl show br-vxlan
bridge name bridge id STP enabled interfaces
br-vxlan 8000.ghijkl123456 no bond1.100

3333333_eth10

Checking services

You can check the status of an OpenStack service by accessing every controller node and running the service
<SERVICE_NAME> status.

See the following links for additional information to verify OpenStack services:

• Identity service (keystone)

• Image service (glance)

• Compute service (nova)

• Networking service (neutron)

• Block Storage service

40 Chapter 1. Abstract

https://ask.openstack.org/en/question/101127/how-to-check-if-keystone-is-running/
https://docs.openstack.org/ocata/install-guide-ubuntu/glance-verify.html
https://docs.openstack.org/ocata/install-guide-ubuntu/nova-verify.html
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-verify.html
https://docs.openstack.org/ocata/install-guide-rdo/cinder-verify.html

OpenStack-Ansible Documentation

• Object Storage service (swift)

Restarting services

Restart your OpenStack services by accessing every controller node. Some OpenStack services will require restart
from other nodes in your environment.

The following table lists the commands to restart an OpenStack service.

1.1. Operations Guide 41

https://docs.openstack.org/project-install-guide/object-storage/ocata/verify.html

OpenStack-Ansible Documentation

Table 2: Restarting OpenStack services
OpenStack service Commands
Image service

service glance-registry restart
service glance-api restart

Compute service (controller
node) # service nova-api-os-compute restart

service nova-consoleauth restart
service nova-scheduler restart
service nova-conductor restart
service nova-api-metadata restart
service nova-novncproxy restart (if using novnc)
service nova-spicehtml5proxy restart (if using spice)

Compute service (compute
node) # service nova-compute restart

Networking service
service neutron-server restart
service neutron-dhcp-agent restart
service neutron-l3-agent restart
service neutron-metadata-agent restart
service neutron-linuxbridge-agent restart

Networking service (compute
node) # service neutron-linuxbridge-agent restart

Block Storage service
service cinder-api restart
service cinder-backup restart
service cinder-scheduler restart
service cinder-volume restart

Block Storage service
service manila-api restart
service manila-data restart
service manila-share restart
service manila-scheduler restart

Object Storage service
service swift-account-auditor restart
service swift-account-server restart
service swift-account-reaper restart
service swift-account-replicator restart
service swift-container-auditor restart
service swift-container-server restart
service swift-container-reconciler restart
service swift-container-replicator restart
service swift-container-sync restart
service swift-container-updater restart
service swift-object-auditor restart
service swift-object-expirer restart
service swift-object-server restart
service swift-object-reconstructor restart
service swift-object-replicator restart
service swift-object-updater restart
service swift-proxy-server restart

42 Chapter 1. Abstract

OpenStack-Ansible Documentation

Troubleshooting Instance connectivity issues

This section will focus on troubleshooting general instance (VM) connectivity communication. This does not cover
any networking related to instance connectivity. This is assuming a OpenStack-Ansible install using LXC containers,
VXLAN overlay and the Linuxbridge ml2 driver.

Data flow example

COMPUTE NODE
+-------------+ +-------------+

+->"If VXLAN"+->+ *br vxlan +--->+ bond#.#00 +---+
| +-------------+ +-------------+ |

+-------------+
↪→| +-----------------+
Instance +---> | brq bridge |++
↪→+-->| physical network|

+-------------+
↪→| +-----------------+

| +-------------+ +-------------+ |
+->"If VLAN"+->+ br vlan +--->+ bond1 +---+

+-------------+ +-------------+

NETWORK NODE
+-------------+ +-------------+ +--------------

↪→---+
+->"If VXLAN"+->+ *bond#.#00 +--->+ *br vxlan +-->+*Container

↪→eth10 +
| +-------------+ +-------------+ +--------------

↪→---+
+----------------+
↪→ | +-------------+
|physical network|++
↪→ +--->+ | brq bridge |+--> Neutron DHCP/Router
+----------------+
↪→ | +-------------+

| +-------------+ +-------------+ +--------------
↪→---+

+->"If VLAN"+->+ bond1 +--->+ br vlan +-->+ Container
↪→eth11 +

+-------------+ +-------------+ +--------------
↪→---+

Preliminary troubleshooting questions to answer:

• Which compute node is hosting the VM in question?

• Which interface is used for provider network traffic?

• Which interface is used for VXLAN overlay?

• Is the connectivity issue ingress to the instance?

• Is the connectivity issue egress from the instance?

• What is the source address of the traffic?

• What is the destination address of the traffic?

1.1. Operations Guide 43

OpenStack-Ansible Documentation

• Is there a Neutron router in play?

• Which network node (container) is the router hosted?

• What is the tenant network type?

If VLAN:

Does physical interface show link and all VLANs properly trunked across physical network?

No:

• Check cable, seating, physical switchport configuration, interface/bonding configuration, and general net-
work configuration. See general network troubleshooting documentation.

Yes:

• Good!

• Continue!

Important: Do not continue until physical network is properly configured.

Does the instances IP address ping from networks DHCP namespace or other instances in the same network?

No:

• Check nova console logs to see if the instance ever received its IP address initially.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

• Check that linux bridges contain the proper interfaces. on compute and network nodes.

• Check Neutron DHCP agent logs.

• Check syslogs.

• Check Neutron linux bridge logs.

Yes:

• Good! This suggests that the instance received its IP address and can reach local network resources.

• Continue!

Important: Do not continue until instance has an IP address and can reach local network resources like DHCP.

Does the instances IP address ping from the gateway device (Neutron router namespace or another gateway device)?

No:

• Check Neutron L3 agent logs (if applicable).

• Check Neutron linuxbridge logs.

• Check physical interface mappings.

• Check Neutron Router ports (if applicable).

• Check that linux bridges contain the proper interfaces on compute and network nodes.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

Yes:

44 Chapter 1. Abstract

OpenStack-Ansible Documentation

• Good! The instance can ping its intended gateway. The issue may be north of the gateway or related to the
provider network.

• Check gateway or host routes on the Neutron subnet.

• Check Neutron security-group-rules, consider adding ICMP rule for testing.

• Check Neutron FloatingIP associations (if applicable).

• Check Neutron Router external gateway information (if applicable).

• Check upstream routes, NATs or access-control-lists.

Important: Do not continue until the instance can reach its gateway.

If VXLAN:

Does physical interface show link and all VLANs properly trunked across physical network?

No:

• Check cable, seating, physical switchport configuration, interface/bonding configuration, and general net-
work configuration. See general network troubleshooting documentation.

Yes:

• Good!

• Continue!

Important: Do not continue until physical network is properly configured.

Are VXLAN VTEP addresses able to ping each other?

No:

• Check br-vxlan interface on Compute and eth10 inside the Neutron network agent container.

• Check veth pairs between containers and linux bridges on the host.

• Check that linux bridges contain the proper interfaces on compute and network nodes.

Yes:

• Check ml2 config file for local VXLAN IP and other VXLAN configuration settings.

• Check VTEP learning method (multicast or l2population):

– If multicast, make sure the physical switches are properly allowing and distributing multicast
traffic.

Important: Do not continue until VXLAN endpoints have reachability to each other.

Does the instances IP address ping from networks DHCP namespace or other instances in the same network?

No:

• Check Nova console logs to see if the instance ever received its IP address initially.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

• Check that linux bridges contain the proper interfaces on compute and network nodes.

1.1. Operations Guide 45

OpenStack-Ansible Documentation

• Check Neutron DHCP agent logs.

• Check syslogs.

• Check Neutron linux bridge logs.

• Check that Bridge Forwarding Database (fdb) contains the proper entries on both the compute and Neutron
agent container.

Yes:

• Good! This suggests that the instance received its IP address and can reach local network resources.

Important: Do not continue until instance has an IP address and can reach local network resources.

Does the instances IP address ping from the gateway device (Neutron router namespace or another gateway device)?

No:

• Check Neutron L3 agent logs (if applicable).

• Check Neutron linux bridge logs.

• Check physical interface mappings.

• Check Neutron router ports (if applicable).

• Check that linux bridges contain the proper interfaces on compute and network nodes.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

• Check that Bridge Forwarding Database (fdb) contains the proper entries on both the compute and Neutron
agent container.

Yes:

• Good! The instance can ping its intended gateway.

• Check gateway or host routes on the Neutron subnet.

• Check Neutron security-group-rules, consider adding ICMP rule for testing.

• Check Neutron FloatingIP associations (if applicable).

• Check Neutron Router external gateway information (if applicable).

• Check upstream routes, NATs or access-control-lists.

Diagnose Image service issues

The glance-registry handles the database operations for managing the storage of the image index and properties.
The glance-api handles the API interactions and image store.

To troubleshoot problems or errors with the Image service, refer to /var/log/glance-api.log and /var/
log/glance-registry.log inside the glance api container.

You can also conduct the following activities which may generate logs to help identity problems:

1. Download an image to ensure that an image can be read from the store.

2. Upload an image to test whether the image is registering and writing to the image store.

3. Run the openstack image list command to ensure that the API and registry is working.

46 Chapter 1. Abstract

OpenStack-Ansible Documentation

For an example and more information, see Verify operation <https://docs.openstack.org/glance/latest/install/verify.html>_.
and Manage Images <https://docs.openstack.org/glance/latest/admin/manage-images.html>_

RabbitMQ issues

Analyze RabbitMQ queues

Analyze OpenStack service logs and RabbitMQ logs

Failed security hardening after host kernel upgrade from version 3.13

Ubuntu kernel packages newer than version 3.13 contain a change in module naming from nf_conntrack to
br_netfilter. After upgrading the kernel, run the openstack-hosts-setup.yml playbook against those
hosts. For more information, see OSA bug 157996.

Cached Ansible facts issues

At the beginning of a playbook run, information about each host is gathered, such as:

• Linux distribution

• Kernel version

• Network interfaces

To improve performance, particularly in large deployments, you can cache host facts and information.

OpenStack-Ansible enables fact caching by default. The facts are cached in JSON files within /etc/
openstack_deploy/ansible_facts.

Fact caching can be disabled by running export ANSIBLE_CACHE_PLUGIN=memory. To set this permanently,
set this variable in /usr/local/bin/openstack-ansible.rc. Refer to the Ansible documentation on fact
caching for more details.

Forcing regeneration of cached facts

Cached facts may be incorrect if the host receives a kernel upgrade or new network interfaces. Newly created bridges
also disrupt cache facts.

This can lead to unexpected errors while running playbooks, and require cached facts to be regenerated.

Run the following command to remove all currently cached facts for all hosts:

rm /etc/openstack_deploy/ansible_facts/*

New facts will be gathered and cached during the next playbook run.

To clear facts for a single host, find its file within /etc/openstack_deploy/ansible_facts/ and remove
it. Each host has a JSON file that is named after its hostname. The facts for that host will be regenerated on the next
playbook run.

1.1. Operations Guide 47

https://bugs.launchpad.net/openstack-ansible/+bug/1579963
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#fact-caching
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#fact-caching

OpenStack-Ansible Documentation

Failed ansible playbooks during an upgrade

Container networking issues

All LXC containers on the host have at least two virtual Ethernet interfaces:

• eth0 in the container connects to lxcbr0 on the host

• eth1 in the container connects to br-mgmt on the host

Note: Some containers, such as cinder, glance, neutron_agents, and swift_proxy have more than two
interfaces to support their functions.

Predictable interface naming

On the host, all virtual Ethernet devices are named based on their container as well as the name of the interface inside
the container:

${CONTAINER_UNIQUE_ID}_${NETWORK_DEVICE_NAME}

As an example, an all-in-one (AIO) build might provide a utility container called aio1_utility_container-d13b7132.
That container will have two network interfaces: d13b7132_eth0 and d13b7132_eth1.

Another option would be to use the LXC tools to retrieve information about the utility container. For example:

lxc-info -n aio1_utility_container-d13b7132

Name: aio1_utility_container-d13b7132
State: RUNNING
PID: 8245
IP: 10.0.3.201
IP: 172.29.237.204
CPU use: 79.18 seconds
BlkIO use: 678.26 MiB
Memory use: 613.33 MiB
KMem use: 0 bytes
Link: d13b7132_eth0
TX bytes: 743.48 KiB
RX bytes: 88.78 MiB
Total bytes: 89.51 MiB

Link: d13b7132_eth1
TX bytes: 412.42 KiB
RX bytes: 17.32 MiB
Total bytes: 17.73 MiB

The Link: lines will show the network interfaces that are attached to the utility container.

Review container networking traffic

To dump traffic on the br-mgmt bridge, use tcpdump to see all communications between the various containers. To
narrow the focus, run tcpdump only on the desired network interface of the containers.

48 Chapter 1. Abstract

OpenStack-Ansible Documentation

Restoring inventory from backup

OpenStack-Ansible maintains a running archive of inventory. If a change has been introduced into the system that
has broken inventory or otherwise has caused an unforseen issue, the inventory can be reverted to an early version.
The backup file /etc/openstack_deploy/backup_openstack_inventory.tar contains a set of times-
tamped inventories that can be restored as needed.

Example inventory restore process.

mkdir /tmp/inventory_restore
cp /etc/openstack_deploy/backup_openstack_inventory.tar /tmp/inventory_restore/backup_
↪→openstack_inventory.tar
cd /tmp/inventory_restore
tar xf backup_openstack_inventory.tar
Identify the inventory you wish to restore as the running inventory
cp openstack_inventory.json-YYYYMMDD_SSSSSS.json /etc/openstack_deploy/openstack_
↪→inventory.json
cd -
rm -rf /tmp/inventory_restore

At the completion of this operation the inventory will be restored to the earlier version.

1.1.8 Minor version upgrade

Upgrades between minor versions of OpenStack-Ansible require updating the repository clone to the latest minor
release tag, updating the ansible roles, and then running playbooks against the target hosts. This section provides
instructions for those tasks.

Prerequisites

To avoid issues and simplify troubleshooting during the upgrade, disable the security hardening role by setting
the apply_security_hardening variable to False in the user_variables.yml file, and backup your
openstack-ansible installation.

Execute a minor version upgrade

A minor upgrade typically requires the following steps:

1. Change directory to the cloned repositorys root directory:

cd /opt/openstack-ansible

2. Ensure that your OpenStack-Ansible code is on the latest Train tagged release:

git checkout 20.2.7

3. Update all the dependent roles to the latest version:

./scripts/bootstrap-ansible.sh

4. Change to the playbooks directory:

cd playbooks

5. Update the hosts:

1.1. Operations Guide 49

OpenStack-Ansible Documentation

openstack-ansible setup-hosts.yml

6. Update the infrastructure:

openstack-ansible -e rabbitmq_upgrade=true \
setup-infrastructure.yml

7. Update all OpenStack services:

openstack-ansible setup-openstack.yml

Note: You can limit upgrades to specific OpenStack components. See the following section for details.

Upgrade specific components

You can limit upgrades to specific OpenStack components by running each of the component playbooks against groups.

For example, you can update only the Compute hosts by running the following command:

openstack-ansible os-nova-install.yml --limit nova_compute

To update only a single Compute host, run the following command:

openstack-ansible os-nova-install.yml --limit <node-name> \
--skip-tags 'nova-key'

Note: Skipping the nova-key tag is necessary so that the keys on all Compute hosts are not gathered.

To see which hosts belong to which groups, use the inventory-manage.py script to show all groups and their
hosts. For example:

1. Change directory to the repository clone root directory:

cd /opt/openstack-ansible

2. Show all groups and which hosts belong to them:

./scripts/inventory-manage.py -G

3. Show all hosts and the groups to which they belong:

./scripts/inventory-manage.py -g

To see which hosts a playbook runs against, and to see which tasks are performed, run the following commands (for
example):

1. Change directory to the repository clone playbooks directory:

cd /opt/openstack-ansible/playbooks

2. See the hosts in the nova_compute group that a playbook runs against:

50 Chapter 1. Abstract

OpenStack-Ansible Documentation

openstack-ansible os-nova-install.yml --limit nova_compute \
--list-hosts

3. See the tasks that are executed on hosts in the nova_compute group:

openstack-ansible os-nova-install.yml --limit nova_compute \
--skip-tags 'nova-key' \
--list-tasks

1.1.9 Major upgrades

This guide provides information about the upgrade process from Stein to Train for OpenStack-Ansible.

Note: You can only upgrade between sequential releases.

Introduction

For upgrades between major versions, the OpenStack-Ansible repository provides playbooks and scripts to upgrade
an environment. The run-upgrade.sh script runs each upgrade playbook in the correct order, or playbooks can
be run individually if necessary. Alternatively, a deployer can upgrade manually.

For more information about the major upgrade process, see Upgrading by using a script and Upgrading manually.

Warning: The upgrade is always under active development. Test this on a development environment first.

Upgrading by using a script

The Train release series of OpenStack-Ansible contains the code for migrating from Stein to Train.

Running the upgrade script

To upgrade from Stein to Train by using the upgrade script, perform the following steps in the
openstack-ansible directory:

1. Change directory to the repository clone root directory:

cd /opt/openstack-ansible

2. Run the following commands:

git checkout 20.2.7
./scripts/run-upgrade.sh

For more information about the steps performed by the script, see Upgrading manually.

1.1. Operations Guide 51

OpenStack-Ansible Documentation

Upgrading manually

Manual upgrades are useful for scoping the changes in the upgrade process (for example, in very large deployments
with strict SLA requirements), or performing other upgrade automation beyond that provided by OpenStack-Ansible.

The steps detailed here match those performed by the run-upgrade.sh script. You can safely run these steps
multiple times.

Preflight checks

Before starting with the upgrade, perform preflight health checks to ensure your environment is stable. If any of those
checks fail, ensure that the issue is resolved before continuing.

Check out the Train release

Ensure that your OpenStack-Ansible code is on the latest Train tagged release.

git checkout 20.2.7

Prepare the shell variables

Define these variables to reduce typing when running the remaining upgrade tasks. Because these environments
variables are shortcuts, this step is optional. If you prefer, you can reference the files directly during the upgrade.

cd /opt/openstack-ansible
export MAIN_PATH="$(pwd)"
export SCRIPTS_PATH="${MAIN_PATH}/scripts"

Backup the existing OpenStack-Ansible configuration

Make a backup of the configuration of the environment:

source_series_backup_file="/openstack/backup-openstack-ansible-stein.tar.gz"
tar zcf ${source_series_backup_file} /etc/openstack_deploy /etc/ansible/ /
↪→usr/local/bin/openstack-ansible.rc

Bootstrap the new Ansible and OSA roles

To ensure that there is no currently set ANSIBLE_INVENTORY to override the default inventory location, we unset
the environment variable.

unset ANSIBLE_INVENTORY

Bootstrap Ansible again to ensure that all OpenStack-Ansible role dependencies are in place before you run playbooks
from the Train release.

${SCRIPTS_PATH}/bootstrap-ansible.sh

52 Chapter 1. Abstract

OpenStack-Ansible Documentation

Change to the playbooks directory

Change to the playbooks directory to simplify the CLI commands from here on in the procedure, given that most
playbooks executed are in this directory.

cd playbooks

Implement changes to OSA configuration

If there have been any OSA variable name changes or environment/inventory changes, there is a playbook to handle
those changes to ensure service continuity in the environment when the new playbooks run. The playbook is tagged to
ensure that any part of it can be executed on its own or skipped. Please review the contents of the playbook for more
information.

openstack-ansible "${SCRIPTS_PATH}/upgrade-utilities/deploy-config-changes.yml" -e
↪→'placement_migrate_flag=true'

Upgrade hosts

Before installing the infrastructure and OpenStack, update the host machines.

openstack-ansible setup-hosts.yml --limit '!galera_all:!rabbitmq_all'

This command is the same setting up hosts on a new installation. The galera_all and rabbitmq_all host
groups are excluded to prevent reconfiguration and restarting of any of those containers as they need to be updated,
but not restarted.

Once that is complete, upgrade the final host groups with the flag to prevent container restarts.

openstack-ansible setup-hosts.yml -e 'lxc_container_allow_restarts=false' --limit
↪→'galera_all:rabbitmq_all'

Upgrade infrastructure

We can now go ahead with the upgrade of all the infrastructure components. To ensure that rabbitmq and mariadb are
upgraded, and to handle the transition from the nova placement service to the extracted placement service, we pass the
appropriate flags.

openstack-ansible setup-infrastructure.yml -e 'galera_upgrade=true' -e 'rabbitmq_
↪→upgrade=true' -e 'placement_migrate_flag=true'

With this complete, we can now restart the mariadb containers one at a time, ensuring that each is started, responding,
and synchronized with the other nodes in the cluster before moving on to the next steps. This step allows the LXC
container configuration that you applied earlier to take effect, ensuring that the containers are restarted in a controlled
fashion.

openstack-ansible "${SCRIPTS_PATH}/upgrade-utilities/galera-cluster-rolling-restart.
↪→yml"

During upgrade from S->T nova may fail with DB migrations because of the insufficient size of the table type.

1.1. Operations Guide 53

OpenStack-Ansible Documentation

openstack-ansible "${SCRIPTS_PATH}/upgrade-utilities/galera-row-format-switch.yml"

Upgrade OpenStack

We can now go ahead with the upgrade of all the OpenStack components, passing the flag that enabled the transition
from the nova placement service to the extracted placement service.

openstack-ansible setup-openstack.yml -e 'placement_migrate_flag=true'

Remove legacy nova placement service backends

Now that the new extracted placement service is operational, we can remove the legacy implementation from the load
balancer.

openstack-ansible haproxy-install.yml

1.2 User Guide

In this section, you will find user stories and examples relevant to deploying OpenStack-Ansible.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for step-by-step
instructions on how to deploy the OpenStack packages and dependencies on your cloud using OpenStack-Ansible.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.

For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

1.2.1 Quickstart: AIO

All-in-one (AIO) builds are a great way to perform an OpenStack-Ansible build for:

• a development environment

• an overview of how all of the OpenStack services fit together

• a simple lab deployment

Although AIO builds arent recommended for large production deployments, theyre great for smaller proof-of-concept
deployments.

Absolute minimum server resources (currently used for gate checks):

• 8 vCPUs

• 50GB free disk space on the root partition

• 8GB RAM

Recommended server resources:

• CPU/motherboard that supports hardware-assisted virtualization

• 8 CPU Cores

54 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://docs.openstack.org/openstack-ansible/train/admin/index.html
https://docs.openstack.org/openstack-ansible/train/contributor/index.html
https://docs.openstack.org/openstack-ansible/train/reference/index.html
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization

OpenStack-Ansible Documentation

• 80GB free disk space on the root partition, or 60GB+ on a blank secondary disk. Using a secondary disk requires
the use of the bootstrap_host_data_disk_device parameter. Please see Building an AIO for more
details.

• 16GB RAM

It is possible to perform AIO builds within a virtual machine for demonstration and evaluation, but your virtual
machines will perform poorly unless nested virtualization is available. For production workloads, multiple nodes for
specific roles are recommended.

Building an AIO

Overview

There are three steps to running an AIO build, with an optional first step should you need to customize your build:

• Prepare the host

• Bootstrap Ansible and the required roles

• Bootstrap the AIO configuration

• Run playbooks

Prepare the host

When building an AIO on a new server, it is recommended that all system packages are upgraded and then reboot into
the new kernel:

Note: Execute the following commands and scripts as the root user.

Ubuntu
apt-get update
apt-get dist-upgrade
reboot

CentOS
yum upgrade
yum install git
reboot

Note: Before rebooting, in /etc/sysconfig/selinux, make sure that SELINUX=enforcing``is
changed to ``SELINUX=disabled. SELinux enabled is not currently supported in OpenStack-Ansible for
CentOS/RHEL due to a lack of maintainers for the feature.

openSUSE
zypper up
zypper in git-core
reboot

1.2. User Guide 55

OpenStack-Ansible Documentation

Note: If you are installing with limited connectivity, please review the Installing with limited connectivity appendix
in the Deployment Guide before proceeding.

Bootstrap Ansible and the required roles

Start by cloning the OpenStack-Ansible repository and changing into the repository root directory:

git clone https://opendev.org/openstack/openstack-ansible \
/opt/openstack-ansible

cd /opt/openstack-ansible

Next switch the applicable branch/tag to be deployed from. Note that deploying from the head of a branch may
result in an unstable build due to changes in flight and upstream OpenStack changes. For a test (for example, not a
development) build it is usually best to checkout the latest tagged version.

List all existing tags.
git tag -l

Checkout the stable branch and find just the latest tag
git checkout stable/train
git describe --abbrev=0 --tags

Checkout the latest tag from either method of retrieving the tag.
git checkout 20.2.7

Note: The Train release is only compatible with Debian 9 (stretch), Debian 10 (buster), Ubuntu 18.04 (Bionic Beaver),
CentOS 7 and openSUSE Leap 15.X.

The next step is to bootstrap Ansible and the Ansible roles for the development environment.

Run the following to bootstrap Ansible and the required roles:

scripts/bootstrap-ansible.sh

Note: You might encounter an error while running the Ansible bootstrap script when building some of the Python
extensions (like pycrypto) which says:

configure: error: cannot run C compiled programs.

The reason of this failure might be resulting from a noexec mount flag used for the filesystem associated with /tmp
which you can check by running the following command:

mount | grep $(df /tmp | tail -n +2 | awk '{print $1}') | grep noexec

If this is the case you can specify an alternate path which does not have this mount option set:

TMPDIR=/var/tmp scripts/bootstrap-ansible.sh

56 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html

OpenStack-Ansible Documentation

Bootstrap the AIO configuration

In order for all the services to run, the host must be prepared with the appropriate disks partitioning, packages, network
configuration and configurations for the OpenStack Deployment.

By default the AIO bootstrap scripts deploy a base set of OpenStack services with sensible defaults for the purpose of
a gate check, development or testing system.

Review the bootstrap-host role defaults file to see various configuration options. Deployers have the option to change
how the host is bootstrapped. This is useful when you wish the AIO to make use of a secondary data disk, or when
using this role to bootstrap a multi-node development environment.

The bootstrap script is pre-set to pass the environment variable BOOTSTRAP_OPTS as an additional option to the
bootstrap process. For example, if you wish to set the bootstrap to re-partition a specific secondary storage device
(/dev/sdb), which will erase all of the data on the device, then execute:

export BOOTSTRAP_OPTS="bootstrap_host_data_disk_device=sdb"

Additional options may be implemented by simply concatenating them with a space between each set of options, for
example:

export BOOTSTRAP_OPTS="bootstrap_host_data_disk_device=sdb"
export BOOTSTRAP_OPTS="${BOOTSTRAP_OPTS} bootstrap_host_data_disk_fs_type=xfs"

For the default AIO scenario, the AIO configuration preparation is completed by executing:

scripts/bootstrap-aio.sh

To add OpenStack Services over and above the bootstrap-aio default services for the applicable scenario, copy the
conf.d files with the .aio file extension into /etc/openstack_deploy and rename then to .yml files. For
example, in order to enable the OpenStack Telemetry services, execute the following:

cd /opt/openstack-ansible/
cp etc/openstack_deploy/conf.d/{aodh,gnocchi,ceilometer}.yml.aio /etc/openstack_
↪→deploy/conf.d/
for f in $(ls -1 /etc/openstack_deploy/conf.d/*.aio); do mv -v ${f} ${f%.*}; done

It is possible to also do this (and change other defaults) during the bootstrap script initial execution by changing the
SCENARIO environment variable before running the script. The key word aio will ensure that a basic set of OpenStack
services (cinder, glance, horizon, neutron, nova) will be deployed. The key words lxc and nspawn can be used to set the
container back-end, while the key word metal will deploy all services without containers. In order to implement any
other services, add the name of the conf.d file name without the .yml.aio extension into the SCENARIO environment
variable. Each key word should be delimited by an underscore. For example, the following will implement an AIO
with barbican, cinder, glance, horizon, neutron, and nova. It will set the cinder storage back-end to ceph and will make
use of LXC as the container back-end.

export SCENARIO='aio_lxc_barbican_ceph'
scripts/bootstrap-aio.sh

Note: If the metal and aio key words are used together, horizon will not be deployed because haproxy and horizon
will conflict on the same listening ports.

