Redfish driver

Overview

The redfish driver enables managing servers compliant with the Redfish protocol. Supported features include:

Prerequisites

  • The Sushy library should be installed on the ironic conductor node(s).

    For example, it can be installed with pip:

    sudo pip install sushy
    

Enabling the Redfish driver

  1. Add redfish to the list of enabled_hardware_types, enabled_power_interfaces, enabled_management_interfaces and enabled_inspect_interfaces as well as redfish-virtual-media and redfish-https to enabled_boot_interfaces in /etc/ironic/ironic.conf. For example:

    [DEFAULT]
    ...
    enabled_hardware_types = ipmi,redfish
    enabled_boot_interfaces = ipxe,redfish-virtual-media,redfish-https
    enabled_power_interfaces = ipmitool,redfish
    enabled_management_interfaces = ipmitool,redfish
    enabled_inspect_interfaces = inspector,redfish
    
  2. Restart the ironic conductor service:

    sudo service ironic-conductor restart
    
    # Or, for RDO:
    sudo systemctl restart openstack-ironic-conductor
    

Registering a node with the Redfish driver

Nodes configured to use the driver should have the driver property set to redfish.

The following properties are specified in the node’s driver_info field:

redfish_address

The URL address to the Redfish controller. It must include the authority portion of the URL, and can optionally include the scheme. If the scheme is missing, https is assumed. For example: https://mgmt.vendor.com. This is required.

redfish_system_id

The canonical path to the ComputerSystem resource that the driver will interact with. It should include the root service, version and the unique resource path to the ComputerSystem. This property is only required if target BMC manages more than one ComputerSystem. Otherwise ironic will pick the only available ComputerSystem automatically. For example: /redfish/v1/Systems/1.

redfish_username

User account with admin/server-profile access privilege. Although not required, it is highly recommended.

redfish_password

User account password. Although not required, it is highly recommended.

redfish_verify_ca

If redfish_address has the https:// scheme, the driver will use a secure (TLS) connection when talking to the Redfish controller. By default (if this is not set or set to True), the driver will try to verify the host certificates. This can be set to the path of a certificate file or directory with trusted certificates that the driver will use for verification. To disable verifying TLS, set this to False. This is optional.

redfish_auth_type

Redfish HTTP client authentication method. Can be basic, session or auto. The auto mode first tries session and falls back to basic if session authentication is not supported by the Redfish BMC. Default is set in ironic config as redfish.auth_type. Most operators should not need to leverage this setting. Session based authentication should generally be used in most cases as it prevents re-authentication every time a background task checks in with the BMC.

Note

The redfish_address, redfish_username, redfish_password, and redfish_verify_ca fields, if changed, will trigger a new session to be established and cached with the BMC. The redfish_auth_type field will only be used for the creation of a new cached session, or should one be rejected by the BMC.

The baremetal node create command can be used to enroll a node with the redfish driver. For example:

baremetal node create --driver redfish --driver-info \
  redfish_address=https://example.com --driver-info \
  redfish_system_id=/redfish/v1/Systems/CX34R87 --driver-info \
  redfish_username=admin --driver-info redfish_password=password \
  --name node-0

For more information about enrolling nodes see Enrollment in the install guide.

Boot mode support

The redfish hardware type can read current boot mode from the bare metal node as well as set it to either Legacy BIOS or UEFI.

Note

Boot mode management is the optional part of the Redfish specification. Not all Redfish-compliant BMCs might implement it. In that case it remains the responsibility of the operator to configure proper boot mode to their bare metal nodes.

UEFI secure boot

Secure boot mode can be automatically set and unset during deployment for nodes in UEFI boot mode, see UEFI secure boot mode for an explanation how to use it.

Two clean and deploy steps are provided for key management:

management.reset_secure_boot_keys_to_default

resets secure boot keys to their manufacturing defaults.

management.clear_secure_boot_keys

removes all secure boot keys from the node.

Rebooting on boot mode changes

While some hardware is able to change the boot mode or the UEFI secure boot state immediately, other models may require a reboot for such a change to be applied. Furthermore, some hardware models cannot change the boot mode and the secure boot state simultaneously, requiring several reboots.

