======================= SAIO - Swift All In One ======================= --------------------------------------------- Instructions for setting up a development VM --------------------------------------------- This section documents setting up a virtual machine for doing Swift development. The virtual machine will emulate running a four node Swift cluster. To begin: * Get an Ubuntu 14.04 LTS server image or try something Fedora/CentOS. * Create guest virtual machine from the image. ---------------------------- What's in a ---------------------------- Much of the configuration described in this guide requires escalated administrator (``root``) privileges; however, we assume that administrator logs in as an unprivileged user and can use ``sudo`` to run privileged commands. Swift processes also run under a separate user and group, set by configuration option, and referenced as ``:``. The default user is ``swift``, which may not exist on your system. These instructions are intended to allow a developer to use his/her username for ``:``. ----------------------- Installing dependencies ----------------------- * On ``apt`` based systems:: sudo apt-get update sudo apt-get install curl gcc memcached rsync sqlite3 xfsprogs \ git-core libffi-dev python-setuptools \ liberasurecode-dev libssl-dev sudo apt-get install python-coverage python-dev python-nose \ python-xattr python-eventlet \ python-greenlet python-pastedeploy \ python-netifaces python-pip python-dnspython \ python-mock * On ``yum`` based systems:: sudo yum update sudo yum install curl gcc memcached rsync sqlite xfsprogs git-core \ libffi-devel xinetd liberasurecode-devel \ openssl-devel python-setuptools \ python-coverage python-devel python-nose \ pyxattr python-eventlet \ python-greenlet python-paste-deploy \ python-netifaces python-pip python-dns \ python-mock Note: This installs necessary system dependencies and *most* of the python dependencies. Later in the process setuptools/distribute or pip will install and/or upgrade packages. Next, choose either :ref:`partition-section` or :ref:`loopback-section`. .. _partition-section: Using a partition for storage ============================= If you are going to use a separate partition for Swift data, be sure to add another device when creating the VM, and follow these instructions: #. Set up a single partition:: sudo fdisk /dev/sdb sudo mkfs.xfs /dev/sdb1 #. Edit ``/etc/fstab`` and add:: /dev/sdb1 /mnt/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 0 #. Create the mount point and the individualized links:: sudo mkdir /mnt/sdb1 sudo mount /mnt/sdb1 sudo mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4 sudo chown ${USER}:${USER} /mnt/sdb1/* sudo mkdir /srv for x in {1..4}; do sudo ln -s /mnt/sdb1/$x /srv/$x; done sudo mkdir -p /srv/1/node/sdb1 /srv/1/node/sdb5 \ /srv/2/node/sdb2 /srv/2/node/sdb6 \ /srv/3/node/sdb3 /srv/3/node/sdb7 \ /srv/4/node/sdb4 /srv/4/node/sdb8 \ /var/run/swift sudo chown -R ${USER}:${USER} /var/run/swift # **Make sure to include the trailing slash after /srv/$x/** for x in {1..4}; do sudo chown -R ${USER}:${USER} /srv/$x/; done Note: We create the mount points and mount the storage disk under /mnt/sdb1. This disk will contain one directory per simulated swift node, each owned by the current swift user. We then create symlinks to these directories under /srv. If the disk sdb is unmounted, files will not be written under /srv/\*, because the symbolic link destination /mnt/sdb1/* will not exist. This prevents disk sync operations from writing to the root partition in the event a drive is unmounted. #. Next, skip to :ref:`common-dev-section`. .. _loopback-section: Using a loopback device for storage =================================== If you want to use a loopback device instead of another partition, follow these instructions: #. Create the file for the loopback