To add any global overrides, over and above the defaults for the applicable scenario, edit /etc/
openstack_deploy/user_variables.yml. In order to understand the various ways that you can override
the default behaviour set out in the roles, playbook and group variables, see Overriding default configuration.

1.2. User Guide 57

https://opendev.org/openstack/openstack-ansible/src/tests/roles/bootstrap-host/defaults/main.yml

OpenStack-Ansible Documentation

See the Deployment Guide for a more detailed break down of how to implement your own configuration rather than
to use the AIO bootstrap.

Run playbooks

Finally, run the playbooks by executing:

cd /opt/openstack-ansible/playbooks
openstack-ansible setup-hosts.yml
openstack-ansible setup-infrastructure.yml
openstack-ansible setup-openstack.yml

The installation process will take a while to complete, but here are some general estimates:

• Bare metal systems with SSD storage: ~ 30-50 minutes

• Virtual machines with SSD storage: ~ 45-60 minutes

• Systems with traditional hard disks: ~ 90-120 minutes

Once the playbooks have fully executed, it is possible to experiment with various settings changes in /etc/
openstack_deploy/user_variables.yml and only run individual playbooks. For example, to run the play-
book for the Keystone service, execute:

cd /opt/openstack-ansible/playbooks
openstack-ansible os-keystone-install.yml

Rebooting an AIO

As the AIO includes all three cluster members of MariaDB/Galera, the cluster has to be re-initialized after the host is
rebooted.

This is done by executing the following:

cd /opt/openstack-ansible/playbooks
openstack-ansible -e galera_ignore_cluster_state=true galera-install.yml

If this fails to get the database cluster back into a running state, then please make use of the Galera Cluster Recovery
</admin/maintenance-tasks.html#galera-cluster-recovery> section in the operations guide.

Rebuilding an AIO

Sometimes it may be useful to destroy all the containers and rebuild the AIO. While it is preferred that the AIO is
entirely destroyed and rebuilt, this isnt always practical. As such the following may be executed instead:

Move to the playbooks directory.
cd /opt/openstack-ansible/playbooks

Destroy all of the running containers.
openstack-ansible lxc-containers-destroy.yml

On the host stop all of the services that run locally and not
within a container.
for i in \

$(ls /etc/init \
(continues on next page)

58 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html

OpenStack-Ansible Documentation

(continued from previous page)

| grep -e "nova\|swift\|neutron\|cinder" \
| awk -F'.' '{print $1}'); do \

service $i stop; \
done

Uninstall the core services that were installed.
for i in $(pip freeze | grep -e "nova\|neutron\|keystone\|swift\|cinder"); do \

pip uninstall -y $i; done

Remove crusty directories.
rm -rf /openstack /etc/{neutron,nova,swift,cinder} \

/var/log/{neutron,nova,swift,cinder}

Remove the pip configuration files on the host
rm -rf /root/.pip

Remove the apt package manager proxy
rm /etc/apt/apt.conf.d/00apt-cacher-proxy

Should an existing AIO environment need to be reinstalled, the most efficient method is to destroy the host operating
system and start over. For this reason, AIOs are best run inside of some form of virtual machine or cloud guest.

Reference Diagram for an AIO Build

Here is a basic diagram that attempts to illustrate what the resulting AIO deployment looks like.

This diagram is not to scale and is not even 100% accurate, this diagram was built for informational purposes only and
should ONLY be used as such.

------->[ETH0 == Public Network]
|
V [*] Socket Connections

[HOST MACHINE] [<>v^] Network Connections

* ^ *
| | |---
| | |
| |---------------->[HAProxy] |
| ^ |
| | |
| V |
| (BR-Interfaces)<------ |
| ^ * | |

-[LXC]--*----------------------|-----|------|----| |
			V *			
*		[Galera x3]				
[Memcached]<------------						

-------[Rsyslog]<--------------|--| | * |
[Repos Server x3]<------	---	-->[RabbitMQ x3]	
[Horizon x2]<-----------			
[Nova api ec2]<---------	--		
[Nova api os]<----------	->		
[Nova console]<---------			
[Nova Cert]<------------	->		

(continues on next page)

1.2. User Guide 59

OpenStack-Ansible Documentation

(continued from previous page)

| [Cinder api]<-----------|->| | |
| [Glance api]<-----------|->| | |
| [Heat apis]<------------|->| | [Loop back devices]*-*
[Heat engine]<----------	->		\ \			
------>[Nova api metadata]			{ LVM } { XFS x3 }			
	[Nova conductor]<-------			* *		
	----->[Nova scheduler]--------	->				
	[Keystone x3]<----------	->				
		--->[Neutron agents]*-------	--	---------------------------*		
		[Neutron server]<-------	->			
			->[Swift proxy]<-----------			

-|-|-|-[Cinder volume]*----------------------* | |

	V		*		
---->[Compute]*[Neutron linuxbridge]<---| |->[Swift storage]-

1.2.2 Network architectures

OpenStack-Ansible supports a number of different network architectures, and can be deployed using a single net-
work interface for non-production workloads or using multiple network interfaces or bonded interfaces for production
workloads.

The OpenStack-Ansible reference architecture segments traffic using VLANs across multiple network interfaces or
bonds. Common networks used in an OpenStack-Ansible deployment can be observed in the following table:

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Overlay Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

The Management Network, also referred to as the container network, provides management of and com-
munication between the infrastructure and OpenStack services running in containers or on metal. The management
network uses a dedicated VLAN typically connected to the br-mgmt bridge, and may also be used as the primary
interface used to interact with the server via SSH.

The Overlay Network, also referred to as the tunnel network, provides connectivity between hosts for the
purpose of tunnelling encapsulated traffic using VXLAN, GENEVE, or other protocols. The overlay network
uses a dedicated VLAN typically connected to the br-vxlan bridge.

The Storage Network provides segregated access to Block Storage from OpenStack services such as Cinder and
Glance. The storage network uses a dedicated VLAN typically connected to the br-storage bridge.

Note: The CIDRs and VLANs listed for each network are examples and may be different in your environment.

Additional VLANs may be required for the following purposes:

• External provider networks for Floating IPs and instances

• Self-service project/tenant networks for instances

60 Chapter 1. Abstract

OpenStack-Ansible Documentation

• Other OpenStack services

Network interfaces

Single interface or bond

OpenStack-Ansible supports the use of a single interface or set of bonded interfaces that carry traffic for OpenStack
services as well as instances.

The following diagram demonstrates hosts using a single interface:

The following diagram demonstrates hosts using a single bond:

1.2. User Guide 61

OpenStack-Ansible Documentation

Each host will require the correct network bridges to be implemented. The following is the /etc/network/
interfaces file for infra1 using a single bond.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name, ensure that all
references to eth0 in all configuration files are replaced with the appropriate name. The same applies to additional
network interfaces.

This is a multi-NIC bonded configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 for increased resiliency in the case of one interface card
failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

auto eth2

(continues on next page)

62 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

iface eth2 inet manual
bond-master bond0

auto eth3
iface eth3 inet manual

Create a bonded interface. Note that the "bond-slaves" is set to none. This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond0.30
iface bond0.30 inet manual

vlan-raw-device bond0

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
Nodes hosting Neutron agents must have an IP address on this interface,
including COMPUTE, NETWORK, and collapsed INFRA/NETWORK nodes.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.30
address 172.29.240.16

(continues on next page)

1.2. User Guide 63

OpenStack-Ansible Documentation

(continued from previous page)

netmask 255.255.252.0

OpenStack Networking VLAN bridge
#
The "br-vlan" bridge is no longer necessary for deployments unless Neutron
agents are deployed in a container. Instead, a direct interface such as
bond0 can be specified via the "host_bind_override" override when defining
provider networks.
#
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Multiple interfaces or bonds

OpenStack-Ansible supports the use of a multiple interfaces or sets of bonded interfaces that carry traffic for OpenStack
services and instances.

The following diagram demonstrates hosts using multiple interfaces:

64 Chapter 1. Abstract

OpenStack-Ansible Documentation

The following diagram demonstrates hosts using multiple bonds:

Each host will require the correct network bridges to be implemented. The following is the /etc/network/
interfaces file for infra1 using multiple bonded interfaces.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name, ensure that all
references to eth0 in all configuration files are replaced with the appropriate name. The same applies to additional
network interfaces.

1.2. User Guide 65

OpenStack-Ansible Documentation

This is a multi-NIC bonded configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none. This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30

(continues on next page)

66 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

iface bond1.30 inet manual
vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
Nodes hosting Neutron agents must have an IP address on this interface,
including COMPUTE, NETWORK, and collapsed INFRA/NETWORK nodes.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
#
The "br-vlan" bridge is no longer necessary for deployments unless Neutron
agents are deployed in a container. Instead, a direct interface such as
bond1 can be specified via the "host_bind_override" override when defining
provider networks.
#
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#

(continues on next page)

1.2. User Guide 67

OpenStack-Ansible Documentation

(continued from previous page)

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Additional resources

For more information on how to properly configure network interface files and OpenStack-Ansible configuration files
for different deployment scenarios, please refer to the following:

• Configuring a test environment

• Configuring a homogeneous production environment

• Using provider network groups for a heterogeneous environment

For network agent and container networking toplogies, please refer to the following:

• Container networking architecture

1.2.3 Test environment example

Here is an example test environment for a working OpenStack-Ansible (OSA) deployment with a small number of
servers.

This example environment has the following characteristics:

• One infrastructure (control plane) host (8 vCPU, 8 GB RAM, 60 GB HDD)

• One compute host (8 vCPU, 8 GB RAM, 60 GB HDD)

• One Network Interface Card (NIC) for each host

• A basic compute kit environment, with the Image (glance) and Compute (nova) services set to use file-backed
storage.

• Internet access via the router address 172.29.236.1 on the Management Network

68 Chapter 1. Abstract

https://docs.openstack.org/openstack-ansible/train/user/test/example.html
https://docs.openstack.org/openstack-ansible/train/user/prod/example.html
https://docs.openstack.org/openstack-ansible/train/user/prod/provnet_groups.html
https://docs.openstack.org/openstack-ansible/train/reference/architecture/container-networking.html

OpenStack-Ansible Documentation

Network configuration

Switch port configuration

The following example provides a good reference for switch configuration and cab layout. This example may be more
that what is required for basic setups however it can be adjusted to just about any configuration. Additionally you will
need to adjust the VLANS noted within this example to match your environment.

1.2. User Guide 69

OpenStack-Ansible Documentation

Network CIDR/VLAN assignments

The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

IP assignments

The following host name and IP address assignments are used for this environment.

70 Chapter 1. Abstract

OpenStack-Ansible Documentation

Host name Management IP Tunnel (VxLAN) IP Storage IP
infra1 172.29.236.11 172.29.240.11
compute1 172.29.236.12 172.29.240.12 172.29.244.12
storage1 172.29.236.13 172.29.244.13

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/network/
interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name, ensure that all
references to eth0 in all configuration files are replaced with the appropriate name. The same applies to additional
network interfaces.

This is a single-NIC configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Physical interface
auto eth0
iface eth0 inet manual

Container/Host management VLAN interface
auto eth0.10
iface eth0.10 inet manual

vlan-raw-device eth0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto eth0.30
iface eth0.30 inet manual

vlan-raw-device eth0

Storage network VLAN interface (optional)
auto eth0.20
iface eth0.20 inet manual

vlan-raw-device eth0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

(continues on next page)

1.2. User Guide 71

OpenStack-Ansible Documentation

(continued from previous page)

Bind the External VIP
auto br-mgmt:0
iface br-mgmt:0 inet static

address 172.29.236.10
netmask 255.255.252.0

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#
auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.30
address 172.29.240.11
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports eth0 br-vlan-veth

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the

(continues on next page)

72 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.20
address 172.29.244.12
netmask 255.255.252.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

cidr_networks:

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
The internal and external VIP should be different IPs, however they
do not need to be on separate networks.
external_lb_vip_address: 172.29.236.10
internal_lb_vip_address: 172.29.236.11
management_bridge: "br-mgmt"
provider_networks:
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:
- all_containers

(continues on next page)

1.2. User Guide 73

OpenStack-Ansible Documentation

(continued from previous page)

- hosts
is_container_address: true

- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

###
Infrastructure
###

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.11

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.11

load balancer
(continues on next page)

74 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

haproxy_hosts:
infra1:
ip: 172.29.236.11

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.11

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.11

glance
image_hosts:

infra1:
ip: 172.29.236.11

placement
placement-infra_hosts:

infra1:
ip: 172.29.236.11

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.11

heat
orchestration_hosts:

infra1:
ip: 172.29.236.11

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.11

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.11

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.236.12

cinder storage host (LVM-backed)
storage_hosts:

storage1:
ip: 172.29.236.13

(continues on next page)

1.2. User Guide 75

OpenStack-Ansible Documentation

(continued from previous page)

container_vars:
cinder_backends:

limit_container_types: cinder_volume
lvm:
volume_group: cinder-volumes
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name: LVM_iSCSI
iscsi_ip_address: "172.29.244.13"

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible groups.
This allows the deployer to set whether the services will run in a container (the default), or on the host (on metal).

For this environment you do not need the /etc/openstack_deploy/env.d folder as the defaults set by
OpenStack-Ansible are suitable.

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default vari-
ables.

For this environment, if you want to use the same IP address for the internal and external endpoints, you will need
to ensure that the internal and public OpenStack endpoints are served with the same protocol. This is done with the
following content:

This file contains an example of the global variable overrides
which may need to be set for a production environment.

OpenStack public endpoint protocol
openstack_service_publicuri_proto: http

1.2.4 Production environment

This is an example production environment for a working OpenStack-Ansible (OSA) deployment with high availability
services.

This example environment has the following characteristics:

• Three infrastructure (control plane) hosts

• Two compute hosts

• One NFS storage device

• One log aggregation host

• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

• Full compute kit with the Telemetry service (ceilometer) included, with NFS configured as a storage back end
for the Image (glance), and Block Storage (cinder) services

• Internet access via the router address 172.29.236.1 on the Management Network

76 Chapter 1. Abstract

OpenStack-Ansible Documentation

Network configuration

Network CIDR/VLAN assignments

The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
lb_vip_address 172.29.236.9
infra1 172.29.236.11 172.29.240.11
infra2 172.29.236.12 172.29.240.12
infra3 172.29.236.13 172.29.240.13
log1 172.29.236.14
NFS Storage 172.29.244.15
compute1 172.29.236.16 172.29.240.16 172.29.244.16
compute2 172.29.236.17 172.29.240.17 172.29.244.17

1.2. User Guide 77

OpenStack-Ansible Documentation

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/network/
interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name, ensure that all
references to eth0 in all configuration files are replaced with the appropriate name. The same applies to additional
network interfaces.

This is a multi-NIC bonded configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none. This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup

(continues on next page)

78 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual

(continues on next page)

1.2. User Guide 79

OpenStack-Ansible Documentation

(continued from previous page)

bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports bond1 br-vlan-veth

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

80 Chapter 1. Abstract

OpenStack-Ansible Documentation

cidr_networks:

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
internal_lb_vip_address: 172.29.236.9
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:
- all_containers
- hosts

is_container_address: true
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"

(continues on next page)

1.2. User Guide 81

OpenStack-Ansible Documentation

(continued from previous page)

range: "101:200,301:400"
net_name: "vlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

###
Infrastructure
###

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.11
container_vars:

Optional | Example setting the container_tech for a target host.
container_tech: lxc

infra2:
ip: 172.29.236.12
container_vars:

Optional | Example setting the container_tech for a target host.
container_tech: nspawn

infra3:
ip: 172.29.236.13

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

rsyslog server
log_hosts:

(continues on next page)

82 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

log1:
ip: 172.29.236.14

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

glance
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
image_hosts:

infra1:
ip: 172.29.236.11
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra2:
ip: 172.29.236.12
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra3:
ip: 172.29.236.13
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
(continues on next page)

1.2. User Guide 83

OpenStack-Ansible Documentation

(continued from previous page)

remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

placement
placement-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

heat
orchestration_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

ceilometer (telemetry data collection)
metering-infra_hosts:
infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
(continues on next page)

84 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

ip: 172.29.236.13

aodh (telemetry alarm service)
metering-alarm_hosts:
infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

gnocchi (telemetry metrics storage)
metrics_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:
compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

cinder volume hosts (NFS-backed)
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
storage_hosts:

infra1:
ip: 172.29.236.11
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

infra2:
ip: 172.29.236.12
container_vars:

cinder_backends:
(continues on next page)

1.2. User Guide 85

OpenStack-Ansible Documentation

(continued from previous page)

limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

infra3:
ip: 172.29.236.13
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible groups.
This allows the deployer to set whether the services will run in a container (the default), or on the host (on metal).

For this environment, the cinder-volume runs in a container on the infrastructure hosts. To achieve this, implement
/etc/openstack_deploy/env.d/cinder.yml with the following content:

This file contains an example to show how to set
the cinder-volume service to run in a container.
#
Important note:
When using LVM or any iSCSI-based cinder backends, such as NetApp with
iSCSI protocol, the cinder-volume service *must* run on metal.
Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855

container_skel:
cinder_volumes_container:
properties:

is_metal: false

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default vari-
ables.

For this environment, implement the load balancer on the infrastructure hosts. Ensure that keepalived is also configured
with HAProxy in /etc/openstack_deploy/user_variables.yml with the following content.

86 Chapter 1. Abstract

OpenStack-Ansible Documentation

This file contains an example of the global variable overrides
which may need to be set for a production environment.

Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "<external_vip_address>/<netmask>"
haproxy_keepalived_internal_vip_cidr: "172.29.236.0/22"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt

1.2.5 Provider network groups

Many network configuration examples assume a homogenous environment, where each server is configured identically
and consistent network interfaces and interface names can be assumed across all hosts.

Recent changes to OSA enables deployers to define provider networks that apply to particular inventory groups and
allows for a heterogeneous network configuration within a cloud environment. New groups can be created or existing
inventory groups, such as network_hosts or compute_hosts, can be used to ensure certain configurations are
applied only to hosts that meet the given parameters.

Before reading this document, please review the following scenario:

• Production environment

This example environment has the following characteristics:

• A network_hosts group consisting of three collapsed infrastructure/network (control plane) hosts

• A compute_hosts group consisting of two compute hosts

• Multiple Network Interface Cards (NIC) used as provider network interfaces that vary between hosts

Note: The groups network_hosts and compute_hosts are pre-defined groups in an OpenStack-Ansible de-
ployment.

The following diagram demonstates servers with different network interface names:

1.2. User Guide 87

https://docs.openstack.org/openstack-ansible/train/user/prod/example.html

OpenStack-Ansible Documentation

In this example environment, infrastructure/network nodes hosting L2/L3/DHCP agents will utilize an interface named
ens1f0 for the provider network physnet1. Compute nodes, on the other hand, will utilize an interface named
ens2f0 for the same physnet1 provider network.

Note: Differences in network interface names may be the result of a difference in drivers and/or PCI slot locations.

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

cidr_networks:

(continues on next page)

88 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
internal_lb_vip_address: 172.29.236.9
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:
- all_containers
- hosts

is_container_address: true
#
The below provider network defines details related to vxlan traffic,
including the range of VNIs to assign to project/tenant networks and
other attributes.
#
The network details will be used to populate the respective network
configuration file(s) on the members of the listed groups.
#
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- network_hosts
- compute_hosts

#
The below provider network(s) define details related to a given provider
network: physnet1. Details include the name of the veth interface to
connect to the bridge when agent on_metal is False (container_interface)
or the physical interface to connect to the bridge when agent on_metal
is True (host_bind_override), as well as the network type. The provider
network name (net_name) will be used to build a physical network mapping

(continues on next page)

1.2. User Guide 89

OpenStack-Ansible Documentation

(continued from previous page)

to a network interface; either container_interface or host_bind_override
(when defined).
#
The network details will be used to populate the respective network
configuration file(s) on the members of the listed groups. In this
example, host_bind_override specifies the ens1f0 interface and applies
only to the members of network_hosts:
#
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "ens1f0"
type: "flat"
net_name: "physnet1"
group_binds:
- network_hosts

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
host_bind_override: "ens1f0"
type: "vlan"
range: "101:200,301:400"
net_name: "physnet1"
group_binds:
- network_hosts

#
The below provider network(s) also define details related to the
physnet1 provider network. In this example, however, host_bind_override
specifies the ens2f0 interface and applies only to the members of
compute_hosts:
#
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "ens2f0"
type: "flat"
net_name: "physnet1"
group_binds:
- compute_hosts

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
host_bind_override: "ens2f0"
type: "vlan"
range: "101:200,301:400"
net_name: "physnet1"
group_binds:
- compute_hosts

#
The below provider network defines details related to storage traffic.
#
- network:

container_bridge: "br-storage"
(continues on next page)

90 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

###
Infrastructure
###

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.11
container_vars:

Optional | Example setting the container_tech for a target host.
container_tech: lxc

infra2:
ip: 172.29.236.12
container_vars:

Optional | Example setting the container_tech for a target host.
container_tech: nspawn

infra3:
ip: 172.29.236.13

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

rsyslog server
log_hosts:

log1:
ip: 172.29.236.14

###
OpenStack
###

(continues on next page)

1.2. User Guide 91

OpenStack-Ansible Documentation

(continued from previous page)

keystone
identity_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

glance
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
image_hosts:

infra1:
ip: 172.29.236.11
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra2:
ip: 172.29.236.12
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra3:
ip: 172.29.236.13
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

placement
(continues on next page)

92 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

placement-infra_hosts:
infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

heat
orchestration_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

ceilometer (telemetry data collection)
metering-infra_hosts:
infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

aodh (telemetry alarm service)
metering-alarm_hosts:
infra1:
ip: 172.29.236.11

(continues on next page)

1.2. User Guide 93

OpenStack-Ansible Documentation

(continued from previous page)

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

gnocchi (telemetry metrics storage)
metrics_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:
compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

cinder volume hosts (NFS-backed)
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
storage_hosts:

infra1:
ip: 172.29.236.11
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

infra2:
ip: 172.29.236.12
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares

(continues on next page)

94 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

infra3:
ip: 172.29.236.13
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

Hosts in the network_hosts group will map physnet1 to the ens1f0 interface, while hosts in the
compute_hosts group will map physnet1 to the ens2f0 interface. Additional provider mappings can be
established using the same format in a separate definition.

An additional provider interface definition named physnet2 using different interfaces between hosts may resemble
the following:

- network:
container_bridge: "br-vlan2"
container_type: "veth"
container_interface: "eth13"
host_bind_override: "ens1f1"
type: "vlan"
range: "2000:2999"
net_name: "physnet2"
group_binds:

- network_hosts
- network:

container_bridge: "br-vlan2"
container_type: "veth"
host_bind_override: "ens2f1"
type: "vlan"
range: "2000:2999"
net_name: "physnet2"
group_binds:

- compute_hosts

Note: The container_interface parameter is only necessary when Neutron agents are run in containers,
and can be excluded in many cases. The container_bridge and container_type parameters also relate to
infrastructure containers, but should remain defined for legacy purposes.

Custom Groups

Custom inventory groups can be created to assist in segmenting hosts beyond the built-in groups provided by
OpenStack-Ansible.

Before creating custom groups, please review the following:

1.2. User Guide 95

OpenStack-Ansible Documentation

• Configuring the inventory

The following diagram demonstates how a custom group can be used to further segment hosts:

When creating a custom group, first create a skeleton in /etc/openstack_deploy/env.d/. The following is
an example of an inventory skeleton for a group named custom2_hosts that will consist of bare metal hosts, and
has been created at /etc/openstack_deploy/env.d/custom2_hosts.yml.

physical_skel:

custom2_containers:
belongs_to:

- all_containers
custom2_hosts:
belongs_to:

- hosts

Define the group and its members in a corresponding file in /etc/openstack_deploy/conf.d/. The fol-
lowing is an example of a group named custom2_hosts defined in /etc/openstack_deploy/conf.d/
custom2_hosts.yml consisting of a single member, compute2:

custom example
custom2_hosts:

compute2:
ip: 172.29.236.17

The custom group can then be specifed when creating a provider network, as shown here:

96 Chapter 1. Abstract

https://docs.openstack.org/openstack-ansible/train/reference/inventory/configure-inventory.html

OpenStack-Ansible Documentation

- network:
container_bridge: "br-vlan"
container_type: "veth"
host_bind_override: "ens8f1"
type: "vlan"
range: "101:200,301:400"
net_name: "physnet1"
group_binds:

- custom2_hosts

1.2.6 Installing with limited connectivity

Many playbooks and roles in OpenStack-Ansible retrieve dependencies from the public Internet by default. The exam-
ple configurations assume that the deployer provides good quality Internet connectivity via a router on the OpenStack
management network.

Deployments may encounter limited external connectivity for a number of reasons:

• Unreliable or low bandwidth external connectivity

• Firewall rules which block external connectivity

• External connectivity required to be via HTTP or SOCKS proxies

• Architectural decisions by the deployer to isolate the OpenStack networks

• High security environments where no external connectivity is permitted

We recommend a set of practices and configuration overrides deployers can use when running OpenStack-Ansible in
network environments that block Internet connectivity.

The options below are not mutually exclusive and may be combined if desired.

Example internet dependencies

• Python packages

• Distribution specific packages

• LXC container images

• Source code repositories

• GPG keys for package validation

Practice A: Mirror internet resources locally

You may choose to operate and maintain mirrors of OpenStack-Ansible and OpenStack dependencies. Mirrors often
provide a great deal of risk mitigation by reducing dependencies on resources and systems outside of your direct
control. Mirrors can also provide greater stability, performance and security.

Python package repositories

Many packages used to run OpenStack are installed using pip. We advise mirroring the PyPi package index used by
pip. A deployer can choose to actively mirror the entire upstream PyPi repository but this may require a significant

1.2. User Guide 97

OpenStack-Ansible Documentation

amount of storage. Alternatively a caching pip proxy can be used to retain local copies of only those packages which
are required.

In order to configure the build to use an alternative index, create the file /etc/pip.conf with the following content and
ensure that it is placed on all hosts in the environment.

[global]
index-url = http://pip.example.org/simple

Then, in /etc/openstack_deploy/user_variables.yml, inform the deployment that it needs to copy that file from the host
into the container cache image.

Copy these files from the host into the containers
lxc_container_cache_files_from_host:

- /etc/pip.conf

Distribution specific packages

Many software packages are installed on Ubuntu hosts using .deb packages. Similar packaging mechanisms exist for
other Linux distributions. We advise mirroring the repositories that host these packages.

Upstream Ubuntu repositories to mirror for Ubuntu 18.04 LTS:

• bionic

• bionic-updates

OpenStack-Ansible requires several other repositories to install specific components such as Galera and Ceph.

Example repositories to mirror (Ubuntu target hosts):

• https://download.ceph.com/debian-luminous/

• https://www.rabbitmq.com/debian

• http://ubuntu-cloud.archive.canonical.com/ubuntu

• https://packages.erlang-solutions.com/ubuntu

• https://mirror.rackspace.com/mariadb/repo/10.1/ubuntu

• https://repo.percona.com/apt

These lists are intentionally not exhaustive and equivalents will be required for other Linux distributions. Consult the
OpenStack-Ansible playbooks and role documentation for further repositories and the variables that may be used to
override the repository location.

LXC container images

OpenStack-Ansible relies upon community built LXC images when building containers for OpenStack ser-
vices. Deployers may choose to create, maintain, and host their own container images. Consult the
openstack-ansible-lxc_container_create role for details on configuration overrides for this scenario.

Source code repositories

OpenStack-Ansible relies upon Ansible Galaxy to download Ansible roles when bootstrapping a deployment host.
Deployers may wish to mirror the dependencies that are downloaded by the bootstrap-ansible.sh script.