The Bare Metal service refreshes the System resource after issuing a PATCH request against it. If the expected change is not observed, the node is rebooted, and the Bare Metal service waits until the change is applied. In the end, the previous power state is restored.

This logic makes changing boot configuration more robust at the expense of several reboots in the worst case.

Virtual media boot

The idea behind virtual media boot is that BMC gets hold of the boot image one way or the other (e.g. by HTTP GET, other methods are defined in the standard), then “inserts” it into node’s virtual drive as if it was burnt on a physical CD/DVD. The node can then boot from that virtual drive into the operating system residing on the image.

The major advantage of virtual media boot feature is that potentially unreliable TFTP image transfer phase of PXE protocol suite is fully eliminated.

Hardware types based on the redfish fully support booting deploy/rescue and user images over virtual media. Ironic builds bootable ISO images, for either UEFI or BIOS (Legacy) boot modes, at the moment of node deployment out of kernel and ramdisk images associated with the ironic node.

To boot a node managed by redfish hardware type over virtual media using BIOS boot mode, it suffice to set ironic boot interface to redfish-virtual-media, as opposed to ipmitool.

baremetal node set --boot-interface redfish-virtual-media node-0

Note

iDRAC firmware before 4.40.10.00 (on Intel systems) and 6.00.00.00 (on AMD systems) requires a non-standard Redfish call to boot from virtual media. Consider upgrading to 6.00.00.00, otherwise you must use the idrac hardware type and the idrac-redfish-virtual-media boot interface with older iDRAC firmware instead. For simplicity Ironic restricts both AMD and Intel systems before firmware version 6.00.00.00. See iDRAC driver for more details on this hardware type.

If UEFI boot mode is desired, the user should additionally supply EFI System Partition image (ESP), see Configuring an ESP image for details.

If [driver_info]/config_via_floppy boolean property of the node is set to true, ironic will create a file with runtime configuration parameters, place into on a FAT image, then insert the image into node’s virtual floppy drive.

When booting over PXE or virtual media, and user instance requires some specific kernel configuration, the node’s instance_info[kernel_append_params] or driver_info[kernel_append_params] properties can be used to pass user-specified kernel command line parameters.

baremetal node set node-0 \
  --driver-info kernel_append_params="nofb vga=normal"

Note

The driver_info field is supported starting with the Xena release.

Starting with the Zed cycle, you can combine the parameters from the configuration and from the node using the special %default% syntax:

baremetal node set node-0 \
  --driver-info kernel_append_params="%default% console=ttyS0,115200n8"

For ramdisk boot, the instance_info[ramdisk_kernel_arguments] property serves the same purpose (%default% is not supported since there is no default value in the configuration).

Pre-built ISO images

By default an ISO images is built per node using the deploy kernel and initramfs provided in the configuration or the node’s driver_info. Starting with the Wallaby release it’s possible to provide a pre-built ISO image:

baremetal node set node-0 \
  --driver_info deploy_iso=http://url/of/deploy.iso \
  --driver_info rescue_iso=http://url/of/rescue.iso

Note

OpenStack Image service (glance) image IDs and file:// links are also accepted.

Note

Before the Xena release the parameters were called redfish_deploy_iso and redfish_rescue_iso accordingly. The old names are still supported for backward compatibility.

No customization is currently done to the image, so e.g. Layer 3 or DHCP-less ramdisk booting won’t work. Configuring an ESP image is also unnecessary.

Virtual Media Ramdisk

The ramdisk deploy interface can be used in concert with the redfish-virtual-media boot interface to facilitate the boot of a remote node utilizing pre-supplied virtual media. See Booting a Ramdisk or an ISO for information on how to enable and configure it.