device:: sudo mkdir /srv sudo truncate -s 1GB /srv/swift-disk sudo mkfs.xfs /srv/swift-disk Modify size specified in the ``truncate`` command to make a larger or smaller partition as needed. #. Edit `/etc/fstab` and add:: /srv/swift-disk /mnt/sdb1 xfs loop,noatime,nodiratime,nobarrier,logbufs=8 0 0 #. Create the mount point and the individualized links:: sudo mkdir /mnt/sdb1 sudo mount /mnt/sdb1 sudo mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4 sudo chown ${USER}:${USER} /mnt/sdb1/* for x in {1..4}; do sudo ln -s /mnt/sdb1/$x /srv/$x; done sudo mkdir -p /srv/1/node/sdb1 /srv/1/node/sdb5 \ /srv/2/node/sdb2 /srv/2/node/sdb6 \ /srv/3/node/sdb3 /srv/3/node/sdb7 \ /srv/4/node/sdb4 /srv/4/node/sdb8 \ /var/run/swift sudo chown -R ${USER}:${USER} /var/run/swift # **Make sure to include the trailing slash after /srv/$x/** for x in {1..4}; do sudo chown -R ${USER}:${USER} /srv/$x/; done Note: We create the mount points and mount the loopback file under /mnt/sdb1. This file will contain one directory per simulated swift node, each owned by the current swift user. We then create symlinks to these directories under /srv. If the loopback file is unmounted, files will not be written under /srv/\*, because the symbolic link destination /mnt/sdb1/* will not exist. This prevents disk sync operations from writing to the root partition in the event a drive is unmounted. .. _common-dev-section: Common Post-Device Setup ======================== Add the following lines to ``/etc/rc.local`` (before the ``exit 0``):: mkdir -p /var/cache/swift /var/cache/swift2 /var/cache/swift3 /var/cache/swift4 chown : /var/cache/swift* mkdir -p /var/run/swift chown : /var/run/swift Note that on some systems you might have to create ``/etc/rc.local``. On Fedora 19 or later, you need to place these in ``/etc/rc.d/rc.local``. ---------------- Getting the code ---------------- #. Check out the python-swiftclient repo:: cd $HOME; git clone https://github.com/openstack/python-swiftclient.git #. Build a development installation of python-swiftclient:: cd $HOME/python-swiftclient; sudo python setup.py develop; cd - Ubuntu 12.04 users need to install python-swiftclient's dependencies before the installation of python-swiftclient. This is due to a bug in an older version of setup tools:: cd $HOME/python-swiftclient; sudo pip install -r requirements.txt; sudo python setup.py develop; cd - #. Check out the swift repo:: git clone https://github.com/openstack/swift.git #. Build a development installation of swift:: cd $HOME/swift; sudo pip install -r requirements.txt; sudo python setup.py develop; cd - Fedora 19 or later users might have to perform the following if development installation of swift fails:: sudo pip install -U xattr #. Install swift's test dependencies:: cd $HOME/swift; sudo pip install -r test-requirements.txt ---------------- Setting up rsync ---------------- #. Create ``/etc/rsyncd.conf``:: sudo cp $HOME/swift/doc/saio/rsyncd.conf /etc/ sudo sed -i "s//${USER}/" /etc/rsyncd.conf Here is the default ``rsyncd.conf`` file contents maintained in the repo that is copied and fixed up above: .. literalinclude:: /../saio/rsyncd.conf #. On Ubuntu, edit the following line in ``/etc/default/rsync``:: RSYNC_ENABLE=true On Fedora, edit the following line in ``/etc/xinetd.d/rsync``:: disable = no One might have to create the above files to perform the edits. #. On platforms with SELinux in ``Enforcing`` mode, either set to ``Permissive``:: sudo setenforce Permissive Or just allow rsync full access:: sudo setsebool -P rsync_full_access 1 #. Start the rsync daemon * On Ubuntu, run:: sudo service rsync restart * On Fedora, run:: sudo systemctl restart xinetd.service sudo systemctl enable rsyncd.service sudo systemctl start rsyncd.service * On other xinetd based systems simply run:: sudo service xinetd restart #. Verify rsync