98 Chapter 1. Abstract

https://download.ceph.com/debian-luminous/
https://www.rabbitmq.com/debian
http://ubuntu-cloud.archive.canonical.com/ubuntu
https://packages.erlang-solutions.com/ubuntu
https://mirror.rackspace.com/mariadb/repo/10.1/ubuntu
https://repo.percona.com/apt

OpenStack-Ansible Documentation

Deployers can configure the script to source Ansible from an alternate Git repository by setting the environment
variable ANSIBLE_GIT_REPO.

Deployers can configure the script to source Ansible role dependencies from alternate locations by providing a custom
role requirements file and specifying the path to that file using the environment variable ANSIBLE_ROLE_FILE.

Practice B: Proxy access to internet resources

Some networks have no routed access to the Internet, or require certain traffic to use application specific gateways
such as HTTP or SOCKS proxy servers.

Configuration can be applied to target and deployment hosts to reach public internet resources via HTTP or SOCKS
proxy server(s). OpenStack-Ansible may be used to configure target hosts to use the proxy server(s). OpenStack-
Ansible does not provide automation for creating the proxy server(s).

Initial host deployment is outside the scope of OpenStack-Ansible and the deployer must ensure a minimum set of
proxy configuration is in place, in particular for the system package manager.

apt-get proxy configuration

See Setting up apt-get to use a http-proxy

Other proxy configuration

Further to this basic configuration, there are other network clients on the target hosts which may be configured to
connect via a proxy. For example:

• Most Python network modules

• curl

• wget

• openstack

These tools and their underlying libraries are used by Ansible itself and the OpenStack-Ansible playbooks, so there
must be a proxy configuration in place for the playbooks to successfully access external resources.

Typically these tools read environment variables containing proxy server settings. These environment variables can be
configured in /etc/environment if required.

It is important to note that the proxy server should only be used to access external resources, and communication
between the internal components of the OpenStack deployment should be direct, without going through the proxy.
The no_proxy environment variable is used to specify hosts that should be reached directly without going through
the proxy. These often are the hosts in the management network.

OpenStack-Ansible provides two distinct mechanisms for configuring proxy server settings:

#. The default configuration file suggests setting a persistent proxy configuration on all target hosts and defines a
persistent no_proxy environment variable which lists all hosts/containers management addresses as well as the load
balancer internal/external addresses.

#. An alternative method applies proxy configuration in a transient manner during the execution of Ansible playbooks
and defines a minimum set of management network IP addresses for no_proxy that are required for the playbooks
to succeed. These proxy settings do not persist after an Ansible playbook run and the completed deployment does not
require them in order to be functional.

1.2. User Guide 99

https://help.ubuntu.com/community/AptGet/Howto#Setting_up_apt-get_to_use_a_http-proxy

OpenStack-Ansible Documentation

The deployer must decide which of these approaches is more suitable for the target hosts, taking into account the
following guidance:

#. Persistent proxy configuration is a standard practice and network clients on the target hosts will be able to access
external resources after deployment.

#. The deployer must ensure that a persistent proxy configuration has complete coverage of all OpenStack management
network host/containers IP addresses in the no_proxy environment variable. It is necessary to use a list of IP
addresses, CIDR notation is not valid for no_proxy.

#. Transient proxy configuration guarantees that proxy environment variables will not persist, ensuring direct commu-
nication between services on the OpenStack management network after deployment. Target host network clients such
as wget will not be able to access external resources after deployment.

#. The maximum length of no_proxy should not exceed 1024 characters due to a fixed size buffer in the pam_env
PAM module. Longer environment variables will be truncated during deployment operations and this will lead to
unpredictable errors during or after deployment.

Once the number of hosts/containers in a deployment reaches a certain size the length of no_proxy will exceed 1024
characters. It is then mandatory to use the transient proxy settings which only requires a subset of the management
network IP addresses to be present in no_proxy at deployment time.

Refer to global_environment_variables: and deployment_environment_variables: in the example user_variables.yml
for details of configuring persistent and transient proxy environment variables.

Deployment host proxy configuration for bootstrapping Ansible

Configure the bootstrap-ansible.sh script used to install Ansible and Ansible role dependencies on the de-
ployment host to use a proxy by setting the environment variables HTTPS_PROXY or HTTP_PROXY.

Note: We recommend you set your /etc/environment variables with proxy settings before launching any scripts
or playbooks to avoid failure.

For larger or complex environments a dedicated deployment host allows the most suitable proxy configuration to be
applied to both deployment and target hosts.

Considerations when proxying TLS traffic

Proxying TLS traffic often interferes with the clients ability to perform successful validation of the certificate chain.
Various configuration variables exist within the OpenStack-Ansible playbooks and roles that allow a deployer to ignore
these validation failures. Find an example /etc/openstack_deploy/user_variables.yml configuration
below:

pip_validate_certs: false
galera_package_download_validate_certs: false

The list above is intentionally not exhaustive. Additional variables may exist within the project and will be named using
the *_validate_certs pattern. Disable certificate chain validation on a case by case basis and only after encountering
failures that are known to only be caused by the proxy server(s).

1.2.7 Routed environment example

This section describes an example production environment for a working OpenStack-Ansible (OSA) deployment with
high availability services where provider networks and connectivity between physical machines are routed (layer 3).

100 Chapter 1. Abstract

OpenStack-Ansible Documentation

This example environment has the following characteristics:

• Three infrastructure (control plane) hosts

• Two compute hosts

• One NFS storage device

• One log aggregation host

• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

• Full compute kit with the Telemetry service (ceilometer) included, with NFS configured as a storage backend
for the Image (glance), and Block Storage (cinder) services

• Static routes are added to allow communication between the Management, Tunnel, and Storage Networks of
each pod. The gateway address is the first usable address within each networks subnet.

Network configuration

Network CIDR/VLAN assignments

The following CIDR assignments are used for this environment.

1.2. User Guide 101

OpenStack-Ansible Documentation

Network CIDR VLAN
POD 1 Management Network 172.29.236.0/24 10
POD 1 Tunnel (VXLAN) Network 172.29.237.0/24 30
POD 1 Storage Network 172.29.238.0/24 20
POD 2 Management Network 172.29.239.0/24 10
POD 2 Tunnel (VXLAN) Network 172.29.240.0/24 30
POD 2 Storage Network 172.29.241.0/24 20
POD 3 Management Network 172.29.242.0/24 10
POD 3 Tunnel (VXLAN) Network 172.29.243.0/24 30
POD 3 Storage Network 172.29.244.0/24 20
POD 4 Management Network 172.29.245.0/24 10
POD 4 Tunnel (VXLAN) Network 172.29.246.0/24 30
POD 4 Storage Network 172.29.247.0/24 20

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
lb_vip_address 172.29.236.9
infra1 172.29.236.10 172.29.237.10
infra2 172.29.239.10 172.29.240.10
infra3 172.29.242.10 172.29.243.10
log1 172.29.236.11
NFS Storage 172.29.244.15
compute1 172.29.245.10 172.29.246.10 172.29.247.10
compute2 172.29.245.11 172.29.246.11 172.29.247.11

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/network/
interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name, ensure that all
references to eth0 in all configuration files are replaced with the appropriate name. The same applies to additional
network interfaces.

This is a multi-NIC bonded configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0

(continues on next page)

102 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

iface eth0 inet manual
bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none. This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
(continues on next page)

1.2. User Guide 103

OpenStack-Ansible Documentation

(continued from previous page)

bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.10
netmask 255.255.255.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#
auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.237.10
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports bond1 br-vlan-veth

Storage bridge (optional)
#

(continues on next page)

104 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.247.10
netmask 255.255.255.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

For each pod, a group will need to be defined containing all hosts within that pod.

Within defined provider networks, address_prefix is used to override the prefix of the key added to each host
that contains IP address information. This should usually be one of either container, tunnel, or storage.
reference_group contains the name of a defined pod group and is used to limit the scope of each provider
network to that group.

Static routes are added to allow communication of provider networks between pods.

The following configuration describes the layout for this environment.

cidr_networks:

pod1_container: 172.29.236.0/24
pod2_container: 172.29.237.0/24
pod3_container: 172.29.238.0/24
pod4_container: 172.29.239.0/24
pod1_tunnel: 172.29.240.0/24
pod2_tunnel: 172.29.241.0/24
pod3_tunnel: 172.29.242.0/24
pod4_tunnel: 172.29.243.0/24
pod1_storage: 172.29.244.0/24
pod2_storage: 172.29.245.0/24
pod3_storage: 172.29.246.0/24
pod4_storage: 172.29.247.0/24

used_ips:
- "172.29.236.1,172.29.236.50"

(continues on next page)

1.2. User Guide 105

OpenStack-Ansible Documentation

(continued from previous page)

- "172.29.237.1,172.29.237.50"
- "172.29.238.1,172.29.238.50"
- "172.29.239.1,172.29.239.50"
- "172.29.240.1,172.29.240.50"
- "172.29.241.1,172.29.241.50"
- "172.29.242.1,172.29.242.50"
- "172.29.243.1,172.29.243.50"
- "172.29.244.1,172.29.244.50"
- "172.29.245.1,172.29.245.50"
- "172.29.246.1,172.29.246.50"
- "172.29.247.1,172.29.247.50"

global_overrides:
internal_lb_vip_address: internal-openstack.example.com
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod1_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts

reference_group: "pod1_hosts"
is_container_address: true
Containers in pod1 need routes to the container networks of other pods
static_routes:
Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.236.1

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod2_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts

reference_group: "pod2_hosts"
is_container_address: true
Containers in pod2 need routes to the container networks of other pods
static_routes:
Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.237.1

(continues on next page)

106 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod3_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts

reference_group: "pod3_hosts"
is_container_address: true
Containers in pod3 need routes to the container networks of other pods
static_routes:
Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.238.1

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod4_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts

reference_group: "pod4_hosts"
is_container_address: true
Containers in pod4 need routes to the container networks of other pods
static_routes:
Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.239.1

- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod1_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

reference_group: "pod1_hosts"
Containers in pod1 need routes to the tunnel networks of other pods
static_routes:
Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.240.1

- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod2_tunnel"
address_prefix: "tunnel"

(continues on next page)

1.2. User Guide 107

OpenStack-Ansible Documentation

(continued from previous page)

type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

reference_group: "pod2_hosts"
Containers in pod2 need routes to the tunnel networks of other pods
static_routes:
Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.241.1

- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod3_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

reference_group: "pod3_hosts"
Containers in pod3 need routes to the tunnel networks of other pods
static_routes:
Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.242.1

- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod4_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

reference_group: "pod4_hosts"
Containers in pod4 need routes to the tunnel networks of other pods
static_routes:
Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.243.1

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"

(continues on next page)

108 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod1_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod1_hosts"
Containers in pod1 need routes to the storage networks of other pods
static_routes:
Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.244.1

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod2_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod2_hosts"
Containers in pod2 need routes to the storage networks of other pods
static_routes:
Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.245.1

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod3_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod3_hosts"
Containers in pod3 need routes to the storage networks of other pods
static_routes:

(continues on next page)

1.2. User Guide 109

OpenStack-Ansible Documentation

(continued from previous page)

Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.246.1

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod4_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod4_hosts"
Containers in pod4 need routes to the storage networks of other pods
static_routes:
Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.247.1

###
Infrastructure
###

pod1_hosts:
infra1:
ip: 172.29.236.10

log1:
ip: 172.29.236.11

pod2_hosts:
infra2:
ip: 172.29.239.10

pod3_hosts:
infra3:
ip: 172.29.242.10

pod4_hosts:
compute1:
ip: 172.29.245.10

compute2:
ip: 172.29.245.11

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

repository (apt cache, python packages, etc)
repo-infra_hosts:

(continues on next page)

110 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

rsyslog server
log_hosts:

log1:
ip: 172.29.236.11

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

glance
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
image_hosts:

infra1:
ip: 172.29.236.11
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
(continues on next page)

1.2. User Guide 111

OpenStack-Ansible Documentation

(continued from previous page)

remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra2:
ip: 172.29.236.12
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra3:
ip: 172.29.236.13
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

heat
orchestration_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.10

infra2:
(continues on next page)

112 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

ip: 172.29.239.10
infra3:
ip: 172.29.242.10

ceilometer (telemetry data collection)
metering-infra_hosts:
infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

aodh (telemetry alarm service)
metering-alarm_hosts:
infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

gnocchi (telemetry metrics storage)
metrics_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.245.10

compute2:
ip: 172.29.245.11

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:
compute1:
ip: 172.29.245.10

compute2:
ip: 172.29.245.11

cinder volume hosts (NFS-backed)
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
storage_hosts:

infra1:
ip: 172.29.236.11
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

(continues on next page)

1.2. User Guide 113

OpenStack-Ansible Documentation

(continued from previous page)

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

infra2:
ip: 172.29.236.12
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

infra3:
ip: 172.29.236.13
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible groups.
This allows the deployer to set whether the services will run in a container (the default), or on the host (on metal).

For this environment, the cinder-volume runs in a container on the infrastructure hosts. To achieve this, implement
/etc/openstack_deploy/env.d/cinder.yml with the following content:

This file contains an example to show how to set
the cinder-volume service to run in a container.
#
Important note:
When using LVM or any iSCSI-based cinder backends, such as NetApp with
iSCSI protocol, the cinder-volume service *must* run on metal.
Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855

container_skel:
cinder_volumes_container:
properties:

is_metal: false

114 Chapter 1. Abstract

OpenStack-Ansible Documentation

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default vari-
ables.

For this environment, implement the load balancer on the infrastructure hosts. Ensure that keepalived is also configured
with HAProxy in /etc/openstack_deploy/user_variables.yml with the following content.

This file contains an example of the global variable overrides
which may need to be set for a production environment.

Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "<external_vip_address>/<netmask>"
haproxy_keepalived_internal_vip_cidr: "172.29.236.0/22"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt

1.2.8 Ceph production example

This section describes an example production environment for a working OpenStack-Ansible (OSA) deployment with
high availability services and using the Ceph backend for images, volumes, and instances.

This example environment has the following characteristics:

• Three infrastructure (control plane) hosts with ceph-mon containers

• Two compute hosts

• Three Ceph OSD storage hosts

• One log aggregation host

• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

• Full compute kit with the Telemetry service (ceilometer) included, with Ceph configured as a storage back end
for the Image (glance), and Block Storage (cinder) services

• Internet access via the router address 172.29.236.1 on the Management Network

1.2. User Guide 115

OpenStack-Ansible Documentation

Integration with Ceph

OpenStack-Ansible allows Ceph storage cluster integration in two ways:

• connecting to your own ceph cluster by pointing to its information in user_variables.yml

• deploying a ceph cluster by using the roles maintained by the Ceph-Ansible project. Deployers can en-
able the ceph-install playbook by adding hosts to the ceph-mon_hosts, ceph-osd_hosts and
ceph-rgw_hosts groups in openstack_user_config.yml, and then configuring Ceph-Ansible spe-
cific vars in the OpenStack-Ansible user_variables.yml file.

This example will focus on the deployment of both OpenStack-Ansible and its Ceph cluster.

Network configuration

Network CIDR/VLAN assignments

The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

116 Chapter 1. Abstract

https://ceph.io
https://github.com/ceph/ceph-ansible/
https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample
https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample

OpenStack-Ansible Documentation

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
lb_vip_address 172.29.236.9
infra1 172.29.236.11 172.29.240.11
infra2 172.29.236.12 172.29.240.12
infra3 172.29.236.13 172.29.240.13
log1 172.29.236.14
compute1 172.29.236.16 172.29.240.16 172.29.244.16
compute2 172.29.236.17 172.29.240.17 172.29.244.17
osd1 172.29.236.18 172.29.244.18
osd2 172.29.236.19 172.29.244.19
osd3 172.29.236.20 172.29.244.20

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/network/
interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name, ensure that all
references to eth0 in all configuration files are replaced with the appropriate name. The same applies to additional
network interfaces.

This is a multi-NIC bonded configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

(continues on next page)

1.2. User Guide 117

OpenStack-Ansible Documentation

(continued from previous page)

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none. This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#

auto br-vxlan
(continues on next page)

118 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

iface br-vxlan inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports bond1 br-vlan-veth

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage

(continues on next page)

1.2. User Guide 119

OpenStack-Ansible Documentation

(continued from previous page)

#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

cidr_networks: &cidr_networks

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
cidr_networks: *cidr_networks
internal_lb_vip_address: 172.29.236.9
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:
- all_containers
- hosts

is_container_address: true
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"

(continues on next page)

120 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:
- neutron_linuxbridge_agent

- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute
- ceph-osd

###
Infrastructure
###

_infrastructure_hosts: &infrastructure_hosts
infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova hypervisors
compute_hosts: &compute_hosts

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

ceph-osd_hosts:
osd1:

(continues on next page)

1.2. User Guide 121

OpenStack-Ansible Documentation

(continued from previous page)

ip: 172.29.236.18
osd2:
ip: 172.29.236.19

osd3:
ip: 172.29.236.20

galera, memcache, rabbitmq, utility
shared-infra_hosts: *infrastructure_hosts

ceph-mon containers
ceph-mon_hosts: *infrastructure_hosts

repository (apt cache, python packages, etc)
repo-infra_hosts: *infrastructure_hosts

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts: *infrastructure_hosts

rsyslog server
log_hosts:

log1:
ip: 172.29.236.14

###
OpenStack
###

keystone
identity_hosts: *infrastructure_hosts

cinder api services
storage-infra_hosts: *infrastructure_hosts

cinder volume hosts (Ceph RBD-backed)
storage_hosts: *infrastructure_hosts

glance
image_hosts: *infrastructure_hosts

placement
placement-infra_hosts: *infrastructure_hosts

nova api, conductor, etc services
compute-infra_hosts: *infrastructure_hosts

heat
orchestration_hosts: *infrastructure_hosts

horizon
dashboard_hosts: *infrastructure_hosts

neutron server, agents (L3, etc)
network_hosts: *infrastructure_hosts

ceilometer (telemetry data collection)
(continues on next page)

122 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

metering-infra_hosts: *infrastructure_hosts

aodh (telemetry alarm service)
metering-alarm_hosts: *infrastructure_hosts

gnocchi (telemetry metrics storage)
metrics_hosts: *infrastructure_hosts

ceilometer compute agent (telemetry data collection)
metering-compute_hosts: *compute_hosts

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible groups.
This allows the deployer to set whether the services will run in a container (the default), or on the host (on metal).

For a ceph environment, you can run the cinder-volume in a container. To do this you will need to create a
/etc/openstack_deploy/env.d/cinder.yml file with the following content:

This file contains an example to show how to set
the cinder-volume service to run in a container.
#
Important note:
When using LVM or any iSCSI-based cinder backends, such as NetApp with
iSCSI protocol, the cinder-volume service *must* run on metal.
Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855

container_skel:
cinder_volumes_container:
properties:

is_metal: false

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default vari-
ables.

For this example environment, we configure a HA load balancer. We implement the load balancer (HAProxy) with an
HA layer (keepalived) on the infrastructure hosts. Your /etc/openstack_deploy/user_variables.yml
must have the following content to configure haproxy, keepalived and ceph:

Because we have three haproxy nodes, we need
to one active LB IP, and we use keepalived for that.
Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "<external_ip_address>/<netmask>"
haproxy_keepalived_internal_vip_cidr: "172.29.236.0/22"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt

Ceph cluster fsid (must be generated before first run)
Generate a uuid using: python -c 'import uuid; print(str(uuid.uuid4()))'

(continues on next page)

1.2. User Guide 123

OpenStack-Ansible Documentation

(continued from previous page)

generate_fsid: false
fsid: 116f14c4-7fe1-40e4-94eb-9240b63de5c1 # Replace with your generated UUID

ceph-ansible settings
See https://github.com/ceph/ceph-ansible/tree/master/group_vars for
additional configuration options available.
monitor_address_block: "{{ cidr_networks.container }}"
public_network: "{{ cidr_networks.container }}"
cluster_network: "{{ cidr_networks.storage }}"
journal_size: 10240 # size in MB
ceph-ansible automatically creates pools & keys for OpenStack services
openstack_config: true
cinder_ceph_client: cinder
glance_ceph_client: glance
glance_default_store: rbd
glance_rbd_store_pool: images
nova_libvirt_images_rbd_pool: vms

cinder_backends:
RBD:
volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_pool: volumes
rbd_ceph_conf: /etc/ceph/ceph.conf
rbd_store_chunk_size: 8
volume_backend_name: rbddriver
rbd_user: "{{ cinder_ceph_client }}"
rbd_secret_uuid: "{{ cinder_ceph_client_uuid }}"
report_discard_supported: true

1.2.9 Using radosgw as a drop-in replacement for Swift

OpenStack-Ansible gives you the option of deploying radosgw as a drop-in replacement for native OpenStack Swift.

In particular, the ceph-rgw-install.yml playbook (which includes ceph-rgw-keystone-setup.yml)
will deploy radosgw to any ceph-rgw hosts, and create a corresponding Keystone object-store service catalog
entry. The service endpoints do contain the AUTH_%(tenant_id)s prefix just like in native Swift, so public read
ACLs and temp URLs will work just like they do in Swift.

By default, OSA enables only the Swift API in radosgw.

Adding S3 API support

You may want to enable the default radosgw S3 API, in addition to the Swift API. In order to do so, you need to over-
ride the ceph_conf_overrides_rgw variable in user_variables.yml. Below is an example configuration
snippet:

ceph_conf_overrides_rgw:
"client.rgw.{{ hostvars[inventory_hostname]['ansible_hostname'] }}":
OpenStack integration with Keystone
rgw_keystone_url: "{{ keystone_service_adminuri }}"
rgw_keystone_api_version: 3
rgw_keystone_admin_user: "{{ radosgw_admin_user }}"
rgw_keystone_admin_password: "{{ radosgw_admin_password }}"
rgw_keystone_admin_tenant: "{{ radosgw_admin_tenant }}"

(continues on next page)

124 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

rgw_keystone_admin_domain: default
rgw_keystone_accepted_roles: 'member, _member_, admin, swiftoperator'
rgw_keystone_implicit_tenants: 'true'
rgw_swift_account_in_url: true
rgw_swift_versioning_enabled: 'true'
Add S3 support, in addition to Swift
rgw_enable_apis: 'swift, s3'
rgw_s3_auth_use_keystone: 'true'

You may also want to add the rgw_dns_name option if you want to enable bucket hostnames with the S3 API.

1.2.10 Integrate radosgw into your Telemetry

The telemetry (and in consequence accounting) for radosgw as object-storage will not work out of the box. You need
to change different parts of your OpenStack and Ceph setup to get it up and running.

Ceilometer Changes

Ceilometer needs additional pip packages to talk to Ceph Rados Gateway. To install it, edit the default ceilome-
ter_pip_packages in your user_variables.yml file:

ceilometer_pip_packages:
- ceilometer
- ceilometermiddleware
- cryptography
- gnocchiclient
- libvirt-python
- PyMySQL
- pymongo
- python-ceilometerclient
- python-memcached
- tooz
- warlock
- requests-aws>=0.1.4 #https://github.com/openstack/ceilometer/blob/stable/pike/

↪→test-requirements.txt

You also have to configure Ceilometer to actually query radosgw. When your ceilometer isnt configured to poll
everything, add these pollsters to your polling.yml file:

- name: radosgw_pollsters
interval: 1200
meters:
- radosgw.containers.objects
- radosgw.containers.objects.size
- radosgw.objects
- radosgw.objects.size
- radosgw.objects.containers
- radosgw.usage

Add them also to your pipeline:

- name: radosgw_source
interval: 60
meters:

(continues on next page)

1.2. User Guide 125

OpenStack-Ansible Documentation

(continued from previous page)

- "rgw.objects"
- "rgw.objects.size"
- "rgw.objects.containers"
- "rgw.api.request"
- "rgw.containers.objects"
- "rgw.containers.objects.size"

sinks:
- meter_sink

Declare Ceph Rados Gateway as object-store in your ceilometer.conf file by adding this to your user_variables.yml
file:

ceilometer_ceilometer_conf_overrides:
service_types:
radosgw: object-store

rgw_admin_credentials:
access_key: XXX
secret_key: XXX

The required user and credentials is created by this command:

radosgw-admin user create --uid admin --display-name "admin user" --caps "usage=read,
↪→write;metadata=read,write;users=read,write;buckets=read,write"

To get your credentials, execute:

radosgw-admin user info --uid admin | jq '.keys'

Ceph Changes

The required changes are described in the documentation of Ceilometer. This is just a sum up. In your ceph.conf add:

[client.radosgw.gateway]
rgw enable usage log = true
rgw usage log tick interval = 30
rgw usage log flush threshold = 1024
rgw usage max shards = 32
rgw usage max user shards = 1

1.2.11 Security settings

This chapter contains information to configure specific security settings for your OpenStack-Ansible cloud.

For understanding security design, please see Security.

Securing services with SSL certificates

The OpenStack Security Guide recommends providing secure communication between various services in an Open-
Stack deployment. The OpenStack-Ansible project currently offers the ability to configure SSL certificates for secure
communication between services:

All public endpoints reside behind haproxy, resulting in the only certificate management most environments need are
those for haproxy.

126 Chapter 1. Abstract

https://docs.openstack.org/security-guide/secure-communication.html

OpenStack-Ansible Documentation

When deploying with OpenStack-Ansible, you can either use self-signed certificates that are generated during the
deployment process or provide SSL certificates, keys, and CA certificates from your own trusted certificate authority.
Highly secured environments use trusted, user-provided certificates for as many services as possible.

Note: Perform all SSL certificate configuration in /etc/openstack_deploy/user_variables.yml file.
Do not edit the playbooks or roles themselves.

Self-signed certificates

Self-signed certificates enable you to start quickly and encrypt data in transit. However, they do not provide a high
level of trust for highly secure environments. By default, self-signed certificates are used in OpenStack-Ansible. When
self-signed certificates are used, certificate verification is automatically disabled.

Setting subject data for self-signed certificates

Change the subject data of any self-signed certificate by using configuration variables. The configuration variable
for each service is formatted as <servicename>_ssl_self_signed_subject. For example, to change the
SSL certificate subject data for HAProxy, adjust the /etc/openstack_deploy/user_variables.yml file
as follows:

haproxy_ssl_self_signed_subject: "/C=US/ST=Texas/L=San Antonio/O=IT/CN=haproxy.
↪→example.com"

For more information about the available fields in the certificate subject, see the OpenSSL documentation for the req
subcommand.

Generating and regenerating self-signed certificates

Self-signed certificates are generated for each service during the first run of the playbook.

To generate a new self-signed certificate for a service, you must set the
<servicename>_ssl_self_signed_regen variable to true in one of the following ways:

• To force a self-signed certificate to regenerate, you can pass the variable to openstack-ansible on the
command line:

openstack-ansible -e "horizon_ssl_self_signed_regen=true" os-horizon-install.yml

• To force a self-signed certificate to regenerate with every playbook run, set the appropriate regeneration op-
tion to true. For example, if you have already run the haproxy playbook, but you want to regenerate
the self-signed certificate, set the haproxy_ssl_self_signed_regen variable to true in the /etc/
openstack_deploy/user_variables.yml file:

haproxy_ssl_self_signed_regen: true

Note: Regenerating self-signed certificates replaces the existing certificates whether they are self-signed or user-
provided.

1.2. User Guide 127

https://www.openssl.org/docs/manmaster/man1/req.html
https://www.openssl.org/docs/manmaster/man1/req.html

OpenStack-Ansible Documentation

User-provided certificates

For added trust in highly secure environments, you can provide your own SSL certificates, keys, and CA certificates.
Acquiring certificates from a trusted certificate authority is outside the scope of this document, but the Certificate
Management section of the Linux Documentation Project explains how to create your own certificate authority and
sign certificates.

Use the following process to deploy user-provided SSL certificates in OpenStack-Ansible:

1. Copy your SSL certificate, key, and CA certificate files to the deployment host.

2. Specify the path to your SSL certificate, key, and CA certificate in the /etc/openstack_deploy/
user_variables.yml file.