Instead of supplying an [instance_info]/image_source parameter, a [instance_info]/boot_iso parameter can be supplied. The image will be downloaded by the conductor, and the instance will be booted using the supplied ISO image. In accordance with the ramdisk deployment interface behavior, once booted the machine will have a provision_state of ACTIVE.

baremetal node set <node name or UUID> \
    --boot-interface redfish-virtual-media \
    --deploy-interface ramdisk \
    --instance_info boot_iso=http://url/to.iso

This initial interface does not support bootloader configuration parameter injection, as such the [instance_info]/kernel_append_params setting is ignored.

Configuration drives are supported starting with the Wallaby release for nodes that have a free virtual USB slot:

baremetal node deploy <node name or UUID> \
    --config-drive '{"meta_data": {...}, "user_data": "..."}'

or via a link to a raw image:

baremetal node deploy <node name or UUID> \
    --config-drive http://example.com/config.img

Redfish HTTP(s) Boot

The redfish-https boot interface is very similar to the redfish-virtual-media boot interface. In this driver, we compose an ISO image, and request the BMC to inform the UEFI firmware to boot the Ironic ramdisk, or a other ramdisk image. This approach is intended to allow a pattern of engagement where we have minimal reliance on addressing and discovery of the Ironic deployment through autoconfiguration like DHCP, and somewhat mirrors vendor examples of booting from an HTTP URL.

This interface has some basic constraints.

  • There is no configuration drive functionality, while Virtual Media did help provide such functionality.

  • This interface is dependent upon BMC, EFI Firmware, and Bootloader, which means we may not see additional embedded files an contents in an ISO image. This is the same basic constraint over the ramdisk deploy interface when using Network Booting.

  • This is a UEFI-Only boot interface. No legacy boot is possible with this interface.

A good starting point for this interface, is to think of it as higher security network boot, as we are explicitly telling the BMC where the node should boot from.

Like the redfish-virtual-media boot interface, you will need to create an EFI System Partition image (ESP), see Configuring an ESP image for details on how to do this.

Additionally, if you would like to use the ramdisk deployment interface, the same basic instructions covered in Virtual Media Ramdisk apply, just use redfish-https as the boot_interface, and keep in mind, no configuration drives exist with the redfish-https boot interface.

Limitations & Issues

Ironic contains two different ways of providing an HTTP(S) URL to a remote BMC. The first is Swift, enabled when [redfish]use_swift is set to true. Ironic uploads files to Swift, which are then shared as Temporary Swift URLs. While highly scalable, this method does suffer from issues where some vendors BMCs reject URLs with & or ? characters. There is no available workaround to leverage Swift in this state.

When the [redfish]use_swift setting is set to false, Ironic will house the files locally in the [deploy]http_root folder structure, and then generate a URL pointing the BMC to connect to the HTTP service configured via [deploy]http_url.

Out-Of-Band inspection

The redfish hardware type can inspect the bare metal node by querying Redfish compatible BMC. This process is quick and reliable compared to the way the inspector hardware type works i.e. booting bare metal node into the introspection ramdisk.

Note

The redfish inspect interface relies on the optional parts of the Redfish specification. Not all Redfish-compliant BMCs might serve the required information, in which case bare metal node inspection will fail.

Note

The local_gb property cannot always be discovered, for example, when a node does not have local storage or the Redfish implementation does not support the required schema. In this case the property will be set to 0.

Retrieving BIOS Settings

When the bios interface is set to redfish, Ironic will retrieve the node’s BIOS settings as described in BIOS Configuration. In addition, via Sushy, Ironic will get the BIOS Attribute Registry (BIOS Registry) from the node which is a schema providing details on the settings. The following fields will be returned in the BIOS API (/v1/nodes/{node_ident}/bios) along with the setting name and value:

Field

Description

attribute_type

The type of setting - Enumeration, Integer, String, Boolean, or Password

allowable_values

A list of allowable values when the attribute_type is Enumeration

lower_bound

The lowest allowed value when attribute_type is Integer

upper_bound

The highest allowed value when attribute_type is Integer

min_length

The shortest string length that the value can have when attribute_type is String

max_length

The longest string length that the value can have when attribute_type is String

read_only

The setting is ready only and cannot be modified

unique

The setting is specific to this node

reset_required

After changing this setting a node reboot is required

Further topics