is accepting connections for all servers:: rsync rsync://pub@localhost/ You should see the following output from the above command:: account6012 account6022 account6032 account6042 container6011 container6021 container6031 container6041 object6010 object6020 object6030 object6040 ------------------ Starting memcached ------------------ On non-Ubuntu distros you need to ensure memcached is running:: sudo service memcached start sudo chkconfig memcached on or:: sudo systemctl enable memcached.service sudo systemctl start memcached.service The tempauth middleware stores tokens in memcached. If memcached is not running, tokens cannot be validated, and accessing Swift becomes impossible. --------------------------------------------------- Optional: Setting up rsyslog for individual logging --------------------------------------------------- #. Install the swift rsyslogd configuration:: sudo cp $HOME/swift/doc/saio/rsyslog.d/10-swift.conf /etc/rsyslog.d/ Be sure to review that conf file to determine if you want all the logs in one file vs. all the logs separated out, and if you want hourly logs for stats processing. For convenience, we provide its default contents below: .. literalinclude:: /../saio/rsyslog.d/10-swift.conf #. Edit ``/etc/rsyslog.conf`` and make the following change (usually in the "GLOBAL DIRECTIVES" section):: $PrivDropToGroup adm #. If using hourly logs (see above) perform:: sudo mkdir -p /var/log/swift/hourly Otherwise perform:: sudo mkdir -p /var/log/swift #. Setup the logging directory and start syslog: * On Ubuntu:: sudo chown -R syslog.adm /var/log/swift sudo chmod -R g+w /var/log/swift sudo service rsyslog restart * On Fedora:: sudo chown -R root:adm /var/log/swift sudo chmod -R g+w /var/log/swift sudo systemctl restart rsyslog.service --------------------- Configuring each node --------------------- After performing the following steps, be sure to verify that Swift has access to resulting configuration files (sample configuration files are provided with all defaults in line-by-line comments). #. Optionally remove an existing swift directory:: sudo rm -rf /etc/swift #. Populate the ``/etc/swift`` directory itself:: cd $HOME/swift/doc; sudo cp -r saio/swift /etc/swift; cd - sudo chown -R ${USER}:${USER} /etc/swift #. Update ```` references in the Swift config files:: find /etc/swift/ -name \*.conf | xargs sudo sed -i "s//${USER}/" The contents of the configuration files provided by executing the above commands are as follows: #. ``/etc/swift/swift.conf`` .. literalinclude:: /../saio/swift/swift.conf #. ``/etc/swift/proxy-server.conf`` .. literalinclude:: /../saio/swift/proxy-server.conf #. ``/etc/swift/object-expirer.conf`` .. literalinclude:: /../saio/swift/object-expirer.conf #. ``/etc/swift/container-reconciler.conf`` .. literalinclude:: /../saio/swift/container-reconciler.conf #. ``/etc/swift/container-sync-realms.conf`` .. literalinclude:: /../saio/swift/container-sync-realms.conf #. ``/etc/swift/account-server/1.conf`` .. literalinclude:: /../saio/swift/account-server/1.conf #. ``/etc/swift/container-server/1.conf`` .. literalinclude:: /../saio/swift/container-server/1.conf #. ``/etc/swift/object-server/1.conf`` .. literalinclude:: /../saio/swift/object-server/1.conf #. ``/etc/swift/account-server/2.conf`` .. literalinclude:: /../saio/swift/account-server/2.conf #. ``/etc/swift/container-server/2.conf`` .. literalinclude:: /../saio/swift/container-server/2.conf #. ``/etc/swift/object-server/2.conf`` .. literalinclude:: /../saio/swift/object-server/2.conf #. ``/etc/swift/account-server/3.conf`` .. literalinclude:: /../saio/swift/account-server/3.conf #. ``/etc/swift/container-server/3.conf`` .. literalinclude:: /../saio/swift/container-server/3.conf #. ``/etc/swift/object-server/3.conf`` .. literalinclude:: /../saio/swift/object-server/3.conf #. ``/etc/swift/account-server/4.conf`` .. literalinclude:: /../saio/swift/account-server/4.conf #. ``/etc/swift/container-server/4.conf`` .. literalinclude:: /../saio/swift/container-server/4.conf #. ``/etc/swift/object-server/4.conf`` .. literalinclude:: /../saio/swift/object-server/4.conf .. _setup_scripts: ------------------------------------ Setting up scripts for running Swift ------------------------------------ #. Copy the SAIO scripts for resetting the environment:: mkdir -p $HOME/bin cd $HOME/swift/doc; cp saio/bin/* $HOME/bin; cd - chmod +x $HOME/bin/* #. Edit the ``$HOME/bin/resetswift`` script The template ``resetswift`` script looks like the following: .. literalinclude:: /../saio/bin/resetswift If you are using a loopback device add an environment var to substitute ``/dev/sdb1`` with ``/srv/swift-disk``:: echo "export SAIO_BLOCK_DEVICE=/srv/swift-disk" >> $HOME/.bashrc If you did not set up rsyslog for individual logging, remove the ``find /var/log/swift...`` line:: sed -i "/find \/var\/log\/swift/d" $HOME/bin/resetswift #. Install the sample configuration file for running tests:: cp $HOME/swift/test/sample.conf /etc/swift/test.conf The template ``test.conf`` looks like the following: .. literalinclude:: /../../test/sample.conf #. Add an environment variable for running tests below:: echo "export SWIFT_TEST_CONFIG_FILE=/etc/swift/test.conf" >> $HOME/.bashrc #. Be sure that your ``PATH`` includes the ``bin`` directory:: echo "export PATH=${PATH}:$HOME/bin" >> $HOME/.bashrc #. Source the above environment variables into your current environment:: . $HOME/.bashrc #. Construct the initial rings using the provided script:: remakerings The ``remakerings`` script looks like the following: .. literalinclude:: /../saio/bin/remakerings You can expect the output from this command to produce the following. Note that 3 object rings are created in order to test storage policies and EC in the SAIO environment. The EC ring is the only one with all 8 devices. There are also two replication rings, one for 3x replication and another for 2x replication, but those rings only use 4 devices:: Device d0r1z1-127.0.0.1:6010R127.0.0.1:6010/sdb1_"" with 1.0 weight got id 0 Device d1r1z2-127.0.0.1:6020R127.0.0.1:6020/sdb2_"" with 1.0 weight got id 1 Device d2r1z3-127.0.0.1:6030R127.0.0.1:6030/sdb3_"" with 1.0 weight got id 2 Device d3r1z4-127.0.0.1:6040R127.0.0.1:6040/sdb4_"" with 1.0 weight got id 3 Reassigned 1024 (100.00%) partitions. Balance is now 0.00. Dispersion is now 0.00 Device d0r1z1-127.0.0.1:6010R127.0.0.1:6010/sdb1_"" with 1.0 weight got id 0 Device d1r1z2-127.0.0.1:6020R127.0.0.1:6020/sdb2_"" with 1.0 weight got id 1 Device d2r1z3-127.0.0.1:6030R127.0.0.1:6030/sdb3_"" with 1.0 weight got id 2 Device d3r1z4-127.0.0.1:6040R127.0.0.1:6040/sdb4_"" with 1.0 weight got id 3 Reassigned 1024 (100.00%) partitions. Balance is now 0.00. Dispersion is now 0.00 Device d0r1z1-127.0.0.1:6010R127.0.0.1:6010/sdb1_"" with 1.0 weight got id 0 Device d1r1z1-127.0.0.1:6010R127.0.0.1:6010/sdb5_"" with 1.0 weight got id 1 Device d2r1z2-127.0.0.1:6020R127.0.0.1:6020/sdb2_"" with 1.0 weight got id 2 Device d3r1z2-127.0.0.1:6020R127.0.0.1:6020/sdb6_"" with 1.0 weight got id 3 Device d4r1z3-127.0.0.1:6030R127.0.0.1:6030/sdb3_"" with 1.0 weight got id 4 Device d5r1z3-127.0.0.1:6030R127.0.0.1:6030/sdb7_"" with 1.0 weight got id 5 Device d6r1z4-127.0.0.1:6040R127.0.0.1:6040/sdb4_"" with 1.0 weight got id 6 Device d7r1z4-127.0.0.1:6040R127.0.0.1:6040/sdb8_"" with 1.0 weight got id 7 Reassigned 1024 (100.00%) partitions. Balance is now 0.00. Dispersion is now 0.00 Device d0r1z1-127.0.0.1:6011R127.0.0.1:6011/sdb1_"" with 1.0 weight got id 0 Device d1r1z2-127.0.0.1:6021R127.0.0.1:6021/sdb2_"" with 1.0 weight got id 1 Device d2r1z3-127.0.0.1:6031R127.0.0.1:6031/sdb3_"" with 1.0 weight got id 2 Device d3r1z4-127.0.0.1:6041R127.0.0.1:6041/sdb4_"" with 