3. Run the playbook for that service.

HAProxy example

The variables to set which provide the path on the deployment node to the certificates for HAProxy configuration are:

haproxy_user_ssl_cert: /etc/openstack_deploy/ssl/example.com.crt
haproxy_user_ssl_key: /etc/openstack_deploy/ssl/example.com.key
haproxy_user_ssl_ca_cert: /etc/openstack_deploy/ssl/ExampleCA.crt

RabbitMQ example

To deploy user-provided certificates for RabbitMQ, copy the certificates to the deployment host, edit the /etc/
openstack_deploy/user_variables.yml file and set the following three variables:

rabbitmq_user_ssl_cert: /etc/openstack_deploy/ssl/example.com.crt
rabbitmq_user_ssl_key: /etc/openstack_deploy/ssl/example.com.key
rabbitmq_user_ssl_ca_cert: /etc/openstack_deploy/ssl/ExampleCA.crt

Then, run the playbook to apply the certificates:

openstack-ansible rabbitmq-install.yml

The playbook deploys your user-provided SSL certificate, key, and CA certificate to each RabbitMQ container.

The process is identical for the other services. Replace rabbitmq in the preceding configuration variables with horizon,
haproxy, or keystone, and then run the playbook for that service to deploy user-provided certificates to those services.

Apply ansible-hardening

The ansible-hardening role is applicable to physical hosts within an OpenStack-Ansible deployment that are
operating as any type of node, infrastructure or compute. By default, the role is enabled. You can disable it by changing
the value of the apply_security_hardening variable in the user_variables.yml file to false:

apply_security_hardening: false

You can apply security hardening configurations to an existing environment or audit an environment by using a play-
book supplied with OpenStack-Ansible:

128 Chapter 1. Abstract

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/c118.html
http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/c118.html

OpenStack-Ansible Documentation

Apply security hardening configurations
openstack-ansible security-hardening.yml

Perform a quick audit by using Ansible's check mode
openstack-ansible --check security-hardening.yml

For more information about the security configurations, see the security hardening role documentation.

1.2.12 Source overriding examples

There are situations where a deployer want to override sources with its own fork.

This chapter gives case-by-case examples on how to override the default sources.

Overriding Ansible version

Overriding the default Ansible version is not recommended, as each branch of OpenStack-Ansible has been built with
the a specific Ansible version in mind, and many Ansible changes are neither backwards nor forward compatible.

The bootstrap-ansible.sh script installs Ansible, and uses a variable ANSIBLE_PACKAGE to describe which
version to install.

For example to install ansible version 2.5.0:

$ export ANSIBLE_PACKAGE="ansible==2.5.0"

Installing directly from git is also supported. For example, from the tip of Ansible development branch:

$ export ANSIBLE_PACKAGE="git+https://github.com/ansible/ansible@devel#egg=ansible"

Overriding the roles

Overriding the role file has been explained in the reference guide, on the Adding new or overriding roles in your
OpenStack-Ansible installation section.

Overriding other upstream projects source code

All the upstream repositories used are defined in the openstack-ansible integrated repository, in the
playbooks/defaults/repo_packages folder.

For example, if you want to override glance repository with your own, you need to define the following:

glance_git_repo: https://<your git repo>
glance_git_install_branch: <your git branch or commit SHA>
glance_git_project_group: glance_all

Please note, for this glance example, that you do not need to edit the playbooks/defaults/repo_packages/
openstack_services.yml file.

Instead, the usual overrides mechanism can take place, and you can define these 3 variables in a user_*.yml file.
See also the Overriding default configuration page.

Note: These variables behave a little differently than standard ansible precedence, because they are also consumed
by a custom lookup plugin.

1.2. User Guide 129

https://docs.openstack.org/ansible-hardening/

OpenStack-Ansible Documentation

The py_pkgs lookup will ignore all _git_ variables unless the _git_repo variable is present.

So even if you only want to override the _git_install_branch for a repository, you should also define the
_git_repo variable in your user variables.

1.2.13 Telemetry with Gnocchi, Ceph and Redis example

The default openstack-ansible installation configures gnocchi to use a file as storage backend. When you already have
a pre-installed ceph, you can use this as backend for gnocchi. This documentation will guide you how to set up gnocchi
to use your ceph as storage backend.

Ceph as metric storage

gnocchi_storage_driver: ceph

You have to add some pip packages to your gnocchi setup:

gnocchi_pip_packages:
- cryptography
- gnocchiclient
this is what we want:
- "gnocchi[mysql,ceph,ceph_alternative_lib,redis]"
but as there is no librados >=12.2 pip package we have to first install ceph
↪→without alternative support
after adding the ceph repo to gnocchi container, python-rados>=12.2.0 is installed
↪→and linked automatically
and gnocchi will automatically take up the features present in the used rados lib.
- "gnocchi[mysql,ceph,redis]"
- keystonemiddleware
- python-memcached

But when your setup grows, gnocchi might slow down or block your ceph installation. You might experience slow
requests and stuck PGs in your Ceph. As this might have multiple causes, take a look at the presentations linked in the
Performance Tests for Gnocchi section. They also include various parameters which you might tune.

Redis as measure storage

One solution to possible performance problems is to use an incoming measure storage for your gnocchi installation.
The supported storage systems are:

• File (default)

• Ceph (preferred)

• OpenStack Swift

• Amazon S3

• Redis

When your Swift installation uses Ceph as backend, the only one left for this setup is Redis.

So first of all setup a redis server/cluster, e.g. with this ansible role. Next, you have to configure Gnocchi with
OpenStack-Ansible to use the Redis Cluster as incoming storage:

130 Chapter 1. Abstract

https://gnocchi.xyz/intro.html#incoming-and-storage-drivers
https://github.com/DavidWittman/ansible-redis

OpenStack-Ansible Documentation

gnocchi_conf_overrides:
incoming:
driver: redis
redis_url: redis://{{ hostvars[groups['redis-master'][0]]['ansible_default_ipv4'][

↪→'address'] }}:{{ hostvars[groups['redis-master'][0]]['redis_sentinel_port'] }}?
↪→sentinel=master01{% for host in groups['redis-slave'] %}&sentinel_fallback={{
↪→hostvars[host]['ansible_default_ipv4']['address'] }}:{{ hostvars[host]['redis_
↪→sentinel_port'] }}{% endfor %}

You also have to install additional pip/distro packages to use the redis cluster:

gnocchi_distro_packages:
- apache2
- apache2-utils
- libapache2-mod-wsgi
- git
- build-essential
- python-dev
- libpq-dev
- python-rados
additional package for python redis client
- python-redis

gnocchi_pip_packages:
- cryptography
- gnocchiclient
this is what we want:
- "gnocchi[mysql,ceph,ceph_alternative_lib,redis]"
but as there is no librados >=12.2 pip package we have to first install ceph
↪→without alternative support
after adding the ceph repo to gnocchi container, python-rados>=12.2.0 is installed
↪→and linked automatically
and gnocchi will automatically take up the features present in the used rados lib.
- "gnocchi[mysql,ceph,redis]"
- keystonemiddleware
- python-memcached
- redis

Note: A word of caution: the name of the Ceph alternative lib implementation (ceph_alternative_lib) varies between
Gnocchi versions.

Zookeeper for coordination

When you deployed Gnocchi on multiple servers to distribute the work, add Zookeeper as coordination backend. To
setup Zookeeper, you can use this ansible role.

Create containers for Zookeeper:

conf.d
zookeeper_hosts:
{% for server in groups['control_nodes'] %}
{{ server }}:

ip: {{ hostvars[server]['ansible_default_ipv4']['address'] }}
{% endfor%}

1.2. User Guide 131

https://github.com/openstack/ansible-role-zookeeper.git

OpenStack-Ansible Documentation

env.d
component_skel:

zookeeper_server:
belongs_to:

- zookeeper_all

container_skel:
zookeeper_container:
belongs_to:

- infra_containers
- shared-infra_containers

contains:
- zookeeper_server

properties:
service_name: zookeeper

Now you can set up Zookeeper as coordination backend for Gnocchi:

gnocchi_coordination_url: "zookeeper://{% for host in groups['zookeeper_all'] %}{{
↪→hostvars[host]['container_address'] }}:2181{% if not loop.last %},{% endif %}{%
↪→endfor %}"

You also have to install additional packages:

gnocchi_pip_packages:
- cryptography
- gnocchiclient
this is what we want:
- "gnocchi[mysql,ceph,ceph_alternative_lib,redis]"
but as there is no librados >=12.2 pip package we have to first install ceph
↪→without alternative support
after adding the ceph repo to gnocchi container, python-rados>=12.2.0 is installed
↪→and linked automatically
and gnocchi will automatically take up the features present in the used rados lib.
- "gnocchi[mysql,ceph,redis]"
- keystonemiddleware
- python-memcached
- redis
addiitional pip packages needed for zookeeper coordination backend
- tooz
- lz4
- kazoo

Performance Tests for Gnocchi

For more ideas how to tune your Gnocchi stack, take a look at these presentations:

• https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.html

1.2.14 Hybrid messaging example

This section provides an overview of hybrid messaging deployment concepts and describes the necessary steps for a
working OpenStack-Ansible (OSA) deployment where RPC and Notify communications are separated and integrated
with different messaging server backends (e.g. rabbitmq and qdrouterd).

132 Chapter 1. Abstract

https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.html

OpenStack-Ansible Documentation

oslo.messaging library

The oslo.messaging library is part of the OpenStack Oslo project that provides intra-service messaging capabilities.
The library supports two communication patterns (RPC and Notify) and provides an abstraction that hides the details
of the messaging bus operation from the OpenStack services.

Notifications

Notify communications are an asynchronous exchange from notifier to listener. The messages transferred typically
correspond to information updates or event occurrences that are published by an OpenStack service. The listener need
not be present when the notification is sent as notify communications are temporally decoupled. This decoupling be-
tween notifier and listener requires that the messaging backend deployed for notifications provide message persistence
such as a broker queue or log store. It is noteworthy that the message transfer is unidirectional from notifier to listener
and there is no message flow back to the notifier.

RPC

The RPC is intended as a synchronous exchange between a client and server that is temporally bracketed. The infor-
mation transferred typically corresponds to a request-response pattern for service command invocation. If the server is
not present at the time the command is invoked, the call should fail. The temporal coupling requires that the messaging
backend deployed support the bi-directional transfer of the request from caller to server and the associated reply sent
from the server back to the caller. This requirement can be satisfied by a broker queue or a direct messaging backend
server.

Messaging transport

The oslo.messaging library supports a messaging transport plugin capability such that RPC and Notify communica-
tions can be separated and different messaging backend servers can be deployed.

The oslo.messaging drivers provide the transport integration for the selected protocol and backend server. The follow-
ing table summarizes the supported oslo.messaging drivers and the communication services they support.

+----------------+-----------+-----------+-----+--------+-----------+
| Oslo.Messaging | Transport | Backend | RPC | Notify | Messaging |
| Driver | Protocol | Server | | | Type |
+================+===========+===========+=====+========+===========+
| rabbit | AMQP V0.9 | rabbitmq | yes | yes | queue |
+----------------+-----------+-----------+-----+--------+-----------+
| amqp | AMQP V1.0 | qdrouterd | yes | | direct |
+----------------+-----------+-----------+-----+--------+-----------+
| kafka | kafka | kafka | | yes | queue |
| (experimental) | binary | | | | (stream) |
+----------------+-----------+-----------+-----+--------+-----------+

Standard deployment of rabbitmq server

A single rabbitmq server backend (e.g. server or cluster) is the default deployment for OSA. This broker messaging
backend provides the queue services for both RPC and Notification communications through its integration with
the oslo.messaging rabbit driver. The oslo-messaging.yml file provides the default configuration to associate the
oslo.messaging RPC and Notify services to the rabbitmq server backend.

1.2. User Guide 133

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html
https://github.com/openstack/openstack-ansible/blob/master/inventory/group_vars/all/oslo-messaging.yml

OpenStack-Ansible Documentation

RPC
oslomsg_rpc_transport: "{{ (groups[qdrouterd_host_group] | length > 0) | ternary('amqp
↪→', 'rabbit') }}"
oslomsg_rpc_port: "{{ (groups[qdrouterd_host_group] | length > 0) | ternary(qdrouterd_
↪→port, rabbitmq_port) }}"
oslomsg_rpc_servers: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_servers, rabbitmq_servers) }}"
oslomsg_rpc_use_ssl: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_use_ssl, rabbitmq_use_ssl) }}"
oslomsg_rpc_host_group: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_host_group, rabbitmq_host_group) }}"
oslomsg_rpc_policies: "{{ rabbitmq_policies }}"

Notify
oslomsg_notify_transport: "{{ (groups[rabbitmq_host_group] | length > 0) | ternary(
↪→'rabbit', 'none') }}"
oslomsg_notify_port: "{{ rabbitmq_port }}"
oslomsg_notify_servers: "{{ rabbitmq_servers }}"
oslomsg_notify_use_ssl: "{{ rabbitmq_use_ssl }}"
oslomsg_notify_host_group: "{{ rabbitmq_host_group }}"
oslomsg_notify_policies: "{{ rabbitmq_policies }}"

Hybrid messaging deployment with qdrouterd server

In OSA, the deployment of disparate messaging backends is completely transparent to the OpenStack services. By
managing the inventories for the messaging servers, a hybrid messaging configuration will be created. The instantiation
of the qdrouterd server role in the qdrouterd_host_group will automatically setup the oslomsg_rpc* variables to use
this messaging backend. No additional configuration is required. The result is that RPC services will communicate
via the amqp (V1.0 protocol) driver and the Notify services will communicate via the rabbit driver. The separation and
use of different messaging backends can provide increased scale and resiliency.

1.3 Developer Documentation

In this section, you will find documentation relevant to developing OpenStack-Ansible.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for step-by-step
instructions on how to deploy the OpenStack packages and dependencies on your cloud using OpenStack-Ansible.

For user guides, see the User Guide.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

Contents:

1.3.1 Project Onboarding

This document should help you understand how to contribute to OpenStack-Ansible.

134 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://docs.openstack.org/openstack-ansible/train/user/index.html
https://docs.openstack.org/openstack-ansible/train/admin/index.html
https://docs.openstack.org/openstack-ansible/train/reference/index.html

OpenStack-Ansible Documentation

Project repositories

The OpenStack-Ansible project has different kinds of git repositories, each of them with specific use cases, and
different sets of practices.

1.3. Developer Documentation 135

OpenStack-Ansible Documentation

Repository type or name Code location Repository purpose

OpenStack-Ansible
Also called integrated repository

• https://github.com/openstack/
openstack-ansible

Our main repository, used by de-
ployers. Uses the other repositories.

The OpenStack-Ansible roles
repositories

• https://github.com/openstack/
openstack-ansible-os_nova

• https://github.com/openstack/
openstack-ansible-os_glance

• https://github.com/openstack/
ansible-role-systemd_mount

• https://github.com/openstack/
ansible-config_template

• https://github.com/openstack/
ansible-hardening

•

Each role is in charge of deploy-
ing exactly one component of an
OpenStack-Ansible deployment.

The tests repository
• https://github.com/openstack/

openstack-ansible-tests The tests repository is the location
for common code used in the
integrated repo and role repos tests.
It allows us to not repeat ourselves:
it is the location of common
playbooks, common tasks and
scripts.

The specs repository
• https://github.com/openstack/

openstack-ansible-specs

This repository contains all the in-
formation concerning large bod-
ies of work done in OpenStack-
Ansible, split by cycle.

The ops repository
• https://github.com/openstack/

openstack-ansible-ops

This repository is an incubator for
new projects, each project solv-
ing a particular operational problem.
Each project has its own folder in
this repository.

External repositories
• https://github.com/ceph/

ceph-ansible
• https://github.

com/logan2211/
ansible-resolvconf

• https://github.com/
willshersystems/ansible-sshd

• https://github.
com/opendaylight/
integration-packaging-ansible-opendaylight

• https://github.com/evrardjp/
ansible-keepalived

•

OpenStack-Ansible is not re-
inventing the wheel, and tries to
reuse as much as possible existing
roles. A bugfix for one of those
repositories must be handled to
these repositories maintainers.

136 Chapter 1. Abstract

https://github.com/openstack/openstack-ansible
https://github.com/openstack/openstack-ansible
https://github.com/openstack/openstack-ansible-os_nova
https://github.com/openstack/openstack-ansible-os_nova
https://github.com/openstack/openstack-ansible-os_glance
https://github.com/openstack/openstack-ansible-os_glance
https://github.com/openstack/ansible-role-systemd_mount
https://github.com/openstack/ansible-role-systemd_mount
https://github.com/openstack/ansible-config_template
https://github.com/openstack/ansible-config_template
https://github.com/openstack/ansible-hardening
https://github.com/openstack/ansible-hardening
https://github.com/openstack/openstack-ansible-tests
https://github.com/openstack/openstack-ansible-tests
https://github.com/openstack/openstack-ansible-specs
https://github.com/openstack/openstack-ansible-specs
https://github.com/openstack/openstack-ansible-ops
https://github.com/openstack/openstack-ansible-ops
https://github.com/ceph/ceph-ansible
https://github.com/ceph/ceph-ansible
https://github.com/logan2211/ansible-resolvconf
https://github.com/logan2211/ansible-resolvconf
https://github.com/logan2211/ansible-resolvconf
https://github.com/willshersystems/ansible-sshd
https://github.com/willshersystems/ansible-sshd
https://github.com/opendaylight/integration-packaging-ansible-opendaylight
https://github.com/opendaylight/integration-packaging-ansible-opendaylight
https://github.com/opendaylight/integration-packaging-ansible-opendaylight
https://github.com/evrardjp/ansible-keepalived
https://github.com/evrardjp/ansible-keepalived

OpenStack-Ansible Documentation

How to contribute on code or issues

• For contributing code and documentation, you must follow the OpenStack practices. Nothing special is required
for OpenStack-Ansible.

See also the OpenStack developers getting started page. and our contributor guidelines before hacking.

• For helping on or submitting bugs, you must have an account on ubuntu Launchpad. All our repositories share
the same Launchpad project.

Please check our bug report and bug triage processes.

Easy to fix bugs are marked with the tag low hanging fruit, and should be the target of first time contributors.

• For sharing your user experience, stories, and helping other users, please join us in our IRC channel.

• The OpenStack-Ansible project has recurring tasks that need attention, like releasing, or other code duties. See
our page Periodic work.

Community communication channels

IRC channel

The OpenStack-Ansible community communicates a lot through IRC, in the #openstack-ansible channel, on freenode.
This channel is logged, and its logs are published on http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/.

Weekly meetings are held in our IRC channel. The schedule and logs can be found on http://eavesdrop.openstack.org/
#OpenStack_Ansible_Deployment_Meeting. Next meeting agenda can be found on our Meetings wiki page.

Mailing lists

A member of the OpenStack-Ansible community should monitor the OpenStack-discuss mailing lists.

All our communications should be prefixed with [openstack-ansible].

1.3.2 OpenStack-Ansible Bug Handling

Bug Reporting

Bugs should be filed on the OpenStack-Ansible Launchpad project.

When submitting a bug, or working on a bug, please ensure the following criteria are met:

• The description clearly states or describes the original problem or root cause of the problem.

• The description clearly states the expected outcome of the user action.

• Include historical information on how the problem was identified.

• Any relevant logs or user configuration are included, either directly or through a pastebin.

• If the issue is a bug that needs fixing in a branch other than master, please note the associated branch within the
launchpad issue.

• The provided information should be totally self-contained. External access to web services/sites should not be
needed.

• Steps to reproduce the problem if possible.

1.3. Developer Documentation 137

https://docs.openstack.org/infra/manual/developers.html#getting-started
https://bugs.launchpad.net/openstack-ansible
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
https://wiki.openstack.org/wiki/Meetings/openstack-ansible
http://lists.openstack.org/cgi-bin/mailman/listinfo
https://bugs.launchpad.net/openstack-ansible

OpenStack-Ansible Documentation

Bug Tags

If the reported needs fixing in a branch in addition to master, add a <release>-backport-potential tag (e.g.
liberty-backport-potential). There are predefined tags that will auto-complete.

Status

Please leave the status of an issue alone until someone confirms it or a member of the bugs team triages it. While
waiting for the issue to be confirmed or triaged the status should remain as New.

Importance

Should only be touched if it is a Blocker/Gating issue. If it is, please set to High, and only use Critical if you have
found a bug that can take down whole infrastructures. Once the importance has been changed the status should be
changed to Triaged by someone other than the bug creator.

The triaging process is explained here below.

Bug triage

What is a bug triage

Bug triage is a process where tracker issues are screened and prioritised. Triage should help ensure we appropriately
manage all reported issues - bugs as well as improvements and feature requests. (Source: Moodle bug triage)

Reported bugs need confirmation, prioritization, and ensure they do not go stale. If you care about OpenStack stability
but are not wanting to actively develop the roles and playbooks used within the OpenStack-Ansible project, consider
contributing in the area of bug triage.

Please reference the Project Team Guide bugs reference_ for information about bug status/importance and the life
cycle of a bug.

Bug triage meeting duties

If the bug description is incomplete, or the report is lacking the information necessary to reproduce the issue, ask the
reporter to provide missing information, and set the bug status to Incomplete

If the bug report contains enough information and you can reproduce it (or it looks valid), then you should set its status
to Confirmed.

If the bug has security implications, set the security flag (under This report is public on the top right)

If the bug affects a specific area covered by an official tag, you should set the tag. For example, if the bug is likely to
be quite easy to solve, add the low-hanging-fruit tag.

The bug triage meeting is probably a good time for people with bug supervisors rights to also prioritize bugs per
importance (on top of classifying them on status).

Bug skimming duty

To help triaging bugs, one person of the bug team can be on bug skimming duty.

Q What is the goal of the bug skimming duty?

138 Chapter 1. Abstract

https://docs.moodle.org/dev/Bug_triage

OpenStack-Ansible Documentation

A Bug skimming duty reduces the amount of work other developers have to spend to do a proper root
cause analysis (and later fix) of bug reports. For this, close the obviously invalid bug reports, confirm
the obviously valid bug reports, ask questions if things are unclear.

Q Do I need to prove that a bug report is valid/invalid before I can set it to Confirmed/Invalid ?

A No. Sometimes it is not even possible because you do not have the resources. Looking at the code
and tests often enables you to make an educated guess. Citing your sources in a comment helps the
discussion.

Q What is the best status to close a bug report if its issue cannot be reproduced?

A Definitively Invalid. The status Incomplete is an open state and means that more information is neces-
sary.

Q How do I handle open bug reports which are Incomplete for too long?

A If it is in this state for more than 30 days and no answers to the open questions are given, close it with
Wont Fix.

Q How do I handle dependencies to other bugs or TBD features in other projects? For example, I can fix
a bug in OpenStack-Ansible but I need that a feature in Compute (nova) gets implemented before.

A Leave a comment in the OpenStack-Ansible bug report which explains this dependency and leave a
link to the blueprint or bug report of the other project you depend on.

Q Do I have to double-check bug reports which are New and have an assignee?

A Usually not. This bug report has an inconsistent state though. If a bug report has an assignee, it should
be In Progress and have an importance set.

Bug skimming duty weekly checklist

• Prioritize or reprioritize OpenStack-Ansible confirmed bugs.

• Move year old wishlist bugs to Opinion/Wishlist to remove clutter. You can use the following message:

This wishlist bug has been open a year without any activity. I am moving this to Opinion / Wishlist.
This is an easily-obtainable queue of older requests. This bug can be reopened (set back to New) if
someone decides to work on this.

• Move bugs that can not be reproduced to an invalid state if they are unmodified for more than a month.

• Send an email to the openstack-discuss list with the list of bugs to triage during the week. A new bug marked as
Critical or High must be treated in priority.

1.3.3 Contributor Guidelines

Before submitting code

Before jumping ahead and working on code, a series of steps should be taken:

• Is there a bug for it? Can your track if someone else has seen the same bug?

• Are you sure nobody is working on this problem at the moment? Could there be a review pending fixing the
same issue?

• Have you checked if your issue/feature request hasnt been solved in another branch?

If youre willing to submit code, please remember the following rules:

1.3. Developer Documentation 139

https://bugs.launchpad.net/openstack-ansible/+bugs?field.searchtext=&orderby=-importance&field.status%3Alist=CONFIRMED&field.status%3Alist=TRIAGED&field.status%3Alist=INPROGRESS&assignee_option=any&field.assignee=&field.bug_reporter=&field.bug_commenter=&field.subscriber=&field.structural_subscriber=&field.tag=&field.tags_combinator=ANY&field.has_cve.used=&field.omit_dupes.used=&field.omit_dupes=on&field.affects_me.used=&field.has_patch.used=&field.has_branches.used=&field.has_branches=on&field.has_no_branches.used=&field.has_no_branches=on&field.has_blueprints.used=&field.has_blueprints=on&field.has_no_blueprints.used=&field.has_no_blueprints=on&search=Search
https://bugs.launchpad.net/openstack-ansible/+bugs?field.searchtext=&orderby=datecreated&search=Search&field.importance%3Alist=WISHLIST&assignee_option=any&field.assignee=&field.bug_reporter=&field.bug_commenter=&field.subscriber=&field.structural_subscriber=&field.tag=&field.tags_combinator=ANY&field.has_cve.used=&field.omit_dupes.used=&field.omit_dupes=on&field.affects_me.used=&field.has_patch.used=&field.has_branches.used=&field.has_branches=on&field.has_no_branches.used=&field.has_no_branches=on&field.has_blueprints.used=&field.has_blueprints=on&field.has_no_blueprints.used=&field.has_no_blueprints=on
https://bugs.launchpad.net/openstack-ansible/+bugs?search=Search&field.status=New

OpenStack-Ansible Documentation

• All code should match our General Guidelines for Submitting Code.

• All code requires to go through our Review process.

• Documentation should be provided with the code directly. See also Documentation and Release Note Guide-
lines.

• Fixing bugs and increasing test coverage have priority to new features. See also the section Working on bug
fixes.

• New features are following a process, explained in the section Working on new features. New features are less
likely to be backported to previous branches.

Review process

Any new code will be reviewed before merging into our repositories.

We follow openstack guidelines for the code reviewing process.

Please be aware that any patch can be refused by the community if they dont match the General Guidelines for
Submitting Code.

Working on bug fixes

Any bug fix should have, in its commit message:

Closes-Bug: #bugnumber

or

Related-Bug: #bugnumber

where #bugnumber refers to a Launchpad issue.

See also the working on bugs section of the openstack documentation.

Working on new features

If you would like to contribute towards a role to introduce an OpenStack or infrastructure service, or to improve an
existing role, the OpenStack-Ansible project would welcome that contribution and your assistance in maintaining it.

Here are a few rules to get started:

• All large feature additions/deletions should be accompanied by a blueprint/spec. e.g. adding additional active
agents to neutron, developing a new service role, etc See also Submitting a specification.

• Before creating blueprint/spec an associated Wishlist Bug can be raised on launchpad. This issue will be
triaged and a determination will be made on how large the change is and whether or not the change warrants a
blueprint/spec. Both features and bug fixes may require the creation of a blueprint/spec. This requirement will
be voted on by core reviewers and will be based on the size and impact of the change.

• All blueprints/specs should be voted on and approved by core reviewers before any associated code will be
merged. For more information on blueprints/specs please review the OpenStack documentation regarding Work-
ing on Specifications and Blueprints and our own Submitting a specification.

• Once the blueprint work is completed the author(s) can request a backport of the blueprint work into a stable
branch. Each backport will be evaluated on a case by case basis with cautious consideration based on how the
backport affects any existing deployments. See the Backporting section for more information.

140 Chapter 1. Abstract

https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/infra/manual/developers.html#working-on-bugs
https://docs.openstack.org/infra/manual/developers.html#working-on-specifications-and-blueprints
https://docs.openstack.org/infra/manual/developers.html#working-on-specifications-and-blueprints

OpenStack-Ansible Documentation

• Any new OpenStack services implemented which have Tempest tests available must be implemented along with
suitable functional tests enabled as part of the feature development in order to ensure that any changes to the
code base do not break the service functionality.

• Feature additions must include documentation which provides reference to OpenStack documentation about
what the feature is and how it works. The documentation should then describe how it is implemented in
OpenStack-Ansible and what configuration options there are. See also the Documentation and Release Note
Guidelines section.

Example process to develop a new role

Here are the steps to write the role:

1. You can review roles which may be currently in development by checking our specs repository and unmerged
specs on review.openstack.org. If you do not find a spec for the role, propose a blueprint/spec. See also Submit-
ting a specification.

2. Create a source repository (e.g. on Github) to start your work on the Role.

3. Generate the reference directory structure for an Ansible role which is the necessary subset of the documented
Best Practice. You might use Ansible Galaxy tools to do this for you (e.g. ansible-galaxy init). You
may additionally want to include directories such as docs and examples and tests for your role.

4. Generate a meta/main.yml right away. This file is important to Ansible to ensure your dependent roles are
installed and available and provides others with the information they will need to understand the purpose of
your role.

5. Develop task files for each of the install stages in turn, creating any handlers and templates as needed. Ensure
that you notify handlers after any task which impacts the way the service would run (such as configuration file
modifications). Also take care that file ownership and permissions are appropriate.

Hint: Fill in variable defaults, libraries, and prerequisites as you discover a need for them. You can also develop
documentation for your role at the same time.

6. Add tests to the role. See also our Testing page.

7. Ensuring the role matches OpenStack-Ansibles latest standards. See also our Code rules page.

8. Ensure the role converges:

• Implement developer_mode to build from a git source into a Python virtual environment.

• Deploy the applicable configuration files in the right places.

• Ensure that the service starts.

The convergence may involve consuming other OpenStack-Ansible roles (For example: galera_server,
galera_client, rabbitmq_server) in order to ensure that the appropriate infrastructure is in place. Re-using
existing roles in OpenStack-Ansible or Ansible Galaxy is strongly encouraged.

9. Once the initial convergence is working and the services are running, the role development should focus on
implementing some level of functional testing. See also Improve testing with tempest.

10. Test the role on a new machine, using our provided scripts.

11. Submit your role for review.

12. If required, ask the OpenStack-Ansible PTL to import the github role into the openstack-ansible namespace
(This can only be done early in the development cycle, and may be postponed to next cycle).

1.3. Developer Documentation 141

https://docs.openstack.org/tempest/
https://opendev.org/openstack/openstack-ansible-specs
https://review.opendev.org/#/q/status:+open+project:openstack/openstack-ansible-specs
https://review.opendev.org/#/q/status:+open+project:openstack/openstack-ansible-specs
https://docs.ansible.com/ansible/playbooks_best_practices.html#directory-layout

OpenStack-Ansible Documentation

13. If necessary, work on the integration within the openstack-ansible integrated repository, and deploy the role on
an AIO. See also Testing a new role with an AIO.

Example process for adding a feature to an existing role

1. Search for in the OpenStack-Ansible Launchpad project for the feature request.

2. If no Wishlist item exist in Launchpad for your feature, create a bug for it. Dont hesitate to ask if a spec is
required in the bug.

3. The Bug triage will classify if this new feature requires a spec or not.

4. Work on the role files, following our Code rules.

5. Add an extra role test scenario, to ensure your code path is tested and working.

6. Test your new scenario with a new machine. See also the Running tests locally page.

7. Submit your code for review, with its necessary documentation and release notes.

Example process to incubate a new ops project

A new project in openstack-ansible-ops can be started at any time, with no constraint like writing a specification, or
creating a bug.

Instead, the new code has to be isolated on a separate folder of the openstack-ansible-ops repo.

Backporting

• Backporting is defined as the act of reproducing a change from another branch. Unclean/squashed/modified
cherry-picks and complete reimplementations are OK.

• Backporting is often done by using the same code (via cherry picking), but this is not always the case. This
method is preferred when the cherry-pick provides a complete solution for the targeted problem.

• When cherry-picking a commit from one branch to another the commit message should be amended with any
files that may have been in conflict while performing the cherry-pick operation. Additionally, cherry-pick com-
mit messages should contain the original commit SHA near the bottom of the new commit message. This can be
done with cherry-pick -x. Heres more information on Submitting a change to a branch for review.

• Every backport commit must still only solve one problem, as per the guidelines in General Guidelines for
Submitting Code.

• If a backport is a squashed set of cherry-picked commits, the original SHAs should be referenced in the commit
message and the reason for squashing the commits should be clearly explained.

• When a cherry-pick is modified in any way, the changes made and the reasons for them must be explicitly
expressed in the commit message.

• Refactoring work must not be backported to a released branch.

• Backport reviews should be done with due consideration to the effect of the patch on any existing environ-
ment deployed by OpenStack-Ansible. The general OpenStack Guidelines for stable branches can be used as a
reference.

142 Chapter 1. Abstract

https://bugs.launchpad.net/openstack-ansible
https://opendev.org/openstack/openstack-ansible-ops
https://www.mediawiki.org/wiki/Gerrit/Advanced_usage#Submitting_a_change_to_a_branch_for_review_.28.22backporting.22.29
https://docs.openstack.org/project-team-guide/stable-branches.html

OpenStack-Ansible Documentation

1.3.4 Code rules

General Guidelines for Submitting Code

• Write good commit messages. We follow the OpenStack Git Commit Good Practice guide. if you have any
questions regarding how to write good commit messages please review the upstream OpenStack documentation.

• Changes to the project should be submitted for review via the Gerrit tool, following the workflow documented
here.

• Pull requests submitted through GitHub will be ignored and closed without regard.

• Patches should be focused on solving one problem at a time. If the review is overly complex or generally large
the initial commit will receive a -2 and the contributor will be asked to split the patch up across multiple reviews.
In the case of complex feature additions the design and implementation of the feature should be done in such a
way that it can be submitted in multiple patches using dependencies. Using dependent changes should always
aim to result in a working build throughout the dependency chain. Documentation is available for advanced
gerrit usage too.

• All patch sets should adhere to the Ansible Style Guide listed here as well as adhere to the Ansible best practices
when possible.

• All changes should be clearly listed in the commit message, with an associated bug id/blueprint along with any
extra information where applicable.

• Refactoring work should never include additional rider features. Features that may pertain to something that
was re-factored should be raised as an issue and submitted in prior or subsequent patches.

• New features, breaking changes and other patches of note must include a release note generated using the reno
tool. Please see the Documentation and Release Note Guidelines for more information.

• All patches including code, documentation and release notes should be built and tested locally with the appro-
priate test suite before submitting for review. See Development and Testing for more information.

Documentation and Release Note Guidelines

Documentation is a critical part of ensuring that the deployers of OpenStack-Ansible are appropriately informed about:

• How to use the projects tooling effectively to deploy OpenStack.

• How to implement the right configuration to meet the needs of their specific use-case.

• Changes in the project over time which may affect an existing deployment.

To meet these needs developers must submit code comments, documentation (see also the documentation locations
section) and release notes with any code submissions.

All forms of documentation should comply with the guidelines provided in the OpenStack Documentation Contributor
Guide, with particular reference to the following sections:

• Writing style

• RST formatting conventions

Code Comments

Code comments for variables should be used to explain the purpose of the variable. This is particularly important for
the role defaults file as the file is included verbatim in the roles documentation. Where there is an optional variable,
the variable and an explanation of what it is used for should be added to the defaults file.

1.3. Developer Documentation 143

https://wiki.openstack.org/wiki/GitCommitMessages
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://www.mediawiki.org/wiki/Gerrit/Advanced_usage
https://www.mediawiki.org/wiki/Gerrit/Advanced_usage
https://docs.ansible.com/playbooks_best_practices.html
https://docs.openstack.org/reno/latest/
https://docs.openstack.org/reno/latest/
https://docs.openstack.org/doc-contrib-guide/
https://docs.openstack.org/doc-contrib-guide/

OpenStack-Ansible Documentation

Code comments for bash/python scripts should give guidance to the purpose of the code. This is important to provide
context for reviewers before the patch has merged, and for later modifications to remind the contributors what the
purpose was and why it was done that way.

Documentation locations

OpenStack-Ansible has multiple forms of documentation with different intent.

The Deployment Guide intends to help deployers deploy OpenStack-Ansible for the first time.

The User Guide intends to provide user stories on how to do specific things with OpenStack-Ansible.

The Operations Guide provide help on how to manage and operate OpenStack-Ansible.

The in-depth technical information is located in the OpenStack-Ansible Reference.

The role documentation (for example, the keystone role documentation) intends to explain all the options available for
the role and how to implement more advanced requirements. To reduce duplication, the role documentation directly
includes the roles default variables file which includes the comments explaining the purpose of the variables. The long
hand documentation for the roles should focus less on explaining variables and more on explaining how to implement
advanced use cases.

The role documentation must include a description of the mandatory infrastructure (For example: a database and
a message queue are required), variables (For example: the database name and credentials) and group names (For
example: The role expects a group named foo_all to be present and it expects the host to be a member of it) for the
roles execution to succeed.

Where possible the documentation in OpenStack-Ansible should steer clear of trying to explain OpenStack concepts.
Those explanations belong in the OpenStack Manuals or service documentation and OpenStack-Ansible documenta-
tion should link to those documents when available, rather than duplicate their content.

Release Notes

Release notes are generated using the reno tool. Release notes must be written with the following guidelines in mind:

• Each list item must make sense to read without the context of the patch or the repository the patch is being
submitted into. The reason for this is that all release notes are consolidated and presented in a long list without
reference to the source patch or the context of the repository.

• Each note should be brief and to the point. Try to avoid multi-paragraph notes. For features the note should
typically refer to documentation for more details. For bug fixes the note can refer to a registered bug for more
details.

In most cases only the following sections should be used for new release notes submitted with patches:

• features: This should inform the deployer briefly about a new feature and should describe how to use it
either by referencing the variables to set or by referring to documentation.

• issues: This should inform the deployer about known issues. This may be used when fixing an issue and
wanting to inform deployers about a workaround that can be used for versions prior to that which contains the
patch that fixes the issue. Issue notes should specifically make mention of what versions of OpenStack-Ansible
are affected by the issue.

• upgrade: This should inform the deployer about changes which may affect them when upgrading from a
previous major or minor version. Typically, these notes would describe changes to default variable values or
variables that have been removed.

144 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://docs.openstack.org/openstack-ansible/train/user/index.html
https://docs.openstack.org/openstack-ansible/train/admin/index.html
https://docs.openstack.org/openstack-ansible/train/reference/index.html
https://docs.openstack.org/openstack-ansible-os_keystone/
https://docs.openstack.org/reno/latest/

OpenStack-Ansible Documentation

• deprecations: If a variable has been deprecated (ideally using the deprecation filter), then it should be
communicated through notes in this section. Note that if a variable has been removed entirely then it has not
been deprecated and the removal should be noted in the upgrade section.

Submitting a specification

By proposing a draft spec you can help the OpenStack-Ansible community keep track of what roles or large changes
are being developed, and perhaps connect you with others who may be interested and able to help you in the process.

Our specifications repository follows the usual OpenStack and OpenStack-Ansible guidelines for submitting code.

However, to help you in the writing of the specification, we have a specification template that can be copied into the
latest release name folder. Rename and edit it for your needs.

Ansible Style Guide

YAML formatting

When creating tasks and other roles for use in Ansible please create them using the YAML dictionary format.

Example YAML dictionary format:

- name: The name of the tasks
module_name:

thing1: "some-stuff"
thing2: "some-other-stuff"

tags:
- some-tag
- some-other-tag

Example what NOT to do:

- name: The name of the tasks
module_name: thing1="some-stuff" thing2="some-other-stuff"
tags: some-tag

- name: The name of the tasks
module_name: >
thing1="some-stuff"
thing2="some-other-stuff"

tags: some-tag

Usage of the > and | operators should be limited to Ansible conditionals and command modules such as the Ansible
shell or command.

Tags and tags conventions

Tags are assigned based on the relevance of each individual item. Higher level includes (for example in the tasks/
main.yml) need high level tags. For example, *-config or *-install. Included tasks can have more detailed
tags.

The following convention is used:

1.3. Developer Documentation 145

https://opendev.org/openstack/openstack-ansible-specs/src/specs/templates/template.rst

OpenStack-Ansible Documentation

• A tag including the word install handles software installation tasks. Running a playbook with --tags
<role>-install only deploys the necessary software on the target, and will not configure it to your needs
or run any service.

• A tag including the word config prepares the configuration of the software (adapted to your needs), and
all the components necessary to run the service(s) configured in the role. Running a playbook with --tags
<role>-config is only possible if the target already ran the tags <role>-install.

• A tag including the word upgrade handles all the upgrade tasks.

Variable files conventions

The variables files in a role are split in 3 locations:

1. The defaults/main.yml file

2. The vars/main.yml file

3. The vars/<platform specific>.yml file

The variables with lower priority should be in the defaults/main.yml. This allows their overriding with group variables
or host variables. A good example for this are default database connection details, default queues connection details,
or debug mode.

In other words, defaults/main.yml contains variables that are meant to be overridable by a deployer or a continuous
integration system. These variables should be limited as much as possible, to avoid increasing the test matrix.

The vars/main.yml is always included. It contains generic variables that arent meant to be changed by a deployer. This
includes for example static information that arent distribution specific (like aggregation of role internal variables for
example).

The vars/<platform specific>.yml is the place where distribution specific content will be stored. For example, this file
will hold the package names, repositories urls and keys, file paths, service names/init scripts.

Secrets

Any secrets (For example: passwords) should not be provided with default values in the tasks, role vars, or role
defaults. The tasks should be implemented in such a way that any secrets required, but not provided, should result in
the task execution failure. It is important for a secure-by-default implementation to ensure that an environment is not
vulnerable due to the production use of default secrets. Deployers must be forced to properly provide their own secret
variable values.

Task files conventions

Most OpenStack services will follow a common series of stages to install, configure, or update a service deployment.
This is apparent when you review tasks/main.yml for existing roles.

If developing a new role, please follow the conventions set by existing roles.

Tests conventions

The conventions for writing tests are described in the Testing page.

146 Chapter 1. Abstract

OpenStack-Ansible Documentation

Other OpenStack-Ansible conventions

To facilitate the development and tests implemented across all OpenStack-Ansible roles, a base set of folders and files
need to be implemented. A base set of configuration and test facilitation scripts must include at least the following:

• tox.ini: The lint testing, documentation build, release note build and functional build execution process for
the roles gate tests are all defined in this file.

• test-requirements.txt: The Python requirements that must be installed when executing the tests.

• bindep.txt: The binary requirements that must be installed on the host the tests are executed
on for the Python requirements and the tox execution to work. This must be copied from the
openstack-ansible-tests repository and will be automatically be overridden by our proposal bot
should any change happen.

• setup.cfg and setup.py: Information about the repository used when building artifacts.

• run_tests.sh: A script for developers to execute all standard tests on a suitable host. This must be copied
from the openstack-ansible-tests repository and will be automatically be overridden by our proposal
bot should any change happen.

• Vagrantfile: A configuration file to allow a developer to easily create a test virtual machine us-
ing Vagrant. This must automatically execute run_tests.sh. This must be copied from the
openstack-ansible-tests repository and will be automatically be overridden by our proposal bot
should any change happen.

• README.rst, LICENSE, CONTRIBUTING.rst: A set of standard files whose content is self-explanatory.

• .gitignore: A standard git configuration file for the repository which should be pretty uniform across all the
repositories. This must be copied from the openstack-ansible-tests repository and will be automati-
cally be overridden by our proposal bot should any change happen.

• .gitreview: A standard file configured for the project to inform the git-review plugin where to find the
upstream gerrit remote for the repository.

• docs/ and releasenotes/ folders need to be exist and be properly configured.

Please have a look at a role like os_cinder, os_keystone, or os_neutron for latest files.

Container technology independence

The role implementation should be done in such a way that it is agnostic with regards to whether it is implemented in a
container, or on a physical host. The test infrastructure may make use of containers for the separation of services, but
if a role is used by a playbook that targets a host, it must work regardless of whether that host is a container, a virtual
server, or a physical server. The use of containers for role tests is not required but it may be useful in order to simulate
a multi-node build out as part of the testing infrastructure.

Minimum supported distributions

See our Supported distributions page.

1.3.5 Testing

Adding tests to a new role

Each of the role tests is in its tests/ folder.

1.3. Developer Documentation 147

https://www.vagrantup.com/

OpenStack-Ansible Documentation

This folder contains at least the following files:

• test.yml (super playbook acting as test router to sub-playbooks)

• <role name>-overrides.yml. This var file is automatically loaded by our shell script in our tests repos-
itory.

• inventory. A static inventory for role testing. Its possible some roles have multiple inventories. See for
example the neutron role with its lxb_inventory, calico_inventory.

• group_vars and host_vars. These folders will hold override the necessary files for testing. For example,
this is where you override the IP addresses, IP ranges, and ansible connection details.

• ansible-role-requirements.yml. This should be fairly straightforward: this file contains all the roles
to clone before running your role. The roles relative playbooks will have to be listed in the test.yml file.
However, keep in mind to NOT re-invent the wheel. For example, if your role needs keystone, you dont need
to create your own keystone install playbook, because we have a generic keystone install playbook in the tests
repository.

• Only add a zuul.d folder when your role is imported into the openstack-ansible namespace.

Extending tests of an existing role

1. Modify the tox.ini to add your new scenario. If required, you can override the inventory, and/or the variable
files.

2. Add a new non-voting job in zuul.d/jobs.yaml, and wire it in the project tests file zuul.d/project.
yaml.

Improve testing with tempest

Once the initial convergence is working and the services are running, the role development should focus on imple-
menting some level of functional testing.

Ideally, the functional tests for an OpenStack role should make use of Tempest to execute the functional tests. The
ideal tests to execute are scenario tests as they test the functions that the service is expected to do in a production
deployment. In the absence of any scenario tests for the service a fallback option is to implement the smoke tests
instead.

If no tempest is provided, some other functional testing should be done. For APIs, you can probably check the HTTP
response codes, with specially crafted requests.

Running tests locally

Linting

Python coding conventions are tested using PEP8, with the following convention exceptions:

• F403 - from ansible.module_utils.basic import *

Testing may be done locally by executing:

./run_tests.sh pep8

Bash coding conventions are tested using Bashate, with the following convention exceptions:

• E003: Indent not multiple of 4. We prefer to use multiples of 2 instead.

148 Chapter 1. Abstract

https://opendev.org/openstack/openstack-ansible-tests
https://opendev.org/openstack/openstack-ansible-tests
https://www.python.org/dev/peps/pep-0008/
https://opendev.org/openstack/bashate

OpenStack-Ansible Documentation

• E006: Line longer than 79 columns. As many scripts are deployed as templates and use jinja templating,
this is very difficult to achieve. It is still considered a preference and should be a goal to improve readabil-
ity, within reason.

• E040: Syntax error determined using bash -n. As many scripts are deployed as templates and use jinja
templating, this will often fail. This test is reasonably safely ignored as the syntax error will be identi-
fied when executing the resulting script.

Testing may be done locally by executing:

./run_tests.sh bashate

Ansible is lint tested using ansible-lint.

Testing may be done locally by executing:

./run_tests.sh ansible-lint

Ansible playbook syntax is tested using ansible-playbook.

Testing may be done locally by executing:

./run_tests.sh ansible-syntax

A consolidated set of all lint tests may be done locally by executing:

./run_tests.sh linters

Documentation building

Documentation is developed in reStructuredText (RST) and compiled into HTML using Sphinx.

Documentation may be built locally by executing:

./run_tests.sh docs

The OpenStack-Ansible integrated repo also has an extra documentation building process, to build the deployment
guide.

This guide may be built locally by executing:

./run_tests.sh deploy-guide

Release notes building

Release notes are generated using the the reno tool and compiled into HTML using Sphinx.

Release notes may be built locally by executing:

./run_tests.sh releasenotes

Note: The releasenotes build argument only tests committed changes. Ensure your local changes are committed
before running the releasenotes build.

1.3. Developer Documentation 149

https://github.com/ansible/ansible-lint
http://docutils.sourceforge.net/rst.html
https://docs.openstack.org/reno/latest/

OpenStack-Ansible Documentation

Roles functional or scenario testing

To run a functional test of the role, execute:

./run_tests.sh functional

Some roles have extra tests, like neutron, defined in tox.ini.

To run a functional test named calico, execute:

./run_tests.sh calico

Testing a new role with an AIO

1. Include your role on the deploy host. See also Adding new or overriding roles in your OpenStack-Ansible
installation.

2. Perform any other host preparation (such as the tasks performed by the bootstrap-aio.yml playbook).
This includes any preparation tasks that are particular to your service.

3. Generate files to include your service in the Ansible inventory using env.d and conf.d files for use on your
deploy host.

Hint: You can follow examples from other roles, making the appropriate modifications being sure that group
labels in env.d and conf.d files are consistent.

Hint: A description of how these work can be found in Understanding host groups (conf.d structure) and
Understanding container groups (env.d structure).

4. Generate secrets, if any, as described in the Configure Service Credentials. You can append your keys to an
existing user_secrets.yml file or add a new file to the openstack_deploy directory to contain them.
Provide overrides for any other variables you will need at this time as well, either in user_variables.yml
or another file.

See also our Overriding default configuration page.

Any secrets required for the role to work must be noted in the etc/openstack_deploy/
user_secrets.yml file for reuse by other users.

5. If your service is installed from source or relies on python packages which need to be installed from source, spec-
ify a repository for the source code of each requirement by adding a file to your deploy host under playbooks/
defaults/repo_packages in the OpenStack-Ansible source repository and following the pattern of files
currently in that directory. You could also simply add an entry to an existing file there. Be sure to run the
repo-build.yml play later so that wheels for your packages will be included in the repository infrastruc-
ture.

6. Make any required adjustments to the load balancer configuration (e.g. modify inventory/group_vars/
all/haproxy.yml in the OpenStack-Ansible source repository on your deploy host) so that your service
can be reached through a load balancer, if appropriate, and be sure to run the haproxy-install.yml play
later so your changes will be applied. Please note, you can also use haproxy_extra_services variable if
you dont want to provide your service as default for everyone.

7. Put together a service install playbook file for your role. This can also be modeled from any existing service
playbook that has similar dependencies to your service (database, messaging, storage drivers, container mount

150 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/configure.html#configuring-service-credentials

OpenStack-Ansible Documentation

points, etc.). A common place to keep playbook files in a Galaxy role is in an examples directory off the root
of the role. If the playbook is meant for installing an OpenStack service, name it os-<service>-install.
yml and target it at the appropriate group defined in the service env.d file. It is crucial that the implementation
of the service is optional and that the deployer must opt-in to the deployment through the population of a host
in the applicable host group. If the host group has no hosts, Ansible skips the playbooks tasks automatically.

8. Any variables needed by other roles to connect to the new role, or by the new role to connect to other roles,
should be implemented in inventory/group_vars. The group vars are essentially the glue which play-
books use to ensure that all roles are given the appropriate information. When group vars are implemented it
should be a minimum set to achieve the goal of integrating the new role into the integrated build.

9. Documentation must be added in the role to describe how to implement the new service in an integrated en-
vironement. This content must adhere to the Documentation and Release Note Guidelines. Until the role has
integrated functional testing implemented (see also the Role development maturity paragraph), the documenta-
tion must make it clear that the service inclusion in OpenStack-Ansible is experimental and is not fully tested
by OpenStack-Ansible in an integrated build. Alternatively, an user story can be created.

10. A feature release note must be added to announce the new service availability and to refer to the role documen-
tation for further details. This content must adhere to the Documentation and Release Note Guidelines.

11. It must be possible to execute a functional, integrated test which executes a deployment in the same way as a
production environment. The test must execute a set of functional tests using Tempest. This is the required last
step before a service can remove the experimental warning from the documentation.

Hint: If you adhere to the pattern of isolating your roles extra deployment requirements (secrets and var files,
HAProxy yml fragments, repo_package files, etc.) in their own files it makes it easy for you to automate these
additional steps when testing your role.

Integrated repo functional or scenario testing

To test the integrated repo, follow the Deployment Guide

Alternatively, you can check the aio guide, or even run the gate wrapper script, named scripts/
gate-check-commit.sh, described below.

The OpenStack Infrastructure automated tests

There should be no difference between running tests in the openstack infrastructure, versus running locally.

The tests in the openstack infrastructure are triggered by jobs defined in each repo zuul.d folder.

See also the zuul user guide.

However, for reliability purposes, a few variables are defined to point to the OpenStack infra pypi and packages
mirrors.

The integrated repo functional test is using the scripts/gate-check-commit.sh script, which receives argu-
ments from the zuul run playbook definition.

While this script is primarily developed and maintained for use in OpenStack-CI, it can be used in other environments.

Role development maturity

A role may be fully mature, even if it is not integrated in the openstack-ansible repository. The maturity
depends on its testing levels.

1.3. Developer Documentation 151

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://zuul-ci.org/docs/zuul/user/index.html

OpenStack-Ansible Documentation

A role can be in one of the four maturity levels:

• Complete

• Incubated

• Unmaintained

• Retired

Here are a series of rules that define maturity levels:

• A role can be retired at any time if it is not relevant anymore.

• A role can be Incubated for maximum 2 cycles.

• An Incubated role that passes functional testing will be upgraded to the Complete status, and cannot return
in Incubated status.

• An Incubated role that didnt implement functional testing in the six month timeframe will become
Unmaintained.

• A role in Complete status can be downgraded to Unmaintained. status, according to the maturity down-
grade procedure.

Maturity downgrade procedure

If a role has failed periodics or gate test for two weeks, a bug should be filed, and a message to the mailing list will be
sent, referencing the bug.

The next community meeting should discuss about role deprecation, and if no contributor comes forward to fix the
role, periodic testing will be turned off, and the role will move to an unmaintained state.

Maturity Matrix

All of the OpenStack-Ansible roles do not have the same level of maturity and testing.

Here is a dashboard of the current status of the roles:

1.3.6 Periodic Work

Releasing

Our release frequency is discussed in Releases.

OSA CLI tooling

OpenStack-Ansible used to bump everything in a single script, which made it hard to maintain, and was very branch
specific. It made it hard for users to consume either an update of the upstream shas, or to bump roles with their own
pace.

Since then, the OpenStack-Ansible has agreed to provide more metadata necessary for releasing into the openstack-
ansible code tree. This allowed the tooling for releasing to be more flexible, and lighter, over time.

Now, all the functions are separated, and included into a branch independent tooling, osa_cli_releases.

You can install the latest version of this tooling by running:

152 Chapter 1. Abstract

OpenStack-Ansible Documentation

pip3 install -e git+https://github.com/evrardjp/osa-cli.git#egg=openstack_ansible_cli
pip3 install -e git+https://github.com/evrardjp/osa_cli_releases.git#egg=osa_cli_
↪→releases

This tooling can then be called using osa releases. Each subcommand contains help by default.

Updating upstream SHAs

The dependencies for OpenStack-Ansible are updated through the use of osa releases
bump_upstream_shas. This script updates the projects pinned SHAs, located in the repo_packages folder, based
on their _git_track_branch value.

Updating OpenStack-Ansible roles

Updating the roles to their latest version per branch is done through osa releases bump_roles
$gitbranchname.

This can do multiple things:

• Freeze ansible-role-requirements to their latest SHAs for the branch they are tracking.

• Copy release notes relevant to the freeze.

• Unfreeze of master.

Master doesnt get frozen, unless explicitly asked for it for release milestones, using the command osa releases
freeze_roles_for_milestone

Check current pins status

You can check the current PyPI pins that are used in openstack-ansible repository by running osa releases
check_pins. This will display a table, showing the current pin in OSA, and what is available upstream on PyPI.

This doesnt patch the global-requirements-pins, as this should be a manual operation. See the Development
cycle checklist to know when to bump the global-requirements-pins.

Adding patch in releases repo

When the patches to update SHAs and roles have landed, you can propose the parent SHA as a release in the releases
repo.