1.0 weight got id 3 Reassigned 1024 (100.00%) partitions. Balance is now 0.00. Dispersion is now 0.00 Device d0r1z1-127.0.0.1:6012R127.0.0.1:6012/sdb1_"" with 1.0 weight got id 0 Device d1r1z2-127.0.0.1:6022R127.0.0.1:6022/sdb2_"" with 1.0 weight got id 1 Device d2r1z3-127.0.0.1:6032R127.0.0.1:6032/sdb3_"" with 1.0 weight got id 2 Device d3r1z4-127.0.0.1:6042R127.0.0.1:6042/sdb4_"" with 1.0 weight got id 3 Reassigned 1024 (100.00%) partitions. Balance is now 0.00. Dispersion is now 0.00 #. Read more about Storage Policies and your SAIO :doc:`policies_saio` #. Verify the unit tests run:: $HOME/swift/.unittests Note that the unit tests do not require any swift daemons running. #. Start the "main" Swift daemon processes (proxy, account, container, and object):: startmain (The "``Unable to increase file descriptor limit. Running as non-root?``" warnings are expected and ok.) The ``startmain`` script looks like the following: .. literalinclude:: /../saio/bin/startmain #. Get an ``X-Storage-Url`` and ``X-Auth-Token``:: curl -v -H 'X-Storage-User: test:tester' -H 'X-Storage-Pass: testing' http://127.0.0.1:8080/auth/v1.0 #. Check that you can ``GET`` account:: curl -v -H 'X-Auth-Token: ' #. Check that ``swift`` command provided by the python-swiftclient package works:: swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing stat #. Verify the functional tests run:: $HOME/swift/.functests (Note: functional tests will first delete everything in the configured accounts.) #. Verify the probe tests run:: $HOME/swift/.probetests (Note: probe tests will reset your environment as they call ``resetswift`` for each test.) ---------------- Debugging Issues ---------------- If all doesn't go as planned, and tests fail, or you can't auth, or something doesn't work, here are some good starting places to look for issues: #. Everything is logged using system facilities -- usually in ``/var/log/syslog``, but possibly in ``/var/log/messages`` on e.g. Fedora -- so that is a good first place to look for errors (most likely python tracebacks). #. Make sure all of the server processes are running. For the base functionality, the Proxy, Account, Container, and Object servers should be running. #. If one of the servers are not running, and no errors are logged to syslog, it may be useful to try to start the server manually, for example: ``swift-object-server /etc/swift/object-server/1.conf`` will start the object server. If there are problems not showing up in syslog, then you will likely see the traceback on startup. #. If you need to, you can turn off syslog for unit tests. This can be useful for environments where ``/dev/log`` is unavailable, or which cannot rate limit (unit tests generate a lot of logs very quickly). Open the file ``SWIFT_TEST_CONFIG_FILE`` points to, and change the value of ``fake_syslog`` to ``True``. #. If you encounter a ``401 Unauthorized`` when following Step 12 where you check that you can ``GET`` account, use ``sudo service memcached status`` and check if memcache is running. If memcache is not running, start it using ``sudo service memcached start``. Once memcache is running, rerun ``GET`` account. ------------ Known Issues ------------ Listed here are some "gotcha's" that you may run into when using or testing your SAIO: #. fallocate_reserve - in most cases a SAIO doesn't have a very large XFS partition so having fallocate enabled and fallocate_reserve set can cause issues, specifically when trying to run the functional tests. For this reason fallocate has been turned off on the object-servers in the SAIO. If you want to play with the fallocate_reserve settings then know that functional tests will fail unless you change the max_file_size constraint to something more reasonable then the default (5G). Ideally you'd make it 1/4 of your XFS file system size so the tests can pass.