This can be done using the new-release command, and then editing the SHA used for openstack-ansible. See also
new_releases page for an explanation of this command.

Please note that branches before Stein will require cleanup of the YAML file generated by new_releases, as it will
contain ALL the roles and openstack-ansible repo SHAs. We have decided to NOT tag the roles anymore, so you will
need to remove all the lines which are not relevant to the openstack-ansible repository.

Development cycle checklist

On top of the normal cycle goals, a contributor can help the OpenStack-Ansible development team by performing one
of the following recurring tasks:

1.3. Developer Documentation 153

https://releases.openstack.org/reference/using.html#using-new-release-command

OpenStack-Ansible Documentation

• By milestone 1:

– Community goal acknowledgement.

– Update global-requirements-pins

• By milestone 2:

– Handle deprecations from upstream projects previous cycle.

– Handle OpenStack-Ansible roles deprecations from the previous cycle.

– Refresh static elements in roles. For example, update a specific version of the software packages.

– Bump ceph_stable_release to latest Ceph LTS release in the integrated OpenStack-Ansible repo,
and inside the ceph_client role defaults.

– Check and bump galera versions if required.

– Check and bump rabbitmq versions if required.

– Check outstanding reviews and move to merge or abandon them if no longer valid.

– Update global-requirements-pins

• By milestone 3:

– Implement features

– Update global-requirements-pins

• After milestone 3:

– Feature freeze, bug fixes, and testing improvements.

• After creating a new stable branch:

– For all the repos, update the eventual static files refering to master/previous branch name. The main doc-
umentation should be updated to add the new branch. The #openstack-docs team should also be updated,
for linking the newly created deployment-guide.

Use the topic create-<branchname> (e.g: create-stein) for future reference.

– Branch all the independent repos that arent part of the release in gerrit. See also the projects.yaml
in the governance repo. Manually branched repos need extra editions, like updating the .gitreview, or
the reno index. Please reference previous branch creations by using the appropriate topic in gerrit (e.g.:
create-stein). The previous new branch creation may be different as the tooling/process may have
evolved, so be aware that the changes needed may need to be adapted.

• After official project release, before official OpenStack-Ansible release:

– Bump RDO, Ubuntu Cloud Archive and openSUSE OBS OpenStack Cloud repositories if they are ready
on time.

• Immediately after official OpenStack-Ansible release:

– Send a thank you note to all the contributors through the mailing lists. They deserve it.

1.3.7 Core Reviewers

General Responsibilities

The OpenStack-Ansible Core Reviewer Team is responsible for many aspects of the OpenStack-Ansible project. These
include, but are not limited to:

154 Chapter 1. Abstract

https://review.openstack.org/#/admin/groups/490,members

OpenStack-Ansible Documentation

• Mentor community contributors in solution design, testing, and the review process

• Actively reviewing patch submissions, considering whether the patch: - is functional - fits the use-cases and
vision of the project - is complete in terms of testing, documentation, and release notes - takes into consideration
upgrade concerns from previous versions

• Assist in bug triage and delivery of bug fixes

• Curating the gate and triaging failures

• Maintaining accurate, complete, and relevant documentation

• Ensuring the level of testing is adequate and remains relevant as features are added

• Answering questions and participating in mailing list discussions

• Interfacing with other OpenStack teams

In essence, core reviewers share the following common ideals:

• They share responsibility in the projects success in its mission.

• They value a healthy, vibrant, and active developer and user community.

• They have made a long-term, recurring time investment to improve the project.

• They spend their time doing what needs to be done to ensure the projects success, not necessarily what is the
most interesting or fun.

• A core reviewers responsibility doesnt end with merging code.

Core Reviewer Expectations

Members of the core reviewer team are expected to:

• Attend and participate in the weekly IRC meetings

• Monitor and participate in-channel at #openstack-ansible

• Monitor and participate in OpenStack-Ansible discussions on the mailing list

• Participate in team sessions at the OpenStack Projects Team Gatherings (PTG)

• Participate in Forum sessions at the OpenStack Summits

• Review patch submissions actively and consistently

Please note in-person attendance at PTG, Summit, mid-cycles, and other code sprints is not a requirement to be a core
reviewer. The team will do its best to facilitate virtual attendance at all events. Travel is not to be taken lightly, and we
realize the costs involved for those who attend these events.

Code Merge Responsibilities

While everyone is encouraged to review changes, members of the core reviewer team have the ability to +2/-2 and +W
changes to these repositories. This is an extra level of responsibility not to be taken lightly. Correctly merging code re-
quires not only understanding the code itself, but also how the code affects things like documentation, testing, upgrade
impacts and interactions with other projects. It also means you pay attention to release milestones and understand if a
patch you are merging is marked for the release, especially critical during the feature freeze.

1.3. Developer Documentation 155

https://governance.openstack.org/tc/reference/projects/openstackansible.html#mission

OpenStack-Ansible Documentation

1.3.8 Distribution support

Supported distributions

The list of supported distributions can be found in the Deployment Guide

Minimum requirements for OpenStack-Ansible roles

Existing and new distributions are expected to meet the following requirements in order for them to be accepted in the
individual OpenStack-Ansible roles:

• Pass functional tests

Graduation

For a distribution to be considered supported by the OpenStack-Ansible project, it has to meet the following minimum
requirements:

• The necessary steps for bootstrapping the operating system have to be documented in the Deployment Guide.

• The integration repository contains at least one job which passes the Temptest testing framework.

Voting

Distributions can be promoted to voting jobs on individual roles once they move to the Graduation phase and their
stability has been confirmed by the core OpenStack-Ansible developers. Similar to this, voting can also be enabled in
the integration repository for all the scenarios or a specific one.

1.4 OpenStack-Ansible Reference

This chapter contains all the extra reference information to deploy, configure, or upgrade an OpenStack-Ansible cloud.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for step-by-step
instructions on how to deploy the OpenStack packages and dependencies on your cloud using OpenStack-Ansible.

For user guides, see the User Guide.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.

For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

1.4.1 Releases

What is the OSA release model

OpenStack-Ansible (OSA) uses the cycle-trailing release model as specified in the OpenStack release model refer-
ence_.

156 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/deploymenthost.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/train/index.html
https://docs.openstack.org/openstack-ansible/train/user/index.html
https://docs.openstack.org/openstack-ansible/train/admin/index.html
https://docs.openstack.org/openstack-ansible/train/contributor/index.html

OpenStack-Ansible Documentation

How are release tags decided?

In order to ensure a common understanding of what release versions mean, we use Semantic Versioning 2.0.0_ for
versioning as a basis. The exception to the rule is for milestone releases during a development cycle, where releases are
tagged <MAJOR>.0.0.0b<MILESTONE> where <MAJOR> is the next major release number, and <MILESTONE>
is the milestone number.

The OpenStack series names are alphabetical, with each letter matched to a number (eg: Austin = 1, Bexar = 2, Newton
= 14, Pike = 16, etc). OSA adopted the same <MAJOR> release numbering as the Nova project to match the overall
OpenStack series version numbering.

How frequently does OSA release?

Major releases are done every six months according to the OpenStack release schedule_. Each major release is con-
sistent with an OpenStack series.

Minor/patch releases are requested for stable branches on the second and last Friday of every month. The releases are
typically completed within a few days of the request.

What version of OpenStack is deployed by OSA?

For each OSA release, the OpenStack version that is deployed is set to a specific OpenStack git SHA-1 hash_ (SHA).
These are updated after every OSA release. The intent is to ensure that OSA users are able to enjoy an updated
OpenStack environment with smaller increments of change than the typical upstream service releases allow for as they
are usually very infrequent.

This does mean that a stable OSA deployment will include a version of a service (eg: nova-17.0.3dev4) which does
not match a tag exactly as you may expect (eg: nova-17.0.3).

If you wish to change the SHA to a specific SHA/tag/branch, or wish to use your own fork of an OpenStack service,
please see the section titled Overriding other upstream projects source code in the user guide.

When does a patch to an OSA role get into a release?

For each OSA release, the Ansible roles that form that release are set to a specific git SHA-1 hash_ (SHA). These are
updated after every OSA release.

OSA frequently does pro-active bugfix backports. In order to reduce the risk of these backports introducing any
destabilization, OSA implements a soak period for any patches implemented in the stable branches for roles, but also
provides for circumventing this in exceptional circumstances.

A patch merged into a role is immediately tested by other role tests, ensuring that any major breaking change is caught.
Once a minor/patch release is requested, the integrated build receives a SHA bump patch to update the integrated build
to using the latest available roles including that new patch. This new set is available for testing to anyone wanting to
use the head of the stable branch, and is tested in periodic tests until the next release. In total, that means that the cycle
time for a patch from merge to release is anywhere from two weeks to one month.

If there is a requirement to rush a role patch into the next release, then anyone may propose a change to the
ansible-role-requirements.yml file in the openstack/openstack-ansible repository with the ap-
propriate justification.

We believe that this approach brings a balance of both reasonable stability, while still being able to do pro-active
backports.

The only exception to this rule is for the master branch, which intentionally consumes the master branch from all
roles between releases so that any changes are immediately integration tested.

1.4. OpenStack-Ansible Reference 157

OpenStack-Ansible Documentation

1.4.2 Conventions

To avoid extra configuration, a series of conventions are set into code.

Default folders locations

Ansible roles

The ansible roles are stored under /etc/ansible/roles.

OpenStack-Ansible directory checkout

The code is generally located into /opt/openstack-ansible.

OpenStack-Ansible wrapper

Our openstack-ansible cli is located in /usr/bin/openstack-ansible. It sources an environment vari-
able file located in: /usr/bin/openstack-ansible.rc.

Userspace configurations

All the userspace configurations are expected to be in /etc/openstack_deploy/.

Ansible configuration

Ansible.cfg

There is no ansible.cfg provided with OpenStack-Ansible. Environment variables are used to alter the default
Ansible behavior if necessary.

Ansible roles fetching

Any roles defined in openstack-ansible/ansible-role-requirements.yml will be installed by the
openstack-ansible/scripts/bootstrap-ansible.sh script, and fetched into the ansible roles folder.

Inventory conventions

Please confer to the inventory section of this reference.

1.4.3 Inventory

OpenStack-Ansible uses an included script to generate the inventory of hosts and containers within the environment.
This script is called by Ansible through its dynamic inventory functionality.

In this section, you will find documentation relevant to the inventory for OpenStack-Ansible.

158 Chapter 1. Abstract

https://docs.ansible.com/ansible/intro_dynamic_inventory.html

OpenStack-Ansible Documentation

Generating the Inventory

The script that creates the inventory is located at inventory/dynamic_inventory.py.

This section explains how ansible runs the inventory, and how you can run it manually to see its behavior.

Executing the dynamic_inventory.py script manually

When running an Ansible command (such as ansible, ansible-playbook or openstack-ansible) Ansi-
ble automatically executes the dynamic_inventory.py script and use its output as inventory.

Run the following command:

from the root folder of cloned OpenStack-Ansible repository
inventory/dynamic_inventory.py --config /etc/openstack_deploy/

This invocation is useful when testing changes to the dynamic inventory script.

Inputs

The dynamic_inventory.py takes the --config argument for the directory holding configuration from which
to create the inventory. If not specified, the default is /etc/openstack_deploy/.

In addition to this argument, the base environment skeleton is provided in the inventory/env.d directory of the
OpenStack-Ansible codebase.

Should an env.d directory be found in the directory specified by --config, its contents will be added to the base
environment, overriding any previous contents in the event of conflicts.

Note: In all versions prior to Stein, this argument was --file.

The following file must be present in the configuration directory:

• openstack_user_config.yml

Additionally, the configuration or environment could be spread between two additional sub-directories:

• conf.d

• env.d (for environment customization)

The dynamic inventory script does the following:

• Generates the names of each container that runs a service

• Creates container and IP address mappings

• Assigns containers to physical hosts

As an example, consider the following excerpt from openstack_user_config.yml:

identity_hosts:
infra01:
ip: 10.0.0.10

infra02:
ip: 10.0.0.11

infra03:
ip: 10.0.0.12

1.4. OpenStack-Ansible Reference 159

OpenStack-Ansible Documentation

The identity_hosts dictionary defines an Ansible inventory group named identity_hosts containing the
three infra hosts. The configuration file inventory/env.d/keystone.yml defines additional Ansible inventory
groups for the containers that are deployed onto the three hosts named with the prefix infra.

Note that any services marked with is_metal: true will run on the allocated physical host and not in a con-
tainer. For an example of is_metal: true being used refer to inventory/env.d/cinder.yml in the
container_skel section.

For more details, see Configuring the inventory.

Outputs

Once executed, the script will output an openstack_inventory.json file into the directory specified with the
--config argument. This is used as the source of truth for repeated runs.

Warning: The openstack_inventory.json file is the source of truth for the environment. Deleting this in
a production environment means that the UUID portion of container names will be regenerated, which then results
in new containers being created. Containers generated under the previous version will no longer be recognized by
Ansible, even if reachable via SSH.

The same JSON structure is printed to stdout, which is consumed by Ansible as the inventory for the playbooks.

Checking inventory configuration for errors

Using the --check flag when running dynamic_inventory.py will run the inventory build process and look
for known errors, but not write any files to disk.

If any groups defined in the openstack_user_config.yml or conf.d files are not found in the environment,
a warning will be raised.

This check does not do YAML syntax validation, though it will fail if there are unparseable errors.

Writing debug logs

The --debug/-d parameter allows writing of a detailed log file for debugging the inventory scripts behavior. The
output is written to inventory.log in the current working directory.

The inventory.log file is appended to, not overwritten.

Like --check, this flag is not invoked when running from ansible.

Configuring the inventory

In this chapter, you can find the information on how to configure the openstack-ansible dynamic inventory to your
needs.

Introduction

Common OpenStack services and their configuration are defined by OpenStack-Ansible in the /etc/
openstack_deploy/openstack_user_config.yml settings file.

160 Chapter 1. Abstract

OpenStack-Ansible Documentation

Additional services should be defined with a YAML file in /etc/openstack_deploy/conf.d, in order to
manage file size.

The /etc/openstack_deploy/env.d directory sources all YAML files into the deployed environment, allow-
ing a deployer to define additional group mappings. This directory is used to extend the environment skeleton, or
modify the defaults defined in the inventory/env.d directory.

To understand how the dynamic inventory works, see Understanding the inventory.

Warning: Never edit or delete the files /etc/openstack_deploy/openstack_inventory.json or
/etc/openstack_deploy/openstack_hostnames_ips.yml. This can lead to file corruptions, and
problems with the inventory: hosts and container could disappear and new ones would appear, breaking your
existing deployment.

Configuration constraints

Group memberships

When adding groups, keep the following in mind:

• A group can contain hosts

• A group can contain child groups

However, groups cannot contain child groups and hosts.

The lxc_hosts Group

When the dynamic inventory script creates a container name, the host on which the container resides is added to the
lxc_hosts inventory group.

Using this name for a group in the configuration will result in a runtime error.

Deploying directly on hosts

To deploy a component directly on the host instead of within a container, set the is_metal property to true for the
container group in the container_skel section in the appropriate file.

The use of container_vars and mapping from container groups to host groups is the same for a service deployed
directly onto the host.

You can also use the no_containers option to specify a host that will have all services deployed on metal inside
of it.

Note: The cinder-volume component is deployed directly on the host by default. See the env.d/cinder.yml
file for this example.

Example: Running all controllers on metal

For example, if youd like to run all your controllers on metal, you would have the following inside your
openstack_user_config.yml.

1.4. OpenStack-Ansible Reference 161

OpenStack-Ansible Documentation

infra_hosts:
infra1:
ip: 172.39.123.11
no_containers: true

infra2:
ip: 172.39.123.12
no_containers: true

infra3:
ip: 172.39.123.13
no_containers: true

Example: Running galera on dedicated hosts

For example, to run Galera directly on dedicated hosts, you would perform the following steps:

1. Modify the container_skel section of the env.d/galera.yml file. For example:

container_skel:
galera_container:
belongs_to:

- db_containers
contains:

- galera
properties:

is_metal: true

Note: To deploy within containers on these dedicated hosts, omit the is_metal: true property.

2. Assign the db_containers container group (from the preceding step) to a host group by providing a
physical_skel section for the host group in a new or existing file, such as env.d/galera.yml. For
example:

physical_skel:
db_containers:
belongs_to:

- all_containers
db_hosts:
belongs_to:

- hosts

3. Define the host group (db_hosts) in a conf.d/ file (such as galera.yml). For example:

db_hosts:
db-host1:
ip: 172.39.123.11

db-host2:
ip: 172.39.123.12

db-host3:
ip: 172.39.123.13

Note: Each of the custom group names in this example (db_containers and db_hosts) are arbitrary.
Choose your own group names, but ensure the references are consistent among all relevant files.

162 Chapter 1. Abstract

OpenStack-Ansible Documentation

Deploying 0 (or more than one) of component type per host

When OpenStack-Ansible generates its dynamic inventory, the affinity setting determines how many containers of a
similar type are deployed on a single physical host.

Using shared-infra_hosts as an example, consider this openstack_user_config.yml configuration:

shared-infra_hosts:
infra1:
ip: 172.29.236.101

infra2:
ip: 172.29.236.102

infra3:
ip: 172.29.236.103

Three hosts are assigned to the shared-infra_hosts group, OpenStack-Ansible ensures that each host runs a single
database container, a single Memcached container, and a single RabbitMQ container. Each host has an affinity of 1 by
default, which means that each host runs one of each container type.

If you are deploying a stand-alone Object Storage (swift) environment, you can skip the deployment of RabbitMQ. If
you use this configuration, your openstack_user_config.yml file would look as follows:

shared-infra_hosts:
infra1:
affinity:

rabbit_mq_container: 0
ip: 172.29.236.101

infra2:
affinity:

rabbit_mq_container: 0
ip: 172.29.236.102

infra3:
affinity:

rabbit_mq_container: 0
ip: 172.29.236.103

This configuration deploys a Memcached container and a database container on each host, but no RabbitMQ contain-
ers.

Omit a service or component from the deployment

To omit a component from a deployment, you can use one of several options:

• Remove the physical_skel link between the container group and the host group by deleting the related file
located in the env.d/ directory.

• Do not run the playbook that installs the component. Unless you specify the component to run directly on a host
by using the is_metal property, a container is created for this component.

• Adjust the Deploying 0 (or more than one) of component type per host to 0 for the host group. Similar to the
second option listed here, Unless you specify the component to run directly on a host by using the is_metal
property, a container is created for this component.

1.4. OpenStack-Ansible Reference 163

OpenStack-Ansible Documentation

Deploying using a different container technology

Note: While nspawn is an available containerization technology it should be considered experemental at this time.
Even though this subsystem is not yet recommended for production, it is stable enough to introduce to the community
and something wed like feedback on as we improve it over the next cycle.

OpenStack-Ansible presently supports two different container technologies, LXC and nspawn. These two container
technologies can be used separately or together within the same cluster but has a limitation of only one setting per
host.

Using shared-infra_hosts as an example, consider this openstack_user_config.yml configuration:

shared-infra_hosts:
infra1:
ip: 172.29.236.101
container_vars:

container_tech: lxc
infra2:
ip: 172.29.236.102
container_vars:

container_tech: nspawn
infra3:
ip: 172.29.236.103

In this example the three hosts are assigned to the shared-infra_hosts group, and will deploy containerized workloads
using lxc on infra1, nspawn on infra2, and lxc on infra3. Notice infra3 does not define the container_tech
option because it not required. If this option is undefined the value will automatically be set to lxc within the gener-
ated inventory. The two supported options for the container_tech configuration variable are lxc or nspawn.

Understanding the inventory

The default layout of containers and services in OpenStack-Ansible (OSA) is determined by the /
etc/openstack_deploy/openstack_user_config.yml file and the contents of both the /etc/
openstack_deploy/conf.d/ and /etc/openstack_deploy/env.d/ directories. You use these sources
to define the group mappings that the playbooks use to target hosts and containers for roles used in the deploy.

• You define host groups, which gather the target hosts into inventory groups, through the /
etc/openstack_deploy/openstack_user_config.yml file and the contents of the /etc/
openstack_deploy/conf.d/ directory.

• You define container groups, which can map from the service components to be deployed up to host groups,
through files in the /etc/openstack_deploy/env.d/ directory.

To customize the layout of the components for your deployment, modify the host groups and container groups appro-
priately before running the installation playbooks.

Understanding host groups (conf.d structure)

As part of the initial configuration, each target host appears either in the /etc/openstack_deploy/
openstack_user_config.yml file or in files within the /etc/openstack_deploy/conf.d/ di-
rectory. The format used for files in the conf.d/ directory is identical to the syntax used in the
openstack_user_config.yml file.

164 Chapter 1. Abstract

OpenStack-Ansible Documentation

In these files, the target hosts are listed under one or more headings, such as shared-infra_hosts or
storage_hosts, which serve as Ansible group mappings. These groups map to the physical hosts.

The haproxy.yml.example file in the conf.d/ directory provides a simple example of defining a host group
(haproxy_hosts) with two hosts (infra1 and infra2).

The swift.yml.example file provides a more complex example. Here, host variables for a target host are specified
by using the container_vars key. OpenStack-Ansible applies all entries under this key as host-specific variables
to any component containers on the specific host.

Note: To manage file size, we recommend that you define new inventory groups, particularly for new services, by
using a new file in the conf.d/ directory.

Understanding container groups (env.d structure)

Additional group mappings are located within files in the /etc/openstack_deploy/env.d/ directory. These
groups are treated as virtual mappings from the host groups (described above) onto the container groups, that define
where each service deploys. By reviewing files within the env.d/ directory, you can begin to see the nesting of
groups represented in the default layout.

For example, the shared-infra.yml file defines a container group, shared-infra_containers, as a subset
of the all_containers inventory group. The shared- infra_containers container group is mapped to
the shared-infra_hosts host group. All of the service components in the shared-infra_containers
container group are deployed to each target host in the shared-infra_hosts host group.

Within a physical_skel section, the OpenStack-Ansible dynamic inventory expects to find a pair of keys. The first
key maps to items in the container_skel section, and the second key maps to the target host groups (described
above) that are responsible for hosting the service component.

To continue the example, the memcache.yml file defines the memcache_container container group. This
group is a subset of the shared-infra_containers group, which is itself a subset of the all_containers
inventory group.

Note: The all_containers group is automatically defined by OpenStack-Ansible. Any service component
managed by OpenStack-Ansible maps to a subset of the all_containers inventory group, directly or indirectly
through another intermediate container group.

The default layout does not rely exclusively on groups being subsets of other groups. The memcache component
group is part of the memcache_container group, as well as the memcache_all group and also contains a
memcached component group. If you review the playbooks/memcached-install.yml playbook, you see
that the playbook applies to hosts in the memcached group. Other services might have more complex deployment
needs. They define and consume inventory container groups differently. Mapping components to several groups in
this way allows flexible targeting of roles and tasks.

openstack_user_config settings reference

The openstack_user_config.yml.example file is heavily commented with the details of how to do more
advanced container networking configuration. The contents of the file are shown here for reference.

#
Overview
========

(continues on next page)

1.4. OpenStack-Ansible Reference 165

OpenStack-Ansible Documentation

(continued from previous page)

#
This file contains the configuration for OpenStack Ansible Deployment
(OSA) core services. Optional service configuration resides in the
conf.d directory.
#
You can customize the options in this file and copy it to
/etc/openstack_deploy/openstack_user_config.yml or create a new
file containing only necessary options for your environment
before deployment.
#
OSA implements PyYAML to parse YAML files and therefore supports structure
and formatting options that augment traditional YAML. For example, aliases
or references. For more information on PyYAML, see the documentation at
#
http://pyyaml.org/wiki/PyYAMLDocumentation
#
Configuration reference
=======================
#
Level: cidr_networks (required)
Contains an arbitrary list of networks for the deployment. For each network,
the inventory generator uses the IP address range to create a pool of IP
addresses for network interfaces inside containers. A deployment requires
at least one network for management.
#
Option: <value> (required, string)
Name of network and IP address range in CIDR notation. This IP address
range coincides with the IP address range of the bridge for this network
on the target host.
#
Example:
#
Define networks for a typical deployment.
#
- Management network on 172.29.236.0/22. Control plane for infrastructure
services, OpenStack APIs, and horizon.
- Tunnel network on 172.29.240.0/22. Data plane for project (tenant) VXLAN
networks.
- Storage network on 172.29.244.0/22. Data plane for storage services such
as cinder and swift.
#
cidr_networks:
container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22
#
Example:
#
Define additional service network on 172.29.248.0/22 for deployment in a
Rackspace data center.
#
snet: 172.29.248.0/22
#

#
Level: used_ips (optional)
For each network in the 'cidr_networks' level, specify a list of IP addresses

(continues on next page)

166 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

or a range of IP addresses that the inventory generator should exclude from
the pools of IP addresses for network interfaces inside containers. To use a
range, specify the lower and upper IP addresses (inclusive) with a comma
separator.
#
Example:
#
The management network includes a router (gateway) on 172.29.236.1 and
DNS servers on 172.29.236.11-12. The deployment includes seven target
servers on 172.29.236.101-103, 172.29.236.111, 172.29.236.121, and
172.29.236.131. However, the inventory generator automatically excludes
these IP addresses. The deployment host itself isn't automatically
excluded. Network policy at this particular example organization
also reserves 231-254 in the last octet at the high end of the range for
network device management.
#
used_ips:
- 172.29.236.1
- "172.29.236.100,172.29.236.200"
- "172.29.240.100,172.29.240.200"
- "172.29.244.100,172.29.244.200"
#

#
Level: global_overrides (required)
Contains global options that require customization for a deployment. For
example, load balancer virtual IP addresses (VIP). This level also provides
a mechanism to override other options defined in the playbook structure.
#
Option: internal_lb_vip_address (required, string)
Load balancer VIP for the following items:
#
- Local package repository
- Galera SQL database cluster
- Administrative and internal API endpoints for all OpenStack services
- Glance registry
- Nova compute source of images
- Cinder source of images
- Instance metadata
#
Option: external_lb_vip_address (required, string)
Load balancer VIP for the following items:
#
- Public API endpoints for all OpenStack services
- Horizon
#
Option: management_bridge (required, string)
Name of management network bridge on target hosts. Typically 'br-mgmt'.
#
Level: provider_networks (required)
List of container and bare metal networks on target hosts.
#
Level: network (required)
Defines a container or bare metal network. Create a level for each
network.
#
Option: type (required, string)

(continues on next page)

1.4. OpenStack-Ansible Reference 167

OpenStack-Ansible Documentation

(continued from previous page)

Type of network. Networks other than those for neutron such as
management and storage typically use 'raw'. Neutron networks use
'flat', 'vlan', or 'vxlan'. Coincides with ML2 plug-in configuration
options.
#
Option: container_bridge (required, string)
Name of unique bridge on target hosts to use for this network. Typical
values include 'br-mgmt', 'br-storage', 'br-vlan', 'br-vxlan', etc.
#
Option: container_interface (required, string)
Name of unique interface in containers to use for this network.
Typical values include 'eth1', 'eth2', etc. This option is OPTIONAL
for Neutron provider network definitions when Neutron agents are
deployed on bare metal (default), but REQUIRED when agents are
deployed in containers and for all other non-Neutron use-cases.
NOTE: Container interface is different from host interfaces.
#
Option: container_type (required, string)
Name of mechanism that connects interfaces in containers to the bridge
on target hosts for this network. Typically 'veth'.
#
Option: host_bind_override (optional, string)
Name of the physical network interface on the same L2 network being
used with the br-vlan device. This host_bind_override should only
be set for the ' container_bridge: "br-vlan" '.
This interface is optional but highly recommended for vlan based
OpenStack networking.
If no additional network interface is available, a deployer can create
a veth pair, and plug it into the br-vlan bridge to provide
this interface. An example could be found in the aio_interfaces.cfg
file.
#
Option: container_mtu (optional, string)
Sets the MTU within LXC for a given network type.
#
Option: ip_from_q (optional, string)
Name of network in 'cidr_networks' level to use for IP address pool. Only
valid for 'raw' and 'vxlan' types.
#
Option: address_prefix (option, string)
Override for the prefix of the key added to each host that contains IP
address information for this network. By default, this will be the name
given in 'ip_from_q' with a fallback of the name of the interface given in
'container_interface'.
(e.g., 'ip_from_q'_address and 'container_interface'_address)
#
Option: is_container_address (required, boolean)
If true, the load balancer uses this IP address to access services
in the container. Only valid for networks with 'ip_from_q' option.
#
Option: group_binds (required, string)
List of one or more Ansible groups that contain this
network. For more information, see the env.d YAML files.
#
Option: reference_group (optional, string)
An Ansible group that a host must be a member of, in addition to any of the
groups within 'group_binds', for this network to apply.

(continues on next page)

168 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

#
Option: net_name (optional, string)
Name of network for 'flat' or 'vlan' types. Only valid for these
types. Coincides with ML2 plug-in configuration options.
#
Option: range (optional, string)
For 'vxlan' type neutron networks, range of VXLAN network identifiers
(VNI). For 'vlan' type neutron networks, range of VLAN tags. Supports
more than one range of VLANs on a particular network. Coincides with
ML2 plug-in configuration options.
#
Option: static_routes (optional, list)
List of additional routes to give to the container interface.
Each item is composed of cidr and gateway. The items will be
translated into the container network interfaces configuration
as a `post-up ip route add <cidr> via <gateway> || true`.
#
Option: gateway (optional, string)
String containing the IP of the default gateway used by the
container. Generally not needed: the containers will have
their default gateway set with dnsmasq, poitining to the host
which does natting for container connectivity.
#
Example:
#
Define a typical network architecture:
#
- Network of type 'raw' that uses the 'br-mgmt' bridge and 'management'
IP address pool. Maps to the 'eth1' device in containers. Applies to all
containers and bare metal hosts. Both the load balancer and Ansible
use this network to access containers and services.
- Network of type 'raw' that uses the 'br-storage' bridge and 'storage'
IP address pool. Maps to the 'eth2' device in containers. Applies to
nova compute and all storage service containers. Optionally applies to
to the swift proxy service.
- Network of type 'vxlan' that contains neutron VXLAN tenant networks
1 to 1000 and uses 'br-vxlan' bridge on target hosts. Maps to the
'eth10' device in containers. Applies to all neutron agent containers
and neutron agents on bare metal hosts.
- Network of type 'vlan' that contains neutron VLAN networks 101 to 200
and 301 to 400 and uses the 'br-vlan' bridge on target hosts. Maps to
the 'eth11' device in containers. Applies to all neutron agent
containers and neutron agents on bare metal hosts.
- Network of type 'flat' that contains one neutron flat network and uses
the 'br-vlan' bridge on target hosts. Maps to the 'eth12' device in
containers. Applies to all neutron agent containers and neutron agents
on bare metal hosts.
#
Note: A pair of 'vlan' and 'flat' networks can use the same bridge because
one only handles tagged frames and the other only handles untagged frames
(the native VLAN in some parlance). However, additional 'vlan' or 'flat'
networks require additional bridges.
#
provider_networks:
- network:
group_binds:
- all_containers

(continues on next page)

1.4. OpenStack-Ansible Reference 169

OpenStack-Ansible Documentation

(continued from previous page)

- hosts
type: "raw"
container_bridge: "br-mgmt"
container_interface: "eth1"
container_type: "veth"
ip_from_q: "container"
is_container_address: true
- network:
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute
Uncomment the next line if using swift with a storage network.
- swift_proxy
type: "raw"
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
container_mtu: "9000"
ip_from_q: "storage"
- network:
group_binds:
- neutron_linuxbridge_agent
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
container_mtu: "9000"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
- network:
group_binds:
- neutron_linuxbridge_agent
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
- network:
group_binds:
- neutron_linuxbridge_agent
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
#

#
Level: shared-infra_hosts (required)
List of target hosts on which to deploy shared infrastructure services
including the Galera SQL database cluster, RabbitMQ, and Memcached. Recommend
three minimum target hosts for these services.

(continues on next page)

170 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three shared infrastructure hosts:
#
shared-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#
List of target hosts on which to deploy shared infrastructure services
and define the container_tech for a specific infra node. If this setting
is omitted the inventory generation system will default to "lxc". Accpetable
options are "lxc" and "nspawn".
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Level: container_vars (required)
Contains storage options for this target host.
#
Example:
#
Define three shared infrastructure hosts with different "container_tech":
#
shared-infra_hosts:
infra1:
ip: 172.29.236.101
container_vars:
container_tech: nspawn
infra2:
ip: 172.29.236.102
container_vars:
container_tech: lxc
infra3:
ip: 172.29.236.103
#

#
Level: repo-infra_hosts (required)
List of target hosts on which to deploy the package repository. Recommend
minimum three target hosts for this service. Typically contains the same
target hosts as the 'shared-infra_hosts' level.

(continues on next page)

1.4. OpenStack-Ansible Reference 171

OpenStack-Ansible Documentation

(continued from previous page)

#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three package repository hosts:
#
repo-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: os-infra_hosts (required)
List of target hosts on which to deploy the glance API, nova API, heat API,
and horizon. Recommend three minimum target hosts for these services.
Typically contains the same target hosts as 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack infrastructure hosts:
#
os-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: identity_hosts (required)
List of target hosts on which to deploy the keystone service. Recommend
three minimum target hosts for this service. Typically contains the same
target hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)

(continues on next page)

172 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack identity hosts:
#
identity_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: network_hosts (required)
List of target hosts on which to deploy neutron services. Recommend three
minimum target hosts for this service. Typically contains the same target
hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack network hosts:
#
network_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: compute_hosts (optional)
List of target hosts on which to deploy the nova compute service. Recommend
one minimum target host for this service. Typically contains target hosts
that do not reside in other levels.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#

(continues on next page)

1.4. OpenStack-Ansible Reference 173

OpenStack-Ansible Documentation

(continued from previous page)

Define an OpenStack compute host:
#
compute_hosts:
compute1:
ip: 172.29.236.121
#

#
Level: ironic-compute_hosts (optional)
List of target hosts on which to deploy the nova compute service for Ironic.
Recommend one minimum target host for this service. Typically contains target
hosts that do not reside in other levels.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define an OpenStack compute host:
#
ironic-compute_hosts:
ironic-infra1:
ip: 172.29.236.121
#

#
Level: storage-infra_hosts (required)
List of target hosts on which to deploy the cinder API. Recommend three
minimum target hosts for this service. Typically contains the same target
hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack storage infrastructure hosts:
#
storage-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: storage_hosts (required)

(continues on next page)

174 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

List of target hosts on which to deploy the cinder volume service. Recommend
one minimum target host for this service. Typically contains target hosts
that do not reside in other levels.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Level: container_vars (required)
Contains storage options for this target host.
#
Option: cinder_storage_availability_zone (optional, string)
Cinder availability zone.
#
Option: cinder_default_availability_zone (optional, string)
If the deployment contains more than one cinder availability zone,
specify a default availability zone.
#
Level: cinder_backends (required)
Contains cinder backends.
#
Option: limit_container_types (optional, string)
Container name string in which to apply these options. Typically
any container with 'cinder_volume' in the name.
#
Level: <value> (required, string)
Arbitrary name of the backend. Each backend contains one or more
options for the particular backend driver. The template for the
cinder.conf file can generate configuration for any backend
providing that it includes the necessary driver options.
#
Option: volume_backend_name (required, string)
Name of backend, arbitrary.
#
The following options apply to the LVM backend driver:
#
Option: volume_driver (required, string)
Name of volume driver, typically
'cinder.volume.drivers.lvm.LVMVolumeDriver'.
#
Option: volume_group (required, string)
Name of LVM volume group, typically 'cinder-volumes'.
#
The following options apply to the NFS backend driver:
#
Option: volume_driver (required, string)
Name of volume driver,
'cinder.volume.drivers.nfs.NfsDriver'.
NB. When using NFS driver you may want to adjust your
env.d/cinder.yml file to run cinder-volumes in containers.
#
Option: nfs_shares_config (optional, string)
File containing list of NFS shares available to cinder, typically
'/etc/cinder/nfs_shares'.

(continues on next page)

1.4. OpenStack-Ansible Reference 175

OpenStack-Ansible Documentation

(continued from previous page)

#
Option: nfs_mount_point_base (optional, string)
Location in which to mount NFS shares, typically
'$state_path/mnt'.
#
Option: nfs_mount_options (optional, string)
Mount options used for the NFS mount points.
#
Option: shares (required)
List of shares to populate the 'nfs_shares_config' file. Each share
uses the following format:
- { ip: "{{ ip_nfs_server }}", share "/vol/cinder" }
#
The following options apply to the NetApp backend driver:
#
Option: volume_driver (required, string)
Name of volume driver,
'cinder.volume.drivers.netapp.common.NetAppDriver'.
NB. When using NetApp drivers you may want to adjust your
env.d/cinder.yml file to run cinder-volumes in containers.
#
Option: netapp_storage_family (required, string)
Access method, typically 'ontap_7mode' or 'ontap_cluster'.
#
Option: netapp_storage_protocol (required, string)
Transport method, typically 'scsi' or 'nfs'. NFS transport also
requires the 'nfs_shares_config' option.
#
Option: nfs_shares_config (required, string)
For NFS transport, name of the file containing shares. Typically
'/etc/cinder/nfs_shares'.
#
Option: netapp_server_hostname (required, string)
NetApp server hostname.
#
Option: netapp_server_port (required, integer)
NetApp server port, typically 80 or 443.
#
Option: netapp_login (required, string)
NetApp server username.
#
Option: netapp_password (required, string)
NetApp server password.
#
Example:
#
Define an OpenStack storage host:
#
storage_hosts:
lvm-storage1:
ip: 172.29.236.131
#
Example:
#
Use the LVM iSCSI backend in availability zone 'cinderAZ_1':
#
container_vars:

(continues on next page)

176 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

cinder_storage_availability_zone: cinderAZ_1
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
lvm:
volume_backend_name: LVM_iSCSI
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
iscsi_ip_address: "{{ cinder_storage_address }}"
limit_container_types: cinder_volume
#
Example:
#
Use the NetApp iSCSI backend via Data ONTAP 7-mode in availability zone
'cinderAZ_2':
#
container_vars:
cinder_storage_availability_zone: cinderAZ_2
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
netapp:
volume_backend_name: NETAPP_iSCSI
volume_driver: cinder.volume.drivers.netapp.common.NetAppDriver
netapp_storage_family: ontap_7mode
netapp_storage_protocol: iscsi
netapp_server_hostname: hostname
netapp_server_port: 443
netapp_login: username
netapp_password: password
#
Example
#
Use the QNAP iSCSI backend in availability zone
'cinderAZ_2':
#
container_vars:
cinder_storage_availability_zone: cinderAZ_2
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
limit_container_types: cinder_volume
qnap:
volume_backend_name: "QNAP 1 VOLUME"
volume_driver: cinder.volume.drivers.qnap.QnapISCSIDriver
qnap_management_url : http://10.10.10.5:8080
qnap_poolname: "Storage Pool 1"
qnap_storage_protocol: iscsi
qnap_server_port: 8080
iscsi_ip_address: 172.29.244.5
san_login: username
san_password: password
san_thin_provision: True
#
#
Example:
#
Use the ceph RBD backend in availability zone 'cinderAZ_3':
#
container_vars:

(continues on next page)

1.4. OpenStack-Ansible Reference 177

OpenStack-Ansible Documentation

(continued from previous page)

cinder_storage_availability_zone: cinderAZ_3
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
limit_container_types: cinder_volume
volumes_hdd:
volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_pool: volumes_hdd
rbd_ceph_conf: /etc/ceph/ceph.conf
rbd_flatten_volume_from_snapshot: 'false'
rbd_max_clone_depth: 5
rbd_store_chunk_size: 4
rados_connect_timeout: -1
volume_backend_name: volumes_hdd
rbd_user: "{{ cinder_ceph_client }}"
rbd_secret_uuid: "{{ cinder_ceph_client_uuid }}"
#
#
Example:
#
Use the cephfs (NATIVE) backend with manila:
#
container_vars:
manila_default_share_type: cephfs1
manila_backends:
cephfs1:
driver_handles_share_servers: False
share_backend_name: CEPHFS1
share_driver: manila.share.drivers.cephfs.driver.CephFSDriver
cephfs_conf_path: /etc/ceph/ceph.conf
cephfs_auth_id: manila
cephfs_cluster_name: ceph
cephfs_enable_snapshots: False
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#
#
Use the cephfs + NFS backend with manila:
#
container_vars:
manila_default_share_type: cephfsnfs1
manila_backends:
cephfsnfs1:
driver_handles_share_servers: False
share_backend_name: CEPHFSNFS1
share_driver: manila.share.drivers.cephfs.driver.CephFSDriver
cephfs_ganesha_server_ip: 172.16.24.200
cephfs_protocol_helper_type: NFS
cephfs_conf_path: /etc/ceph/ceph.conf
cephfs_auth_id: manila
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#
#
Example:
#
Use the lvm backend with manila:
#

(continues on next page)

178 Chapter 1. Abstract

OpenStack-Ansible Documentation

(continued from previous page)

container_vars:
manila_default_share_type: nfs-share1
manila_backends:
nfs-share1:
share_backend_name: NFS_SHARE1
share_driver: manila.share.drivers.lvm.LVMShareDriver
driver_handles_share_servers: False
lvm_share_volume_group: manila-shares
lvm_share_export_ip: "10.1.1.1"
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#
#
#
Example:
#
Use the generic backend with manila:
#
container_vars:
manila_default_share_type: generic
manila_backends:
generic:
share_backend_name: GENERIC
share_driver: manila.share.drivers.generic.GenericShareDriver
driver_handles_share_servers: True
service_instance_flavor_id: 100
service_image_name: manila-service-image
service_instance_user: manila
service_instance_password: manila
interface_driver: manila.network.linux.interface.BridgeInterfaceDriver
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#

#
Level: log_hosts (optional)
List of target hosts on which to deploy logging services. Recommend
one minimum target host for this service.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define a logging host:
#
log_hosts:
log1:
ip: 172.29.236.171
#

#
Level: haproxy_hosts (optional)

(continues on next page)

1.4. OpenStack-Ansible Reference 179

OpenStack-Ansible Documentation

(continued from previous page)

List of target hosts on which to deploy HAProxy. Recommend at least one
target host for this service if hardware load balancers are not being
used.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
#
Example:
#
Define a virtual load balancer (HAProxy):
#
While HAProxy can be used as a virtual load balancer, it is recommended to use
a physical load balancer in a production environment.
#
haproxy_hosts:
lb1:
ip: 172.29.236.100
lb2:
ip: 172.29.236.101
#
In case of the above scenario(multiple hosts),HAProxy can be deployed in a
highly-available manner by installing keepalived.
#
To make keepalived work, edit at least the following variables
in ``user_variables.yml``:
haproxy_keepalived_external_vip_cidr: 192.168.0.4/25
haproxy_keepalived_internal_vip_cidr: 172.29.236.54/16
haproxy_keepalived_external_interface: br-flat
haproxy_keepalived_internal_interface: br-mgmt
#
To always deploy (or upgrade to) the latest stable version of keepalived.
Edit the ``/etc/openstack_deploy/user_variables.yml``:
keepalived_package_state: latest
#
The group_vars/all/keepalived.yml contains the keepalived
variables that are fed into the keepalived role during
the haproxy playbook.
You can change the keepalived behavior for your
deployment. Refer to the ``user_variables.yml`` file for
more information.
#
Keepalived cam ping a public IP address to check its status. To enable this
feature, set the ``keepalived_ping_address`` variable in the
``user_variables.yml`` file.

Inspecting and manipulating the inventory

Warning: Never edit or delete the files /etc/openstack_deploy/openstack_inventory.json or
/etc/openstack_deploy/openstack_hostnames_ips.yml. This can lead to file corruptions, and

180 Chapter 1. Abstract

OpenStack-Ansible Documentation

problems with the inventory: hosts and container could disappear and new ones would appear, breaking your
existing deployment.

The file scripts/inventory-manage.py is used to produce human readable output based on the /etc/
openstack_deploy/openstack_inventory.json file.

The same script can be used to safely remove hosts from the inventory, export the inventory based on hosts, and clear
IP addresses from containers within the inventory files.

Operations taken by this script only affect the /etc/opentstack_deploy/openstack_inventory.json
file; any new or removed information must be set by running playbooks.

Viewing the inventory

The /etc/openstack_deploy/openstack_inventory.json file is read by default. An alternative file
can be specified with --file.

A list of all hosts can be seen with the --list-host/-l argument

To see a listing of hosts and containers by their group, use --list-groups/-g.

To see all of the containers, use --list-containers/-G.

Removing a host

A host can be removed with the --remove-item/-r parameter.

Use the hosts name as an argument.

Exporting host information

Information on a per-host basis can be obtained with the --export/-e parameter.

This JSON output has two top-level keys: hosts and all.

hosts contains a map of a hosts name to its variable and group data.

all contains global network information such as the load balancer IPs and provider network metadata.

Clearing existing container IP addresses

The --clear-ips parameter can be used to remove all container IP address information from the
openstack_inventory.json file. Baremetal hosts will not be changed.

This will not change the LXC configuration until the associated playbooks are run and the containers restarted, which
will result in API downtime.

Any changes to the containers must also be reflected in the deployments load balancer.

1.4. OpenStack-Ansible Reference 181

OpenStack-Ansible Documentation

Advanced inventory topics

Changing the base environment directory

The --environment/-e argument will take the path to a directory containing an env.d directory. This defaults
to inventory/ in the OpenStack-Ansible codebase.

Contents of this directory are populated into the environment before the env.d found in the directory specified by
--config.

Dynamic Inventory API documentation

dynamic_inventory.args(arg_list)
Setup argument Parsing.

1.4.4 Advanced configuration

The OpenStack-Ansible project provides a basic OpenStack environment, but many deployers will wish to extend
the environment based on their needs. This could include installing extra services, changing package versions, or
overriding existing variables.

Using these extension points, deployers can provide a more opinionated installation of OpenStack that may include
their own software.

Overriding default configuration

Variable precedence

Role defaults

Every role has a file, defaults/main.ymlwhich holds the usual variables overridable by a deployer, like a regular
Ansible role. This defaults are the closest possible to OpenStack standards.

They can be overridden at multiple levels.

Group vars and host vars

OpenStack-Ansible provides safe defaults for deployers in its group_vars folder. They take care of the wiring between
different roles, like for example storing information on how to reach RabbitMQ from nova role.

You can override the existing group vars (and host vars) by creating your own folder in
/etc/openstack_deploy/group_vars (and /etc/openstack_deploy/host_vars respectively).

If you want to change the location of the override folder, you can adapt your openstack-ansible.rc file, or export
GROUP_VARS_PATH and HOST_VARS_PATH during your shell session.

Role vars

Every role makes use of additional variables in vars/ which take precedence over group vars.

These variables are typically internal to the role and are not designed to be overridden. However, deployers may
choose to override them using extra-vars by placing the overrides into the user variables file.

182 Chapter 1. Abstract

OpenStack-Ansible Documentation

User variables

If you want to globally override variable, you can define the variable you want to override in a /etc/
openstack_deploy/user_*.yml file. It will apply on all hosts.

user_*.yml files in more details

Files in /etc/openstack_deploy beginning with user_ will be automatically sourced in any
openstack-ansible command. Alternatively, the files can be sourced with the -e parameter of the
ansible-playbook command.

user_variables.yml and user_secrets.yml are used directly by OpenStack-Ansible. Adding custom vari-
ables used by your own roles and playbooks to these files is not recommended. Doing so will complicate your upgrade
path by making comparison of your existing files with later versions of these files more arduous. Rather, recom-
mended practice is to place your own variables in files named following the user_*.yml pattern so they will be
sourced alongside those used exclusively by OpenStack-Ansible.

user_*.yml files contain YAML variables which are applied as extra-vars when executing openstack-ansible
to run playbooks. They will be sourced in alphanumeric order by openstack-ansible. If duplicate variables
occur in the user_*.yml files, the variable in the last file read will take precedence.

Setting overrides in configuration files with config_template

All of the services that use YAML, JSON, or INI for configuration can receive overrides through the use of a Ansible
action plugin named config_template. The configuration template engine allows a deployer to use a simple
dictionary to modify or add items into configuration files at run time that may not have a preset template option. All
OpenStack-Ansible roles allow for this functionality where applicable. Files available to receive overrides can be seen
in the defaults/main.yml file as standard empty dictionaries (hashes).

This module was not accepted into Ansible Core (see PR1 and PR2), and will never be.

config_template documentation

These are the options available as found within the virtual module documentation section.

module: config_template
version_added: 1.9.2
short_description: >

Renders template files providing a create/update override interface
description:

- The module contains the template functionality with the ability to
override items in config, in transit, through the use of a simple
dictionary without having to write out various temp files on target
machines. The module renders all of the potential jinja a user could
provide in both the template file and in the override dictionary which
is ideal for deployers who may have lots of different configs using a
similar code base.

- The module is an extension of the **copy** module and all of attributes
that can be set there are available to be set here.

options:
src:
description:

- Path of a Jinja2 formatted template on the local server. This can

(continues on next page)

1.4. OpenStack-Ansible Reference 183

https://github.com/ansible/ansible/pull/12555
https://github.com/ansible/ansible/pull/35453

OpenStack-Ansible Documentation

(continued from previous page)

be a relative or absolute path.
required: true
default: null

dest:
description:

- Location to render the template to on the remote machine.
required: true
default: null

config_overrides:
description:

- A dictionary used to update or override items within a configuration
template. The dictionary data structure may be nested. If the target
config file is an ini file the nested keys in the ``config_overrides``
will be used as section headers.

config_type:
description:

- A string value describing the target config type.
choices:

- ini
- json
- yaml

Example task using the config_template module

In this task the test.ini.j2 file is a template which will be rendered and written to disk at /tmp/test.ini.
The config_overrides entry is a dictionary (hash) which allows a deployer to set arbitrary data as overrides to be
written into the configuration file at run time. The config_type entry specifies the type of configuration file the module
will be interacting with; available options are yaml, json, and ini.

- name: Run config template ini
config_template:
src: test.ini.j2
dest: /tmp/test.ini
config_overrides: "{{ test_overrides }}"
config_type: ini

Here is an example override dictionary (hash)

test_overrides:
DEFAULT:
new_item: 12345

And here is the template file:

[DEFAULT]
value1 = abc
value2 = 123

The rendered file on disk, namely /tmp/test.ini looks like this:

[DEFAULT]
value1 = abc
value2 = 123
new_item = 12345

184 Chapter 1. Abstract

OpenStack-Ansible Documentation

Discovering available overrides

All of these options can be specified in any way that suits your deployment. In terms of ease of use and flexibil-
ity its recommended that you define your overrides in a user variable file such as /etc/openstack_deploy/
user_variables.yml.

The list of overrides available may be found by executing:

find . -name "main.yml" -exec grep '_.*_overrides:' {} \; \
| grep -v "^#" \
| sort -u

The following override variables are currently available:

Galera:

• galera_client_my_cnf_overrides

• galera_my_cnf_overrides

• galera_cluster_cnf_overrides

• galera_debian_cnf_overrides

Telemetry service (ceilometer):

• ceilometer_policy_overrides

• ceilometer_ceilometer_conf_overrides

• ceilometer_event_definitions_yaml_overrides

• ceilometer_event_pipeline_yaml_overrides

• ceilometer_pipeline_yaml_overrides

Block Storage (cinder):

• cinder_policy_overrides

• cinder_rootwrap_conf_overrides

• cinder_api_paste_ini_overrides

• cinder_cinder_conf_overrides

Image service (glance):

• glance_glance_api_paste_ini_overrides

• glance_glance_api_conf_overrides

• glance_glance_cache_conf_overrides

• glance_glance_manage_conf_overrides

• glance_glance_registry_paste_ini_overrides

• glance_glance_registry_conf_overrides

• glance_glance_scrubber_conf_overrides

• glance_glance_scheme_json_overrides

• glance_policy_overrides

Orchestration service (heat):

1.4. OpenStack-Ansible Reference 185

OpenStack-Ansible Documentation

• heat_heat_conf_overrides

• heat_api_paste_ini_overrides

• heat_default_yaml_overrides

• heat_aws_rds_dbinstance_yaml_overrides

• heat_policy_overrides

Identity service (keystone):

• keystone_keystone_conf_overrides

• keystone_keystone_default_conf_overrides

• keystone_keystone_paste_ini_overrides

• keystone_policy_overrides

Networking service (neutron):

• neutron_neutron_conf_overrides

• neutron_ml2_conf_ini_overrides

• neutron_dhcp_agent_ini_overrides

• neutron_api_paste_ini_overrides

• neutron_rootwrap_conf_overrides

• neutron_policy_overrides

• neutron_dnsmasq_neutron_conf_overrides

• neutron_l3_agent_ini_overrides

• neutron_metadata_agent_ini_overrides

• neutron_metering_agent_ini_overrides

Compute service (nova):

• nova_nova_conf_overrides

• nova_rootwrap_conf_overrides

• nova_api_paste_ini_overrides

• nova_policy_overrides

Object Storage service (swift):

• swift_swift_conf_overrides

• swift_swift_dispersion_conf_overrides

• swift_proxy_server_conf_overrides

• swift_account_server_conf_overrides

• swift_account_server_replicator_conf_overrides

• swift_container_server_conf_overrides

• swift_container_server_replicator_conf_overrides

• swift_object_server_conf_overrides

• swift_object_server_replicator_conf_overrides

186 Chapter 1. Abstract

OpenStack-Ansible Documentation

Tempest:

• tempest_tempest_conf_overrides

pip:

• pip_global_conf_overrides

Note: Possible additional overrides can be found in the Tunable Section of each roles main.yml file, such as
/etc/ansible/roles/role_name/defaults/main.yml.

Overriding OpenStack configuration defaults

OpenStack has many configuration options available in .conf files (in a standard INI file format), policy files (in a
standard JSON format) and YAML files, and can therefore use the config_template module described above.

OpenStack-Ansible enables you to reference any options in the OpenStack Configuration Reference through the use
of a simple set of configuration entries in the /etc/openstack_deploy/user_variables.yml.

Overriding .conf files

Most often, overrides are implemented for the <service>.conf files (for example, nova.conf). These files use
a standard INI file format.

For example, you might want to add the following parameters to the nova.conf file:

[DEFAULT]
remove_unused_original_minimum_age_seconds = 43200

[libvirt]
cpu_mode = host-model
disk_cachemodes = file=directsync,block=none

[database]
idle_timeout = 300
max_pool_size = 10

To do this, you use the following configuration entry in the /etc/openstack_deploy/user_variables.
yml file:

nova_nova_conf_overrides:
DEFAULT:
remove_unused_original_minimum_age_seconds: 43200

libvirt:
cpu_mode: host-model
disk_cachemodes: file=directsync,block=none

database:
idle_timeout: 300
max_pool_size: 10

Note: The general format for the variable names used for overrides is <service>_<filename>_<file
extension>_overrides. For example, the variable name used in these examples to add parameters to the nova.
conf file is nova_nova_conf_overrides.

1.4. OpenStack-Ansible Reference 187

https://docs.openstack.org/latest/configuration/

OpenStack-Ansible Documentation

You can also apply overrides on a per-host basis with the following configuration in the /etc/
openstack_deploy/openstack_user_config.yml file:

compute_hosts:
900089-compute001:
ip: 192.0.2.10
host_vars:

nova_nova_conf_overrides:
DEFAULT:
remove_unused_original_minimum_age_seconds: 43200

libvirt:
cpu_mode: host-model
disk_cachemodes: file=directsync,block=none

database:
idle_timeout: 300
max_pool_size: 10

Use this method for any files with the INI format for in OpenStack projects deployed in OpenStack-Ansible.

Overriding .json files

To implement access controls that are different from the ones in a standard OpenStack environment, you can adjust
the default policies applied by services. Policy files are in a JSON format.

For example, you might want to add the following policy in the policy.json file for the Identity service (keystone):

{
"identity:foo": "rule:admin_required",
"identity:bar": "rule:admin_required"

}

To do this, you use the following configuration entry in the /etc/openstack_deploy/user_variables.
yml file:

keystone_policy_overrides:
identity:foo: "rule:admin_required"
identity:bar: "rule:admin_required"

Note: The general format for the variable names used for overrides is <service>_policy_overrides. For
example, the variable name used in this example to add a policy to the Identity service (keystone) policy.json file
is keystone_policy_overrides.

Use this method for any files with the JSON format in OpenStack projects deployed in OpenStack-Ansible.

To assist you in finding the appropriate variable name to use for overrides, the general format for the variable name is
<service>_policy_overrides.

Overriding .yml files

You can override .yml file values by supplying replacement YAML content.

Note: All default YAML file content is completely overwritten by the overrides, so the entire YAML source (both the

188 Chapter 1. Abstract

OpenStack-Ansible Documentation

existing content and your changes) must be provided.

For example, you might want to define a meter exclusion for all hardware items in the default content of the
pipeline.yml file for the Telemetry service (ceilometer):

sources:
- name: meter_source
interval: 600
meters:

- "!hardware.*"
sinks:

- meter_sink
- name: foo_source
value: foo

To do this, you use the following configuration entry in the /etc/openstack_deploy/user_variables.
yml file:

ceilometer_pipeline_yaml_overrides:
sources:

- name: meter_source
interval: 600
meters:

- "!hardware.*"
sinks:

- meter_sink
- name: source_foo
value: foo

Note: The general format for the variable names used for overrides is <service>_<filename>_<file
extension>_overrides. For example, the variable name used in this example to define a meter exclusion in the
pipeline.yml file for the Telemetry service (ceilometer) is ceilometer_pipeline_yaml_overrides.

Adding extra python software

The system will allow you to install and build any package that is a python installable. The repository infrastructure
will look for and create any git based or PyPi installable package. When the package is built the repo-build role will
create the sources as Python wheels to extend the base system and requirements.

While the pre-built packages in the repository-infrastructure are comprehensive, it may be needed to change the
source locations and versions of packages to suit different deployment needs. Adding additional repositories as
overrides is as simple as listing entries within the variable file of your choice. Any user_.*.yml file within the
/etc/openstack_deployment directory will work to facilitate the addition of a new packages.

swift_git_repo: https://private-git.example.org/example-org/swift
swift_git_install_branch: master

Additional lists of python packages can also be overridden using a user_.*.yml variable file.

swift_requires_pip_packages:
- virtualenv
- python-keystoneclient
- NEW-SPECIAL-PACKAGE

1.4. OpenStack-Ansible Reference 189

OpenStack-Ansible Documentation

Once the variables are set call the play repo-build.yml to build all of the wheels within the repository infrastruc-
ture. When ready run the target plays to deploy your overridden source code.

Using OpenStack-Ansible within your project

Including OpenStack-Ansible in your project

Including the openstack-ansible repository within another project can be done in several ways:

• A git submodule pointed to a released tag.

• A script to automatically perform a git checkout of OpenStack-Ansible.

When including OpenStack-Ansible in a project, consider using a parallel directory structure as shown in the
ansible.cfg files section.

Also note that copying files into directories such as env.d or conf.d should be handled via some sort of script
within the extension project.

Including OpenStack-Ansible with your Ansible structure

You can create your own playbook, variable, and role structure while still including the OpenStack-Ansible roles and
libraries by setting environment variables or by adjusting /usr/local/bin/openstack-ansible.rc.

The relevant environment variables for OpenStack-Ansible are as follows:

ANSIBLE_LIBRARY This variable should point to /etc/ansible/plugins/library. Doing so allows roles
and playbooks to access OpenStack-Ansibles included Ansible modules.

ANSIBLE_ROLES_PATH This variable should point to /etc/ansible/roles by default. This allows Ansible
to properly look up any OpenStack-Ansible roles that extension roles may reference.

ANSIBLE_INVENTORY This variable should point to openstack-ansible/inventory/
dynamic_inventory.py. With this setting, extensions have access to the same dynamic inventory
that OpenStack-Ansible uses.

The paths to the openstack-ansible top level directory can be relative in this file.

Consider this directory structure:

my_project
|
|- custom_stuff
| |
| |- playbooks
|- openstack-ansible
| |
| |- playbooks

The environment variables set would use ../openstack-ansible/playbooks/<directory>.

Adding new or overriding roles in your OpenStack-Ansible installation

By default OpenStack-Ansible uses its ansible-role-requirements file to fetch the roles it requires for the installation
process.

The roles will be fetched into the standard ANSIBLE_ROLES_PATH, which defaults to /etc/ansible/roles.

190 Chapter 1. Abstract

https://opendev.org/openstack/openstack-ansible/src/ansible-role-requirements.yml

OpenStack-Ansible Documentation

ANSIBLE_ROLE_FILE is an environment variable pointing to the location of a YAML file which ansible-
galaxy can consume, specifying which roles to download and install. The default value for this is
ansible-role-requirements.yml.

You can override the ansible-role-requirement file used by defining the environment variable ANSIBLE_ROLE_FILE
before running the bootstrap-ansible.sh script.

1.4.5 Architecture

Many operational requirements have been taken into consideration for the design of the OpenStack-Ansible project.

In this chapter, you can find details about why OpenStack-Ansible was architected in this way.

OpenStack-Ansible Manifesto

This project will be a Batteries included project. Which means deployer can expect that deploying from any of the
named feature branches or tags should provide an OpenStack cloud built for production which will be available at the
successful completion of the deployment.

Project scope

This project will be a Batteries included project. Which means deployer can expect that deploying from any of the
named feature branches or tags should provide an OpenStack cloud built for production which will be available at the
successful completion of the deployment.

However, this project solely focuses on the deployment of OpenStack and its requirements.

This project does not PXE boot hosts. Host setup and lifecycle management is left to the deployer. This project also
requires that bridges are setup within the hosts to allow the containers to attach to a local bridge for network access.
See also the Container networking.

Ansible Usage

Ansible provides an automation platform to simplify system and application deployment. Ansible manages systems
by using Secure Shell (SSH) instead of unique protocols that require remote daemons or agents.

Ansible uses playbooks written in the YAML language for orchestration. For more information, see Ansible - Intro to
Playbooks.

Ansible is a simple yet powerful orchestration tool that is ideally equipped for deploying OpenStack-powered clouds.
The declarative nature of Ansible allows the deployer to turn an entire deployment into a rather simple set of instruc-
tions.

Roles within the Openstack-Ansible umbrella are built using Ansible best practices and contain namespaced variables
that are human understandable. All roles are independant of each other and testable separately.

All roles are built as Galaxy compatible roles even when the given role is not intended for standalone use. While the
project will offer a lot of built-in roles the deployer will be able to pull down or override roles with external ones using
the built-in Ansible capabilities. This allows extreme flexibility for deployers.

1.4. OpenStack-Ansible Reference 191

https://docs.openstack.org/openstack-ansible/train/reference/architecture/container-networking.html
https://docs.ansible.com/playbooks_intro.html
https://docs.ansible.com/playbooks_intro.html

OpenStack-Ansible Documentation

Source based deployments

When the OpenStack-Ansible project was created, it was required to provide a system able to override any OpenStack
upstream source code.

This means that OpenStack services and their python dependencies are built and installed from source code as found
within the OpenStack Git repositories by default, but allow deployers to point to their own repositories.

This also allows developers to point to their own code for their work.

A source based deployment, for Python-built parts of OpenStack, makes sense when dealing with scale and wanting
consistency over long periods of time. A deployer should have the ability to deploy the same OpenStack release
on every node throughout the life cycle of the cloud, even when some components are end of life. By providing
a repository of the sources, the deployment can be re-created even years after the initial deployment, assuming the
underlying operating systems and packages stay the same.

This means that there will never be a time where OpenStack specific packages, as provided by the distributions, are
being used for OpenStack services. Third party repositories like CloudArchive and or RDO may still be required within
a given deployment but only as a means to meet application dependencies.

Containerized deployments

This project introduces containers as a means to abstract services from one another.

The use of containers allows for additional abstractions of entire application stacks to be run all within the same
physical host machines.

The containerized applications are sometimes grouped within a single container where it makes sense, or distributed
in multiple containers based on application and or architectural needs.

The default container architecture has been built in such a way to allow for scalability and highly available deploy-
ments.

The simple nature of machine containers allows the deployer to treat containers as physical machines. The same
concepts apply for machine containers and physical machines: This will allow deployers to use existing operational
tool sets to troubleshoot issues within a deployment and the ability to revert an application or service within inventory
to a known working state without having to re-kick a physical host.

Not all services are containerized: some dont make sense to run within a container. Logic needs to be applied in regards
on how services are containerized. If their requirements cant be met due to system limitations, (kernel, application
maturity, etc), then the service is not set to run within a container.

Example of un-containerized services:

• Nova compute (for direct access to virtualization devices)

• Swift storage (for direct access to drive)

The containers are not a mean of securing a system. The containers were not chosen for any eventual security safe
guards. The machine containers were chosen because of their practicality with regard to providing a more uniform
OpenStack deployment. Even if the abstractions that the containers provides do improve overall deployment security
these potential benefits are not the intention of the containerization of services.

Security

Security is one of the top priorities within OpenStack-Ansible (OSA), and many security enhancements for OpenStack
clouds are available in deployments by default. This section provides a detailed overview of the most important
security enhancements.

192 Chapter 1. Abstract

OpenStack-Ansible Documentation

Note: Every deployer has different security requirements. The OpenStack Security Guide has instructions and advice
on how to operate and consume an OpenStack cloud by using the most secure methods.

Encrypted communication

Any OpenStack cloud has sensitive information transmitted between services, including user credentials, service cre-
dentials or information about resources being created. Encrypting this traffic is critical in environments where the
network cannot be trusted. (For more information about securing the network, see the Securing network access to
OpenStack services section.)

Many of the services deployed with OpenStack-Ansible are encrypted by default or offer encryption as an option. The
playbooks generate self-signed certificates by default, but deployers have the option to use their existing certificates,
keys, and CA certificates.

To learn more about how to customize the deployment of encrypted communications, see Securing services with SSL
certificates.

Host security hardening

OpenStack-Ansible provides a comprehensive security hardening role that applies over 200 security configurations as
recommended by the Security Technical Implementation Guide (STIG) provided by the Defense Information Systems
Agency (DISA). These security configurations are widely used and are distributed in the public domain by the United
States government.

Host security hardening is required by several compliance and regulatory programs, such as the Payment Card Industry
Data Security Standard (PCI DSS) (Requirement 2.2).

By default, OpenStack-Ansible automatically applies the ansible-hardening role to all deployments. The role has been
carefully designed to perform as follows:

• Apply nondisruptively to a production OpenStack environment

• Balance security with OpenStack performance and functionality

• Run as quickly as possible

For more information about the security configurations, see the security hardening role documentation.

Isolation

By default, OpenStack-Ansible provides isolation by default between the containers that run the OpenStack infras-
tructure (control plane) services and also between the virtual machines that end users spawn within the deployment.
This isolation is critical because it can prevent container or virtual machine breakouts, or at least reduce the damage
that breakouts might cause.

The Linux Security Modules (LSM) framework allows administrators to set mandatory access controls (MAC) on a
Linux system. MAC is different than discretionary access controls (DAC) because the kernel enforces strict policies
that no user can bypass. Although any user might be able to change a DAC policy (such as chown bob secret.
txt), only the root user can alter a MAC policy.

OpenStack-Ansible currently uses AppArmor to provide MAC policies on infrastructure servers and hypervisors. The
AppArmor configuration sets the access policies to prevent one container from accessing the data of another container.
For virtual machines, libvirtd uses the sVirt extensions to ensure that one virtual machine cannot access the data
or devices from another virtual machine.

1.4. OpenStack-Ansible Reference 193

https://docs.openstack.org/security-guide
https://docs.openstack.org/ansible-hardening/
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
https://www.pcisecuritystandards.org/pci_security/
https://www.pcisecuritystandards.org/pci_security/
https://docs.openstack.org/ansible-hardening/
https://en.wikipedia.org/wiki/Linux_Security_Modules
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control
https://en.wikipedia.org/wiki/AppArmor
https://fedoraproject.org/wiki/Features/SVirt_Mandatory_Access_Control

OpenStack-Ansible Documentation

These policies are applied and governed at the kernel level. Any process that violates a policy is denied access to the
resource. All denials are logged in auditd and are available at /var/log/audit/audit.log.

Least privilege

The principle of least privilege is used throughout OpenStack-Ansible to limit the damage that could be caused if an
attacker gains access to any credentials.

OpenStack-Ansible configures unique username and password combinations for each service that interacts with Rab-
bitMQ and Galera/MariaDB. Each service that connects to RabbitMQ uses a separate virtual host for publishing and
consuming messages. The MariaDB users for each service are only granted access only to the databases that they need
to query.

Securing network access to OpenStack services

OpenStack clouds provide many services to end users, that enable them to build instances, provision storage, and
create networks. Each of these services exposes one or more service ports and API endpoints to the network.

However, some of the services within an OpenStack cloud are accessible to all end users, while others are accessible
only to administrators or operators on a secured network.

• Services that all end users can access

– These services include Compute (nova), Object Storage (swift), Networking (neutron), and Image (glance).

– These services should be offered on a sufficiently restricted network that still allows all end users to access
the services.

– A firewall must be used to restrict access to the network.

• Services that only administrators or operators can access

– These services include MariaDB, Memcached, RabbitMQ, and the admin API endpoint for the Identity
(keystone) service.

– These services must be offered on a highly restricted network that is available only to administrative users.

– A firewall must be used to restrict access to the network.

Limiting access to these networks has several benefits:

• Allows for network monitoring and alerting

• Prevents unauthorized network surveillance

• Reduces the chance of credential theft

• Reduces damage from unknown or unpatched service vulnerabilities

OpenStack-Ansible deploys HAProxy back ends for each service and restricts access for highly sensitive services by
making them available only on the management network. Deployers with external load balancers must ensure that the
back ends are configured securely and that firewalls prevent traffic from crossing between networks.

For more information about recommended network policies for OpenStack clouds, see the API endpoint process
isolation and policy section of the OpenStack Security Guide

194 Chapter 1. Abstract

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://docs.openstack.org/security-guide/api-endpoints/api-endpoint-configuration-recommendations.html#network-policy
https://docs.openstack.org/security-guide/api-endpoints/api-endpoint-configuration-recommendations.html#network-policy
https://docs.openstack.org/security-guide

OpenStack-Ansible Documentation

Service architecture

Introduction

OpenStack-Ansible has a flexible deployment configuration model that can deploy all services in separate machine
containers or on designated hosts without using containers, and all network traffic either on a single network interface
or on many network interfaces.

This flexibility enables deployers to choose how to deploy OpenStack in the appropriate way for the specific use case.

The following sections describe the services that OpenStack-Ansible deploys.

Infrastructure services

OpenStack-Ansible deploys the following infrastructure components:

• MariaDB with Galera

All OpenStack services require an underlying database. MariaDB with Galera implements a multimaster
database configuration, which simplifies its use as a highly available database with a simple failover model.

• RabbitMQ

OpenStack services use RabbitMQ for Advanced Message Queuing Protocol (AMQP). OSA deploys RabbitMQ
in a clustered configuration with all queues mirrored between the cluster nodes. Because Telemetry (ceilometer)
message queue traffic is quite heavy, for large environments we recommend separating Telemetry notifications
into a separate RabbitMQ cluster.

• Memcached

OpenStack services use Memcached for in-memory caching, which accelerates transactions. For example, the
OpenStack Identity service (keystone) uses Memcached for caching authentication tokens, which ensures that
token validation does not have to complete a disk or database transaction every time the service is asked to
validate a token.

• Repository

The repository holds the reference set of artifacts that are used for the installation of the environment. The
artifacts include:

– A Git repository that contains a copy of the source code that is used to prepare the packages for all Open-
Stack services

– Python wheels for all services that are deployed in the environment

– An apt/yum proxy cache that is used to cache distribution packages installed in the environment

• Load balancer

At least one load balancer is required for a deployment. OSA provides a deployment of HAProxy, but we
recommend using a physical load balancing appliance for production environments.

• Utility container

If a tool or object does not require a dedicated container, or if it is impractical to create a new container for a
single tool or object, it is installed in the utility container. The utility container is also used when tools cannot
be installed directly on a host. The utility container is prepared with the appropriate credentials and clients to
administer the OpenStack environment. It is set to automatically use the internal service endpoints.

• Log aggregation host

1.4. OpenStack-Ansible Reference 195

http://www.haproxy.org/

OpenStack-Ansible Documentation

A rsyslog service is optionally set up to receive rsyslog traffic from all hosts and containers. You can replace
rsyslog with any alternative log receiver.

• Unbound DNS container

Containers running an Unbound DNS caching service can optionally be deployed to cache DNS lookups and to
handle internal DNS name resolution. We recommend using this service for large-scale production environments
because the deployment will be significantly faster. If this service is not used, OSA modifies /etc/hosts
entries for all hosts in the environment.

OpenStack services

OSA is able to deploy a multitude of services. Have a look at the role maturity matrix to know the status of the service
you want to deploy.

Storage architecture

OpenStack has multiple storage realms to consider:

• Block Storage (cinder)

• Object Storage (swift)

• Image storage (glance)

• Ephemeral storage (nova)

• Filesystem storage (manila)

Block Storage (cinder)

The Block Storage (cinder) service manages volumes on storage devices in an environment. In a production environ-
ment, the device presents storage via a storage protocol (for example, NFS, iSCSI, or Ceph RBD) to a storage network
(br-storage) and a storage management API to the management network (br-mgmt). Instances are connected to
the volumes via the storage network by the hypervisor on the Compute host.

The following diagram illustrates how Block Storage is connected to instances.

Important: The LVMVolumeDriver is designed as a reference driver implementation, which we do not recommend
for production usage. The LVM storage back-end is a single-server solution that provides no high-availability options.
If the server becomes unavailable, then all volumes managed by the cinder-volume service running on that server
become unavailable. Upgrading the operating system packages (for example, kernel or iSCSI) on the server causes
storage connectivity outages because the iSCSI service (or the host) restarts.

Because of a limitation with container iSCSI connectivity, you must deploy the cinder-volume service directly
on a physical host (not into a container) when using storage back ends that connect via iSCSI. This includes the
LVMVolumeDriver and many of the drivers for commercial storage devices.

Note: The cinder-volume service does not run in a highly available configuration. When the cinder-volume
service is configured to manage volumes on the same back end from multiple hosts or containers, one service is
scheduled to manage the life cycle of the volume until an alternative service is assigned to do so. This assignment can
be made through the cinder-manage CLI tool. This configuration might change if cinder volume active-active support
spec is implemented.

196 Chapter 1. Abstract

https://www.unbound.net/
https://docs.openstack.org/cinder/latest/drivers.html#lvmvolumedriver
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855
https://docs.openstack.org/cinder/latest/drivers.html#lvmvolumedriver
https://docs.openstack.org/cinder/latest/cli/cinder-manage.html
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cinder-volume-active-active-support.html
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cinder-volume-active-active-support.html

OpenStack-Ansible Documentation

Fig. 1: The diagram shows the following steps.

1.
A volume is created by the assigned cinder-volume ser-
vice using the appropriate cinder driver. The volume is created
by using an API that is presented to the management network.

2.
After the volume is created, the nova-compute service con-
nects the Compute host hypervisor to the volume via the stor-
age network.

3.
After the hypervisor is connected to the volume, it presents the
volume as a local hardware device to the instance.

1.4. OpenStack-Ansible Reference 197

https://docs.openstack.org/cinder/drivers.html

OpenStack-Ansible Documentation

Object Storage (swift)

The Object Storage (swift) service implements a highly available, distributed, eventually consistent object/blob store
that is accessible via HTTP/HTTPS.

The following diagram illustrates how data is accessed and replicated.

Image storage (glance)

The Image service (glance) can be configured to store images on a variety of storage back ends supported by the
glance_store drivers.

Important: When the File System store is used, the Image service has no mechanism of its own to replicate the
image between Image service hosts. We recommend using a shared storage back end (via a file system mount) to
ensure that allăglance-api services have access to all images. Doing so prevents losing access to images when an
infrastructure (control plane) host is lost.

The following diagram illustrates the interactions between the Image service, the storage device, and the
nova-compute service when an instance is created.

Ephemeral storage (nova)

When the flavors in the Compute service are configured to provide instances with root or ephemeral disks, the
nova-compute service manages these allocations using its ephemeral disk storage location.

In many environments, the ephemeral disks are stored on the Compute hosts local disks, but for production environ-
ments we recommend that the Compute hosts be configured to use a shared storage subsystem instead. A shared
storage subsystem allows quick, live instance migration between Compute hosts, which is useful when the adminis-
trator needs to perform maintenance on the Compute host and wants to evacuate it. Using a shared storage subsystem
also allows the recovery of instances when a Compute host goes offline. The administrator is able to evacuate the
instance to another Compute host and boot it up again. The following diagram illustrates the interactions between the
storage device, the Compute host, the hypervisor, and the instance.

Filesystem storage (manila)

The shared filesystem service (manila) can be configured to provide file systems on a variety of storage back ends as
supported by the manila_store drivers.

Container networking

OpenStack-Ansible deploys Linux containers (LXC) and uses Linux bridging between the container and the host
interfaces to ensure that all traffic from containers flows over multiple host interfaces. This appendix describes how
the interfaces are connected and how traffic flows.

For more information about how the OpenStack Networking service (neutron) uses the interfaces for instance traffic,
please see the OpenStack Networking Guide.

For details on the configuration of networking for your environment, please have a look at openstack_user_config
settings reference.

198 Chapter 1. Abstract

https://docs.openstack.org/glance_store/drivers/
https://docs.openstack.org/manila/latest/configuration/shared-file-systems/drivers.html
https://docs.openstack.org/neutron/latest/admin/index.html

OpenStack-Ansible Documentation

Fig. 2: The swift-proxy service is accessed by clients via the load balancer on the management network
(br-mgmt). The swift-proxy service communicates with the Account, Container, and Object services on the
Object Storage hosts via the storage network(br-storage). Replication between the Object Storage hosts is done
via the replication network (br-repl).

1.4. OpenStack-Ansible Reference 199

OpenStack-Ansible Documentation

Fig. 3: The diagram shows the following steps.

1 When a client requests an image, the glance-api service accesses the appropriate store on the storage device over the
storage network (br-storage) and pulls it into its cache. When the same image is requested again, it is given to the
client directly from the cache.

2 When an instance is scheduled for creation on a Compute host, the nova-compute service requests the image from the
glance-api service over the management network (br-mgmt).

3 After the image is retrieved, the nova-compute service stores the image in its own image cache. When another instance
is created with the same image, the image is retrieved from the local base image cache.

200 Chapter 1. Abstract

OpenStack-Ansible Documentation

Fig. 4: The diagram shows the following steps.

1 The Compute host is configured with access to the storage device. The Compute host accesses the storage space via the
storage network (br-storage) by using a storage protocol (for example, NFS, iSCSI, or Ceph RBD).

2 The nova-compute service configures the hypervisor to present the allocated instance disk as a device to the instance.
3 The hypervisor presents the disk as a device to the instance.

1.4. OpenStack-Ansible Reference 201

OpenStack-Ansible Documentation

Fig. 5: The diagram shows a basic overview of the manila service.

202 Chapter 1. Abstract

OpenStack-Ansible Documentation

Physical host interfaces

In a typical production environment, physical network interfaces are combined in bonded pairs for better redundancy
and throughput. Avoid using two ports on the same multiport network card for the same bonded interface, because a
network card failure affects both of the physical network interfaces used by the bond.

Linux bridges

The combination of containers and flexible deployment options requires implementation of advanced Linux network-
ing features, such as bridges and namespaces.

• Bridges provide layer 2 connectivity (similar to switches) among physical, logical, and virtual network interfaces
within a host. After a bridge is created, the network interfaces are virtually plugged in to it.

OpenStack-Ansible uses bridges to connect physical and logical network interfaces on the host to virtual network
interfaces within containers.

• Namespaces provide logically separate layer 3 environments (similar to routers) within a host. Namespaces use
virtual interfaces to connect with other namespaces, including the host namespace. These interfaces, often called
veth pairs, are virtually plugged in between namespaces similar to patch cables connecting physical devices
such as switches and routers.

Each container has a namespace that connects to the host namespace with one or more veth pairs. Unless
specified, the system generates random names for veth pairs.

The following image demonstrates how the container network interfaces are connected to the hosts bridges and physi-
cal network interfaces:

Network diagrams

1.4. OpenStack-Ansible Reference 203

OpenStack-Ansible Documentation

Hosts with services running in containers

The following diagram shows how all of the interfaces and bridges interconnect to provide network connectivity to the
OpenStack deployment:

204 Chapter 1. Abstract

OpenStack-Ansible Documentation

The interface lxcbr0 provides connectivity for the containers to the outside world, thanks to dnsmasq (dhcp/dns) +
NAT.

1.4. OpenStack-Ansible Reference 205

OpenStack-Ansible Documentation

Note: If you require additional network configuration for your container interfaces (like changing the routes on
eth1 for routes on the management network), please adapt your openstack_user_config.yml file. See open-
stack_user_config settings reference for more details.

Services running on metal (deploying directly on the physical hosts)

OpenStack-Ansible deploys the Compute service on the physical host rather than in a container. The following diagram
shows how to use bridges for network connectivity:

Neutron traffic

The following diagram shows how the Networking service (neutron) agents work with the br-vlan and br-vxlan
bridges. Neutron is configured to use a DHCP agent, an L3 agent, and a Linux Bridge agent within a networking-
agents container. The diagram shows how DHCP agents provide information (IP addresses and DNS servers) to the
instances, and how routing works on the image.

206 Chapter 1. Abstract

OpenStack-Ansible Documentation

1.4. OpenStack-Ansible Reference 207

OpenStack-Ansible Documentation

The following diagram shows how virtual machines connect to the br-vlan and br-vxlan bridges and send traffic
to the network outside the host:

208 Chapter 1. Abstract

OpenStack-Ansible Documentation

1.4. OpenStack-Ansible Reference 209

OpenStack-Ansible Documentation

When Neutron agents are deployed on metal on a network node or collapsed infra/network node, the Neutron
Agents container and respective virtual interfaces are no longer implemented. In addition, use of the
host_bind_override override when defining provider networks allows Neutron to interface directly with a phys-
ical interface or bond instead of the br-vlan bridge. The following diagram reflects the differences in the virtual
network layout.

210 Chapter 1. Abstract

OpenStack-Ansible Documentation

The absence of br-vlan in-path of instance traffic is also reflected on compute nodes, as shown in the following
diagram.

1.4. OpenStack-Ansible Reference 211

OpenStack-Ansible Documentation

1.4.6 Command Line Reference

212 Chapter 1. Abstract

OpenStack-Ansible Documentation

Linux Container commands

The following are some useful commands to manage LXC:

• List containers and summary information such as operational state and network configuration:

lxc-ls --fancy

• Show container details including operational state, resource utilization, and veth pairs:

lxc-info --name container_name

• Start a container:

lxc-start --name container_name

• Attach to a container:

lxc-attach --name container_name

• Stop a container:

lxc-stop --name container_name

Systemd nspawn commands

1.4. OpenStack-Ansible Reference 213

OpenStack-Ansible Documentation

214 Chapter 1. Abstract

PYTHON MODULE INDEX

d
dynamic_inventory, 182

215

OpenStack-Ansible Documentation

216 Python Module Index

INDEX

A
args() (in module dynamic_inventory), 182

D
dynamic_inventory (module), 182

217

	Abstract
	Python Module Index
	Index

